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Lecture 8                              Fourier Transforms and Application to the PSD
Definition 1. Let 
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be a deterministic function that satisfies
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Theorem 1. The inverse Fourier transform of 
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Proof: Begin with 
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Let 
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We now need to compute the inner integral. Rather than using a limit-based argument associated with the infinite limits of integration, we will use the following method:
The Fourier transform of 
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. This completes the proof.   □
Remark 1. As a result of this proof, we have discovered the following Fourier transform pairs:
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Remark 2. The units of 
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are typically radians/second, though radians per hour, day or year are also common. Let 
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have units of cycles/second (i.e. Hz). Then the Fourier transform pair becomes: 
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The Fourier Transform of the Autocorrelation Function- 
Example 1. Consider a Gauss-Markov random process with 
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Hence, 
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in units of power/Hz. □

Definition 2. For a wss random process with 
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 is called the power spectral density (psd) for 
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NOTE 1: The reason for this ‘weirdness’ of the units stems from the  
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NOTE 2: One might well ask about the use of the term ‘power’. After all, the units of 
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is the square of the units of 
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Example 1 continued.  For 
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                 Figure 1. The autocorrelation and psd functions for a GM process with 
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Example 2. Continuous-time white noise has 
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is the Dirac-delta function. Hence, the psd is 
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, the white noise process has infinite variance. The parameter 
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Recalling that 
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Notice that 
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Hence, the constant c has units of pwr/Hz and the two-sided bandwidth 
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     Figure 2. Plot of 
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From Example 2, we have the following Fourier transform pair:
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Example 3. The 
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Writing this as 
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, we have the Fourier transform pair:

                                     
[image: image69.wmf]||/2

()()()(/2)

0

afortT

xtXaTSaT

otherwise

ww

<

ì

=«=

í

î

.   □
The Importance of the Rectangular Window and Its Fourier Transform- the Sinc Function-

To appreciate the importance of the rectangular window and its Fourier transform, it helps to understand the following property of Fourier transform pairs:

Property 1: Multiplication in one domain is equivalent to convolution in the other domain.

Example 4. A random process 
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can only be observed over a finite time 
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denote a rectangular window of length T and height 1.0. We can then write the finite-time observation of 
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Now suppose that 
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Recalling the identity 
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Use the Fourier transform pair relation 
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This can be simplified by noting that 
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It follows that
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Note: the 
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factor is the appropriate scale factor in this convolution theorem.     □
In words, the effect of the rectangular window on the Fourier transform of the sinusoid is that the two delta functions have been replaced by two sinc functions. Effectively, the spikes have smeared out. For a small window the smearing effect will be large; whereas for a large window it will be more localized.
Remark 3. We have just alluded to what, more generally is known as the Heisenberg Uncertainty principle: The more you attempt to localize in one domain, the more uncertainty you have in the associated Fourier transform domain. □
Example 5. The ‘ideal’ low pass filter (LPF) is the rectangular frequency window 
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This time domain convolution will smear out the details in 
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 to this white noise. The results are shown at right. As expected, the details of the white noise have been reduced (i.e. smeared out).  □

Figure 3. Plots of unfiltered and filtered white noise.
The Unbiased Versus the Biased Lagged-Product Autocorrelation Estimator-
The unbiased and biased lagged-product estimators of  
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Using the linearity of E(*) it is easy to show that:
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The window 
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 is a triangular window of width 2T. In fact, it can be obtained by convolving the rectangular window 
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 with itself. Hence, by the convolution theorem we have 
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Remark 4. In addition to decreasing the spectral resolution, the rectangular window also changes the nature of deterministic random processes. They are converted to regular random processes. For example, recall from Example 4 that for the deterministic random process 
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. Hence, it is natural to assume the corresponding psd will include these two delta functions. We then found that 
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. And so, once again, it is natural to presume that the corresponding psd will no longer include these delta function. Rather, it will be more well-behaved, in the sense that this psd is actually a function of frequency; as opposed to the delta function that is not a regular function at all. Recall that the psd is a [power spectral density. Its units are power/Hz. The psd is analogous to a force density, which we call pressure. The units of pressure are force/unit-length. One need to compute force by integrating pressure over a given length. If that length includes a single point, this integral is zero.   □
We will now address one of the most important theorems in relation to computation of the psd:
My Version of the Wiener-Kinchin Theorem. Let 
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For convenience, denote this triangular-windowed autocorrelation function as 
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On pp.71-72 of the book it is shown that: 
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This expression for the windowed psd is my version of the Wiener-Kinchin Theorem.
The relation (s) gives an alternative to taking the Fourier transform of the lagged-product autocorrelation function. Suppose that the window length T can be partitioned into n smaller windows, each having length Δ. Denote the process associated with the kth window as 
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If we do not partition T and use the entire window, we have:
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The estimator (4) is called the periodogram. In words, you simply compute the Fourier transform of 
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, and then take its magnitude-squared as the estimator of the psd. Now, an average of one is nothing to write home about. By partitioning T and taking an average of n mod-squared Fourier transforms we can significantly reduce the uncertainty of the psd estimator. However, this comes at a price. The sinc function associated with a window of size 
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will be wider than the sinc function associated with a window of size T by a factor of n. In words, we reduce the spectral resolution of the estimator. It must be emphasized:
                                          The periodogram (4) is a horrible estimator of the psd!
The challenge is to determine the value of n such that the estimator will have acceptably low uncertainty, while at the same time having reasonable spectral resolution. 

Finally, it should be mentioned that this problem has been around for a long time, and that many methods of attacking it have been proposed. One method is to use a specified overlap of the sub-windows. For a 50% overlap, the second half of a given window would be the first half of the next window. Having more sub-windows allows one to use a larger sub-window size. Matlab offers this method (as well as others). It is known as Welch’s method, and is the code pwelch.m.
CONCLUSION: This lecture was packed with elements of psd analysis. There are entire graduate courses on this topic. You should not be discouraged if your head is now spinning. Re-read these lecture notes again and again. Go to Google to help improve your understanding. The psd is an indispensable topic in analysis of random processes. For this reason, we will return to it in the context of our next topic, which is linear systems.
Footnote (10/11/19): Consider the three Fourier Transforms:
(i): 
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The form (i) is the correct one for deterministic absolutely integrable 
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The form (ii) is the correct one for a regular wss random process 
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The form (iii) is the correct one for a periodic 
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QUESTION: Suppose we have 
[image: image131.wmf]()()sin(2)

t

xtewtt

-

=++

. Which transform is appropriate for 
[image: image132.wmf]()

xt

?


_1598097139.unknown

_1598204920.unknown

_1598211016.unknown

_1598255420.unknown

_1598256035.unknown

_1632300340.unknown

_1632300475.unknown

_1632300719.unknown

_1632300537.unknown

_1632300403.unknown

_1598432784.unknown

_1632300207.unknown

_1598256338.unknown

_1598255563.unknown

_1598255885.unknown

_1598255499.unknown

_1598224136.unknown

_1598250972.unknown

_1598251298.unknown

_1598250797.unknown

_1598221001.unknown

_1598223950.unknown

_1598219568.unknown

_1598209238.unknown

_1598210479.unknown

_1598210744.unknown

_1598210841.unknown

_1598210554.unknown

_1598210356.unknown

_1598210387.unknown

_1598210115.unknown

_1598210274.unknown

_1598210050.unknown

_1598205855.unknown

_1598209102.unknown

_1598209202.unknown

_1598207701.unknown

_1598207065.unknown

_1598205229.unknown

_1598205355.unknown

_1598205592.unknown

_1598205649.unknown

_1598205505.unknown

_1598205310.unknown

_1598205011.unknown

_1598133502.unknown

_1598135716.unknown

_1598138536.unknown

_1598139215.unknown

_1598139484.unknown

_1598139706.unknown

_1598139740.unknown

_1598138556.unknown

_1598139184.unknown

_1598138442.unknown

_1598138457.unknown

_1598135790.unknown

_1598135166.unknown

_1598135416.unknown

_1598135589.unknown

_1598135357.unknown

_1598134762.unknown

_1598135041.unknown

_1598134602.unknown

_1598133615.unknown

_1598131250.unknown

_1598132567.unknown

_1598133060.unknown

_1598133298.unknown

_1598132927.unknown

_1598131800.unknown

_1598131903.unknown

_1598131756.unknown

_1598130843.unknown

_1598130975.unknown

_1598131035.unknown

_1598130927.unknown

_1598130572.unknown

_1598130640.unknown

_1598097438.unknown

_1598130465.unknown

_1598081241.unknown

_1598093296.unknown

_1598096228.unknown

_1598096474.unknown

_1598096687.unknown

_1598096360.unknown

_1598096186.unknown

_1598096202.unknown

_1598093903.unknown

_1598096020.unknown

_1598093687.unknown

_1598084362.unknown

_1598084431.unknown

_1598091642.unknown

_1598084397.unknown

_1598081885.unknown

_1598084167.unknown

_1598081365.unknown

_1598079365.unknown

_1598080790.unknown

_1598080917.unknown

_1598081119.unknown

_1598080881.unknown

_1598080551.unknown

_1598080685.unknown

_1598079441.unknown

_1598078342.unknown

_1598078538.unknown

_1598078653.unknown

_1598078354.unknown

_1598076393.unknown

_1598077994.unknown

_1598078007.unknown

_1598078023.unknown

_1598076631.unknown

_1598076315.unknown

