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Lecture 7                     The Levinson Algorithm 

 

Let 

kkX }{  be a wide sense stationary (wss) zero-mean discrete-time random process. Let 



  0)}()({ mXmkk mRXXE denote the autocorrelation function for this process. We begin this set of notes with 

the following problem. 

 

The Linear Prediction Problem: In words, the problem here is to predict kX  from p

jjkX 1}{  using the 

following linear prediction model: 
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The integer, p, is the number of lags (relative to k) that are to be used to predict Xk. Consequently, (1) is called a 

pth order linear prediction model.  The corresponding pth order prediction error is clearly, 
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Since Let 

kkX }{  is a wss zero-mean  random process, so is the error random process 

k

p

kV }{ )( . Hence, the 

mean-squared error (mse) is 
22)( ])[( p

p

kVE 


 . We desire to find the prediction coefficients p

jjpa 1, }{  that will 

minimize this mse. 

 

Fact 1: The prediction coefficients p

jjpa 1, }{  that minimize 2

p , are those that satisfy the following 

orthogonality conditions: 
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Clearly, (3) includes p linear equations in the p unknowns 
p

jjpa 1, }{  . To arrive at the explicit set of equations, 

use (1) and (2) to express (3) as: 
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The collection of equations in (4) can be written in the following matrix form: 
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We will express (5a) in the following concise notation: 

 

                                                                         ppp   1  . (5b) 

 

Hence, the vector of prediction coefficients tr

ppppp aaa ][ ,2,1,  corresponding to the minimum mean-

squared error (mmse) pth order  linear prediction model of the form (1) is: 
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The corresponding mse is: 
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Notice that the term )( )(

k

p

k XVE


vanished. This is because the prediction error )( p

kV  is uncorrelated with every 

member of p

jjkX 1}{  , and so it is uncorrelated with kX


. The above equation can be written in the more concise 

form: 
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Equations (6) represent the solution to the pth order linear prediction problem. The crucial issue that was not 

addressed is how to select the most appropriate order, p, for a given collection autocorrelations M

mX mR 0)}({  . 

Now if these autocorrelations are known to be exact, then this is not a problem, since we would simply choose 

Mp  , as that will result in the smallest possible mse. If the mmse is actually achieved for Mp   , then the 

Mth order coefficient vector is ]0,,0[ tr

p

tr

M   . In this idealistic case the random process 

kkX }{  is called a 

pth order autoregressive [AR(p)] process. We state this as  

 

Definition 1. If a wss zero-mean process 

kkX }{   can be expressed as k

p

j

jkjpk VXaX  

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1

, , where 



kkV }{  is a white noise process, then it is called a pth order autoregressive [AR(p)] process. 

 

Hence, in the case of an AR(p) process, not only does the orthogonality condition hold for pm ,,2,1  , it 

hold for all m>0.  

 

If, indeed, this minimum possible mse can be achieved for a model order Mp  , then since 

]0,,0[ tr

p

tr

M   , the Mth order model collapses to a pth order AR(p) model. Few, if any real-world random 

processes are truly AR(p) in nature; albeit many can be well-modeled by the same. Recognition of the following 

fact is central to the use of AR(p) models. 
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Fact 2. The solution (6a) of the equation (5a) guarantees that (2) will be uncorrelated with the collection 
p

jjkX 1}{  . However, this does not mean that (2) is a white noise process. It will be a white noise process if and 

only if (1) is an AR(p) process. When this is not the case, then (2) will be a colored noise process; that is, it will 

retain some of the correlation structure related to (1). To capture this structure would require a higher order 

model. 

 

Another problem is that of not having exact knowledge of M

mX mR 0)}({  . Typically, we have data-based estimates 

M

mX mR 0)}({ 


. And so, whereas in the ideal case the last M-p elements of ]0,,0[ tr

p

tr

M    would be exactly 

zero, in this more common and realistic case they will not. The most common estimator of )(mRX is the 

following lagged-product estimator: 

                                                             





mn

k

mkkX XX
n

mR
1

1
)(


. (7) 

 

Notice that for m = 0, (7) is the average of n products. Hence, if the observation length, n, is large, (7) will be a 

good estimator of )0(XR . At the other extreme, suppose that 1 nm , which is the largest value of m that can 

be used in (7). In this case, nX XX
n

nR 1

1
)1( 


. This is not an average at all. It is (1/n) times a single 

product. As a result, )1( nRX


will be a very poor estimator of )1( nRX .  

 

We will quantify the quality of the estimator (7) in due course. For now, it is enough to recognize that if the 

estimators (7) for pm ,,2,1   are used in (5a), then as p increases for a given data length, n, (a) will include 

more and more poor estimators of the higher autocorrelation lags. Consequently, the estimator (6a) will become 

less trustworthy.  

 

It is this trade-off between the desire for a high model order that can better capture the structure of the process, 

and the increasing uncertainty of the estimator (7) at higher lags that has led researchers to propose a wide 

variety of model order identification schemes. All of these schemes represent an attempt to somehow optimize 

this trade-off. All of them strive to identify that single ‘best’ model order, p. And so, to this end, (6) will be 

computed for a variety of increasing model orders.  

 

The Levinson Algorithm 

Notice that the computations, (6), involve taking the inverse of the pp  matrix 1 p in (5b), as defined by 

(5a). Before the advent of high speed computers, computing such an inverse became exponentially more 

intensive as the order p increased. Today, even for p on the order of 100, such an inverse can be computed in 

practically no time. The Levinson algorithm was developed in the mid-1960’s as an alternative to having to 

perform the matrix inversion. Even though current computing power has lessened its value, we include it here 

for two reasons. First, it can be implemented in a digital signal processing (DSP) chip far more cheaply that the 

matrix inversion method. Second, we will see that by progressing through  the order sequence ,3,2,1p , not 

only do we arrive at a family of AR models that can be used for cross-validation purposes, but we also arrive at 

a family of related minimum variance (MV) models that include information about the process not so easily 

gleaned from the AR models. 
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To arrive at the Levinson algorithm, we begin with the p orthogonality conditions (4), which we give here for 

convenience: 
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and with the equation following (6a), which led to (6b): 
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Equations (8) can be written as: 
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We will now define   10, pa , and subsequently, re-define tr

ppppp aaa ],,,[ ,1,0,  , so that (9a) is: 
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The matrix p is not only symmetric, but the kth diagonal contains the single element )(kRX . Such a matrix is 

called a Toeplitz matrix, and it has the following property: 
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                       where p
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Hence, in compact form, (11) becomes: 
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Similar to (10), we have from (12a): 
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To prove this claim, we will proceed to assume it is true, and find the appropriate value for γ. 
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If we compare it to (9b), we see that if we set  

        
2

11 /  pp   ;        






















1

1
0

0 p

p

p 



   , and         







 











00

1

2

1

2

 ppp 
 

 

then we have exactly (9b).  And so, the algorithm proceeds as follows: 
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The sequence of computations continues for as many models as are specified, up to order n-1. 

 

A Matlab Code for the Levinson Algorithm: 

% The correlations RX(k) for k = 0: maxorder must be resident as a column vector 

E2=[];         %Array of model mse’s 
   Alpha=[];   %Array of model parameters. The kth column corresponds to {1 ak1 … akk} 
   E2(1)=r(1); % This is actually RX(0), but Matlab doesn’t like the zero index. 
   R=r(1:2); 
   Alpha(1)=1.0; 
   Aall=[Alpha; zeros(maxorder,1)];  % This array will have maxorder +1 rows of models. 
   N=1; 
   for n=1:maxorder 
      R=r(1:n+1); 
      rflip=flipud(R); 
      Alpha=[Alpha; 0.0]; 
      del=rflip' * Alpha; 
      Alpha=Alpha - (del/E2(N)) * flipud(Alpha); 
      E2(N+1) = E2(N) - (del^2)/E2(N); 
      N=n+1; 
      Aall=[Aall,[Alpha; zeros(maxorder-n,1)]]; 
   end 

 

Example 1. To test the above algorithm, we consider an AR(1) process, Xk with α = 0.5, and with RX(0)=1. We 

define pwr = 0:5 and  r = (0.5*ones(6,0)).^pwr. This gives the first 6 autocorrelation lags (0:5).  The resulting 

array of model coefficients is: 

 

Aall = 

    1.0000    1.0000    1.0000    1.0000    1.0000    1.0000 

         0   -0.5000   -0.5000   -0.5000   -0.5000   -0.5000 

         0         0         0         0         0         0 

         0         0         0         0         0         0 

         0         0         0         0         0         0 

         0         0         0         0         0         0 

 

The corresponding array of mse’s is: 

E2 = 

    1.0000    0.7500    0.7500    0.7500    0.7500    0.7500 

As expected, all higher order models collapse to the correct AR(1) model. □ 

 

Using Simulations to Determine the Minimum Data length, n, for Acceptable Model Estimation 

The above example utilized theoretical correlation lags. consequently, all models collapsed to the correct one. 

Suppose that these lags were, instead, estimated via (7). The question addressed here is:  

How large should the data length, n, be, in order to correctly identify the model as an AR(1) model? 
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As mentioned above, we will pursue a theoretical answer to this question; one that utilizes a fair bit of 

probability theory. However, in view of the level of computational power presently available, the student can 

answer this question by performing simulations. Let’s begin by simulating the above AR(1) process for various 

values of n.  

 

Case 1: n=100   The estimated autocorrelations from ar1sim.m (given below) are: 

Trial>> Rhat' 

ans =     0.9842    0.4572    0.2514    0.2282    0.2011    0.1703 

% PROGRAM NAME: ar1sim.m 
a=0.5; varu=1-a^2; 
n = 100; ntot = n+500; 
u=varu^0.5 *randn(ntot,1); 
x=zeros(ntot,1); x(1)=0; 
for k = 2:ntot 
    x(k) = a*x(k-1) + u(k); 
end 
x=x(501:ntot); 
Rhat = xcorr(x,5,'biased'); 
Rhat=Rhat(6:11) 

 

Using these in the scar.m program gives: 

Aall =     1.0000    1.0000    1.0000    1.0000    1.0000    1.0000 

                       0   -0.4646   -0.4411   -0.4350   -0.4274    -0.4247 

                       0              0   -0.0505    0.0036    0.0033     0.0075 

                       0              0              0   -0.1225   -0.0957   -0.0958 

                       0              0              0              0   -0.0616   -0.0429 

                       0              0              0              0              0   -0.0436 

The array of corresponding mse’s is: 

E2 =    0.9842    0.7718    0.7698    0.7583    0.7554    0.7540 

We see that the mse decreases monotonically, but that the decrease is minimal beyond order 1. Hence, any 

model identification scheme would identify 1 as the best order. If we accept that for n=100, the order 1 would 

be identified, we can then proceed to investigate the uncertainty associated with the estimators of the AR(1) 

model parameters α and 2

U . These parameters depend only on )0(xR and )1(xR . Specifically, 

)0(/)1( xx RRa  , and )1()0(2

xXU RaR  .  In this particularly simple setting, it is easier to forego the above 

codes and write a very simple direct one instead. To this end, consider the following code: 
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% PROGRAM NAME: ar1pdf.m 
a=0.5; varu=1-a^2; 
n = 100; ntot = n+500; 
nsim = 1000; 
u=varu^0.5 *randn(ntot,nsim); 
x=zeros(ntot,nsim); x(1,:)=zeros(1,nsim); 
for k = 2:ntot 
    x(k,:) = a*x(k-1,:) + u(k,:); 
end 
x=x(501:ntot,:); 
R0=mean(x.*x); 
x0=x(1:n-1,:); 
x1=x(2:n,:); 
R1=mean(x0.*x1); 
ahat = -R1./R0; 
varuhat = R0 + ahat.*R1; 
figure(1) 
hist(ahat,50) 
title('Histogram of simulations of ahat for n=100') 
pause 
figure(2) 
hist(varuhat,50) 
title('Histogram of simulations of varuhat for n=100') 
pause 
figure(3) 
plot(ahat,varuhat,'*') 
title('Scatter Plot of simulations of ahat vs. varuhat for n=100') 
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Estimating the Autocorrelation Function from the AR(p) model parameters 

 

After obtaining the AR(p) model parameter estimates from the use of the Levinson algorithm in relation to the 

lagged-product autocorrelation estimates (7) up to order p, it is a simple matter to use the model to recursively 

estimate as many higher order lags as is desired. Specifically, 

 

                                        



p

j

XjpX jmRamR
1

, )()(


   for pm  . (14) 

The lagged-product autocorrelation estimator (7) is limited to nm  . Higher lags are implicitly presumed to be 

zero. This truncation of the higher lags is known as windowing, and has the effect of limiting the spectral 

resolution (to be discussed presently) to the order of the inverse of the window width. In contrast, (14) has no 

such truncation, as an arbitrary number of larger lags can be recursively computed. For this reason, AR models 

are also know as high resolution spectral estimators.  

 

 

 


