
1

Lecture 7 The Levinson Algorithm

Let 

kkX }{ be a wide sense stationary (wss) zero-mean discrete-time random process. Let



  0)}()({ mXmkk mRXXE denote the autocorrelation function for this process. We begin this set of notes with

the following problem.

The Linear Prediction Problem: In words, the problem here is to predict kX from p

jjkX 1}{  using the

following linear prediction model:

 



p

j

jkjp

p

k XaX
1

,

)(


. (1)

The integer, p, is the number of lags (relative to k) that are to be used to predict Xk. Consequently, (1) is called a

pth order linear prediction model. The corresponding pth order prediction error is clearly,

)()(p

k

p

kk VXX





. (2)

Since Let 

kkX }{ is a wss zero-mean random process, so is the error random process 

k

p

kV }{)(. Hence, the

mean-squared error (mse) is
22)(])[(p

p

kVE 


 . We desire to find the prediction coefficients p

jjpa 1, }{  that will

minimize this mse.

Fact 1: The prediction coefficients p

jjpa 1, }{  that minimize 2

p , are those that satisfy the following

orthogonality conditions:

 0)()(mk

p

k XVE for pm ,,2,1  . (3)

Clearly, (3) includes p linear equations in the p unknowns
p

jjpa 1, }{  . To arrive at the explicit set of equations,

use (1) and (2) to express (3) as:

 0)()(])[()(
1

,

)()( 




p

j

XjpXmk

p

kkmk

p

k mjRamRXXXEXVE


 for pm ,,2,1  . (4)

The collection of equations in (4) can be written in the following matrix form:

































































)(

)2(

)1(

)0()2()1(

)2()0()1(

)1()1()0(

,

2,

1,

pR

R

R

a

a

a

RpRpR

pRRR

pRRR

X

X

X

pp

p

p

XXX

XXX

XXX











. (5a)

2

We will express (5a) in the following concise notation:

 ppp   1 . (5b)

Hence, the vector of prediction coefficients tr

ppppp aaa][,2,1,  corresponding to the minimum mean-

squared error (mmse) pth order linear prediction model of the form (1) is:

 ppp  1

1



 . (6a)

The corresponding mse is:

 



p

j

XjpXk

p

kk

p

kk

p

kkk

p

k

p

kp jRaRXVEXVEXVEXXVEVE
1

,

)()()()(2)(2)()0()()()()]([(])[(


 .

Notice that the term)()(

k

p

k XVE


vanished. This is because the prediction error)(p

kV is uncorrelated with every

member of p

jjkX 1}{  , and so it is uncorrelated with kX


. The above equation can be written in the more concise

form:

 p

tr

pXp R  )0(2 . (6b)

Equations (6) represent the solution to the pth order linear prediction problem. The crucial issue that was not

addressed is how to select the most appropriate order, p, for a given collection autocorrelations M

mX mR 0)}({  .

Now if these autocorrelations are known to be exact, then this is not a problem, since we would simply choose

Mp  , as that will result in the smallest possible mse. If the mmse is actually achieved for Mp  , then the

Mth order coefficient vector is]0,,0[tr

p

tr

M   . In this idealistic case the random process 

kkX }{ is called a

pth order autoregressive [AR(p)] process. We state this as

Definition 1. If a wss zero-mean process 

kkX }{ can be expressed as k

p

j

jkjpk VXaX  




1

, , where



kkV }{ is a white noise process, then it is called a pth order autoregressive [AR(p)] process.

Hence, in the case of an AR(p) process, not only does the orthogonality condition hold for pm ,,2,1  , it

hold for all m>0.

If, indeed, this minimum possible mse can be achieved for a model order Mp  , then since

]0,,0[tr

p

tr

M   , the Mth order model collapses to a pth order AR(p) model. Few, if any real-world random

processes are truly AR(p) in nature; albeit many can be well-modeled by the same. Recognition of the following

fact is central to the use of AR(p) models.

3

Fact 2. The solution (6a) of the equation (5a) guarantees that (2) will be uncorrelated with the collection
p

jjkX 1}{  . However, this does not mean that (2) is a white noise process. It will be a white noise process if and

only if (1) is an AR(p) process. When this is not the case, then (2) will be a colored noise process; that is, it will

retain some of the correlation structure related to (1). To capture this structure would require a higher order

model.

Another problem is that of not having exact knowledge of M

mX mR 0)}({  . Typically, we have data-based estimates

M

mX mR 0)}({ 


. And so, whereas in the ideal case the last M-p elements of]0,,0[tr

p

tr

M   would be exactly

zero, in this more common and realistic case they will not. The most common estimator of)(mRX is the

following lagged-product estimator:

 





mn

k

mkkX XX
n

mR
1

1
)(


. (7)

Notice that for m = 0, (7) is the average of n products. Hence, if the observation length, n, is large, (7) will be a

good estimator of)0(XR . At the other extreme, suppose that 1 nm , which is the largest value of m that can

be used in (7). In this case, nX XX
n

nR 1

1
)1(


. This is not an average at all. It is (1/n) times a single

product. As a result,)1(nRX


will be a very poor estimator of)1(nRX .

We will quantify the quality of the estimator (7) in due course. For now, it is enough to recognize that if the

estimators (7) for pm ,,2,1  are used in (5a), then as p increases for a given data length, n, (a) will include

more and more poor estimators of the higher autocorrelation lags. Consequently, the estimator (6a) will become

less trustworthy.

It is this trade-off between the desire for a high model order that can better capture the structure of the process,

and the increasing uncertainty of the estimator (7) at higher lags that has led researchers to propose a wide

variety of model order identification schemes. All of these schemes represent an attempt to somehow optimize

this trade-off. All of them strive to identify that single ‘best’ model order, p. And so, to this end, (6) will be

computed for a variety of increasing model orders.

The Levinson Algorithm

Notice that the computations, (6), involve taking the inverse of the pp matrix 1 p in (5b), as defined by

(5a). Before the advent of high speed computers, computing such an inverse became exponentially more

intensive as the order p increased. Today, even for p on the order of 100, such an inverse can be computed in

practically no time. The Levinson algorithm was developed in the mid-1960’s as an alternative to having to

perform the matrix inversion. Even though current computing power has lessened its value, we include it here

for two reasons. First, it can be implemented in a digital signal processing (DSP) chip far more cheaply that the

matrix inversion method. Second, we will see that by progressing through the order sequence ,3,2,1p , not

only do we arrive at a family of AR models that can be used for cross-validation purposes, but we also arrive at

a family of related minimum variance (MV) models that include information about the process not so easily

gleaned from the AR models.

4

To arrive at the Levinson algorithm, we begin with the p orthogonality conditions (4), which we give here for

convenience:

 0)()(
1

, 


p

j

XjpX mjRamR for pm ,,2,1  . (8a)

and with the equation following (6a), which led to (6b):

 



p

j

XjpXp jRaR
1

,

2)()0( . (8b)

Equations (8) can be written as:















































































0

0

0

0

1

)0()1()1()(

)1()0()2()1(

)1()2()0()1(

)()1()1()0(2

,

1,

1,

p

pp

pp

p

XXXX

XXXX

XXXX

XXXX

a

a

a

RRpRpR

RRpRpR

pRpRRR

pRpRRR 













. (9a)

We will now define 10, pa , and subsequently, re-define tr

ppppp aaa],,,[,1,0,  , so that (9a) is:

 









0

2

p

pp


 . (9b)

The matrix p is not only symmetric, but the kth diagonal contains the single element)(kRX . Such a matrix is

called a Toeplitz matrix, and it has the following property:














2

0

p

pp







 where
tr

ppppppp aaaa][0,1,1,, 


 . (10)

Now, we also have























































































1

2

1

1,1

1,1

0

0

0

0

1

)0()1()1()(

)1()0()2()1(

)1()2()0()1(

)()1()1()0(

p

p

pp

p

XXXX

XXXX

XXXX

XXXX

a

a

RRpRpR

RRpRpR

pRpRRR

pRpRRR 













 (11a)

5

 where p

tr

p

tr

XXX

tr

pp RpRpR 


]0[)]0()1()(][0[111   . (11b)

Hence, in compact form, (11) becomes:



































1

2

1

1
0

0
p

p

p

p





. (12a)

Similar to (10), we have from (12a):































 2

1

1

1

0
0

p

p

p

p





 . (12b)

Claim: We can express 






















1

1
0

0 p

p

p 



  for some value of γ.

To prove this claim, we will proceed to assume it is true, and find the appropriate value for γ.





























































2

11

1

2

1

1

1
0

0

0
pp

pp

p

p

ppp












 . (13)

If we compare it to (9b), we see that if we set

2

11 /  pp  ; 






















1

1
0

0 p

p

p 



  , and 







 











00

1

2

1

2

 ppp 

then we have exactly (9b). And so, the algorithm proceeds as follows:

The Levinson Algorithm:

p=0: 10  ;)0(2

0 XR ;)1(0 XR ;

p=1 :)0(/)1(/ 2

11 XXpp RR   ; 








































1

1

0

0

11

11a
 ;)0()0(2

1 XX RR   ;

p=2: tr

XXX

tr RRR)]0()1()2(][0[11  ;
2

11 /  pp  ; 






















1

1
0

0 p

p

p 



  ; 1

2

1

2

  ppp 

p=3: 322]0[
tr ;

2

11 /  pp  ; 






















1

1
0

0 p

p

p 



  ; 1

2

1

2

  ppp 

6

The sequence of computations continues for as many models as are specified, up to order n-1.

A Matlab Code for the Levinson Algorithm:

% The correlations RX(k) for k = 0: maxorder must be resident as a column vector

E2=[]; %Array of model mse’s
 Alpha=[]; %Array of model parameters. The kth column corresponds to {1 ak1 … akk}
 E2(1)=r(1); % This is actually RX(0), but Matlab doesn’t like the zero index.
 R=r(1:2);
 Alpha(1)=1.0;
 Aall=[Alpha; zeros(maxorder,1)]; % This array will have maxorder +1 rows of models.
 N=1;
 for n=1:maxorder
 R=r(1:n+1);
 rflip=flipud(R);
 Alpha=[Alpha; 0.0];
 del=rflip' * Alpha;
 Alpha=Alpha - (del/E2(N)) * flipud(Alpha);
 E2(N+1) = E2(N) - (del^2)/E2(N);
 N=n+1;
 Aall=[Aall,[Alpha; zeros(maxorder-n,1)]];
 end

Example 1. To test the above algorithm, we consider an AR(1) process, Xk with α = 0.5, and with RX(0)=1. We

define pwr = 0:5 and r = (0.5*ones(6,0)).^pwr. This gives the first 6 autocorrelation lags (0:5). The resulting

array of model coefficients is:

Aall =

 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

 0 -0.5000 -0.5000 -0.5000 -0.5000 -0.5000

 0 0 0 0 0 0

 0 0 0 0 0 0

 0 0 0 0 0 0

 0 0 0 0 0 0

The corresponding array of mse’s is:

E2 =

 1.0000 0.7500 0.7500 0.7500 0.7500 0.7500

As expected, all higher order models collapse to the correct AR(1) model. □

Using Simulations to Determine the Minimum Data length, n, for Acceptable Model Estimation

The above example utilized theoretical correlation lags. consequently, all models collapsed to the correct one.

Suppose that these lags were, instead, estimated via (7). The question addressed here is:

How large should the data length, n, be, in order to correctly identify the model as an AR(1) model?

7

As mentioned above, we will pursue a theoretical answer to this question; one that utilizes a fair bit of

probability theory. However, in view of the level of computational power presently available, the student can

answer this question by performing simulations. Let’s begin by simulating the above AR(1) process for various

values of n.

Case 1: n=100 The estimated autocorrelations from ar1sim.m (given below) are:

Trial>> Rhat'

ans = 0.9842 0.4572 0.2514 0.2282 0.2011 0.1703

% PROGRAM NAME: ar1sim.m
a=0.5; varu=1-a^2;
n = 100; ntot = n+500;
u=varu^0.5 *randn(ntot,1);
x=zeros(ntot,1); x(1)=0;
for k = 2:ntot
 x(k) = a*x(k-1) + u(k);
end
x=x(501:ntot);
Rhat = xcorr(x,5,'biased');
Rhat=Rhat(6:11)

Using these in the scar.m program gives:

Aall = 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

 0 -0.4646 -0.4411 -0.4350 -0.4274 -0.4247

 0 0 -0.0505 0.0036 0.0033 0.0075

 0 0 0 -0.1225 -0.0957 -0.0958

 0 0 0 0 -0.0616 -0.0429

 0 0 0 0 0 -0.0436

The array of corresponding mse’s is:

E2 = 0.9842 0.7718 0.7698 0.7583 0.7554 0.7540

We see that the mse decreases monotonically, but that the decrease is minimal beyond order 1. Hence, any

model identification scheme would identify 1 as the best order. If we accept that for n=100, the order 1 would

be identified, we can then proceed to investigate the uncertainty associated with the estimators of the AR(1)

model parameters α and 2

U . These parameters depend only on)0(xR and)1(xR . Specifically,

)0(/)1(xx RRa  , and)1()0(2

xXU RaR  . In this particularly simple setting, it is easier to forego the above

codes and write a very simple direct one instead. To this end, consider the following code:

8

% PROGRAM NAME: ar1pdf.m
a=0.5; varu=1-a^2;
n = 100; ntot = n+500;
nsim = 1000;
u=varu^0.5 *randn(ntot,nsim);
x=zeros(ntot,nsim); x(1,:)=zeros(1,nsim);
for k = 2:ntot
 x(k,:) = a*x(k-1,:) + u(k,:);
end
x=x(501:ntot,:);
R0=mean(x.*x);
x0=x(1:n-1,:);
x1=x(2:n,:);
R1=mean(x0.*x1);
ahat = -R1./R0;
varuhat = R0 + ahat.*R1;
figure(1)
hist(ahat,50)
title('Histogram of simulations of ahat for n=100')
pause
figure(2)
hist(varuhat,50)
title('Histogram of simulations of varuhat for n=100')
pause
figure(3)
plot(ahat,varuhat,'*')
title('Scatter Plot of simulations of ahat vs. varuhat for n=100')

9

-0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1
0

10

20

30

40

50

60
Histogram of simulations of ahat for n=100

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3
0

10

20

30

40

50

60

70
Histogram of simulations of varuhat for n=100

-0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Scatter Plot of simulations of ahat vs. varuhat for n=100

10

Estimating the Autocorrelation Function from the AR(p) model parameters

After obtaining the AR(p) model parameter estimates from the use of the Levinson algorithm in relation to the

lagged-product autocorrelation estimates (7) up to order p, it is a simple matter to use the model to recursively

estimate as many higher order lags as is desired. Specifically,

 



p

j

XjpX jmRamR
1

,)()(


 for pm  . (14)

The lagged-product autocorrelation estimator (7) is limited to nm  . Higher lags are implicitly presumed to be

zero. This truncation of the higher lags is known as windowing, and has the effect of limiting the spectral

resolution (to be discussed presently) to the order of the inverse of the window width. In contrast, (14) has no

such truncation, as an arbitrary number of larger lags can be recursively computed. For this reason, AR models

are also know as high resolution spectral estimators.

