
Lecture 6 A Primer on Random Processes 

Recall that a random variable, X, is an action. If that action results in a single number, x, then X is a 1-D 

variable. If the action results in n numbers, )',,,( 21 nxxx  , then X is an n-D variable )',,,( 21 nXXX  .  

 

 

 

 

Example. A thermocouple is used to monitor the temperature of a lake near a nuclear power plant. A 24-hour 

measurement on 13 August, 2007 is shown below. 
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Figure 1. Sampled thermocouple output (oF) at lake location near power plant on 13 August 2007. Sampling 

interval Δ=0.01 Hrs. 

What we have in Figure 1 is data. Specifically, we have 2400 numbers 24

1)}({ kkw . We have a variety of actions 

that we can associate these numbers with: 

(i) X = The act of measuring temperature at any sample time. This is a 1-D random variable, and we have 2400 

measurements of it. From these, we can obtain information about X: 
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Figure 2. An estimate of )(xf X is shown in the plot. The estimates of X and X are 80.1 oF and 0.95 oF. 

 

Based on Figure 2, we can claim that )95.0,1.80(~ 2NX .  

Definition 1. A continuous random process is a collection of ‘continuous-time’ indexed random 

variables )},(|)({ ttX . A discrete random process is a collection of ‘discrete-time’ indexed 

random variables }},{|)({  kkX .  



(ii) Y = The act of measuring temperature at the sample time just after that of X. We now have a 2-D random 

variable (X,Y). We already know that )95.0,1.80(~ 2NX . If we ignore the relation of Y to X, then marginally, 

we have )95.0,1.80(~ 2NY . The point of defining Y is that we desire to know if there is a relationship between 

successive temperature measurements. A scatter plot for (X, Y) based on the data in Figure 1 is shown below. 
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Figure 3. A scatter plot for (X, Y) based on the data in Figure 1. 

 

There is clear evidence that X and Y have a positive correlation. We estimate that it as 88.0XY


. 

(iii) Let Z = The act of measuring temperature at the sample time just after that of Y. Here again, if we ignore 

the relation of Z to both X and Y, then )95.0,1.80(~ 2NZ . If we ignore the relation of Z to X, but focus on only 

its relation to Y, then 88.0YZ . Hence, the point of bringing Z into the picture is that we desire to know about 

the relation between Z and X. A scatter plot for (X, Y) based on the data in Figure 1 is shown below. 

 

Figure 3. A scatter plot for (X, Z) based on the data in Figure 1. 
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There is clear evidence that X and Z have a positive correlation. We estimate that it as 82.0XZ


.  

 

(iv) Let }},{|)({  kkW denote the act of measuring temperature over any infinite collection of sample 

times. Then at any time kΔ ,the random variable W(kΔ), ignoring all other random variables is simply X in (i). 

More generally, for any time kΔ ,the random variables }))2((,))1((,)({  kWkWkW , ignoring all other 

random variables are exactly the random variables {X, Y, Z}. Were we to continue to define more and more 

random variables, based on how far apart in time any two measurements are, we would arrive at the random 

process }},{|)({  kkW . This way of defining random variables only in terms of how far apart they are 



from each other in time, with no concern for the absolute value of time, is tantamount to assuming the 

following properties of the temperature random process: 

(P1) For any sample time kΔ, )95.0,1.80(~)( 2NkW   

(P2) )()])((),([  nnkWkWCorr W , where 82.)2(,88.)1(,1)0(  WWW   

 

 

 

 

 

 

What we see is that: 

by defining random variables only in relation to time separation (ignoring absolute time) we have forced the 

random process }},{|)({  kkW to be a wss process!!!  

 

Before we address the validity of this ‘enforcement’, let’s now assume that the temperature process is, indeed, 

wss. We will now proceed to create a model for this process. This model will be based on the short-delay trend 

in the values of the autocorrelation function. 

Specifically, from the above we have: 

(i) kNkX  )95.0,1.80(~)( 2  

(ii) 88.0)(  XXY 


   and   82.0)2( X


. 

 

Definition 3. For a wss discrete-time random process, )}({ 


kXX k , the autocorrelation function is defined as 

                                                        )()( mkkX XXEmR 



 . (1) 

 

In relation to the temperature random process, we can define the related process )}({ 


kYYk via: 

                                                              kXk YX   . (2) 

 

From (2) it should be clear that )}({ 


kYYk  is a zero-mean wss random process. Substituting (2) into (1) gives: 

                  )()()]()[()()( 22 mRYYEYYEXXEmR YXmkkXmkXkXmkkX  



 . (3) 

 

From (3) we see that )(mRX is simply a shifted version of )(mRY . Hence, in order to arrive at a model for 

)}({ 


kXX k  we will develop a model for )}({ 


kYYk , and then simply add X  to kY  to obtain a model for 

(2). 

Definition 2. A random process }},{|)({  kkX is said to be wide sense stationary (wss) if the 

following two conditions hold: 

(C1): For any sample time kΔ, XkXE )]([    and    (C2): )()])((),([  nnkXkXCorr X ,  

 



From the above, we have: 

 (i) kNkY  )95.0,0(~)( 2 . In other words:      9.09025.95.)0( 2 YR  

(ii) 88.0)( Y


   and   82.0)2( X


.  

In other words:  79.)88(.9.)1()0()1(  YYY RR 


 and 74.)82(.9.)2()0()2(  YYY RR 


 

 

So, let’s try the ‘first order’ linear prediction model: 1 kk YY 


. Recall, that we obtain the value for the 

parameter α by solving: 0])[( 1  kkk YYYE


. Specifically, 

 

)0()1()(0])[( 2

111 YYkkkkkk RRYYYEYYYE   


.  Hence,   

                                                             )0(/)1( YY RR . (3) 

 

Furthermore, by defining                   1



 kkkkk YYYYU 


 

 

we arrive at the model:                           kkk UYY  1 . (4) 

 

IF in the model (4), the error process }{ kU  is a white noise process (i.e. the random variables are iid) then the 

process (4) is called an AR(1) process (i.e. an Auto-Regression process of order 1). 

 

 

 

 

 

 

The Matlab command xcorr.m is designed to compute )()])((),([  nnkXkXCorr X . However, it is 

disappointing that, at this point in time, the above command must be augmented by a host of code to compute 

)( nX . One must be careful to first subtract the data mean, prior to using the above command. Upon doing 

this, for the de-meaned data in Figure 1, we obtain the figure below. 
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Figure 5. Computation of )( nW  obtained using the command xcorr(dw,’coef’) where dw is the de-meaned 

data in Figure 1. 

Notice that 0.1)0( W is placed in the center of the plot. Hence the center time index 2401 is really lag n=0. 

The plot is symmetric about this point since )()(  nn WW  . In the lower (zoomed) plot in Figure 5, we 

observe the numerical values that we obtained above; namely, 88.0)(  XYW   and 82.0)2(  XYW  . 

 

Below is the Matlab code that was actually used to generate the time series in Figure 1. 

%PROGRAM NAMES: temp.m 
%lake temperature near nuclear plant for 24-hr period 
t=0:.01:24-0.01; 
nt = length(t);   *** simulate a length-n portion of the random process w(k) *** 
dw=zeros(1,nt); 
a = .9; 
u=.19^.5*randn(1,nt);  Note that this loop is exactly the model: Y = aX + U 
dw(1)=randn(1,1);      performed in a recursive fashion. 
for k=2:nt 
dw(k)=a*dw(k-1)+ u(k); 
end 
w=80+dw;               Note that when simulating a random process with a non-zero 
figure(1)              mean, the mean is added AFTER the zero-mean process is generated. 
plot(t,w) 
xlabel('Time (Hrs.)') 
ylabel('Temperature (F)') 
pause 
% Let X = act of measuring Temp at any time 
mx = mean(w); 
sigx=std(w); 
bvec = 76.05:.1:83.5; 
h = hist(w,bvec); 
fx = (0.1*nt)^-1 *h; 
figure(2) 
bar(bvec,fx) 
xlabel('Temperature, x, (F)') 
ylabel('f_X (x)') 
pause 
% Let Y = act of measuring the next Temp after X 
xy = [w(1:nt-1)' , w(2:nt)']; 
figure(3) 
plot(xy(:,1),xy(:,2),'*') 
xlabel('Temperature (F) at any time k*delta') 
ylabel('Temperature at time (k+1)*delta') 
Rxy = corrcoef(xy); 
rxy = Rxy(1,2); 
pause 
% Let Z = act of measuring the next temp after Y 



xz = [w(1:nt-2)' , w(3:nt)']; 
figure(4) 
plot(xz(:,1),xz(:,2),'*') 
xlabel('Temperature (F) at any time k*delta') 
ylabel('Temperature at time (k+2)*delta') 
Rxz = corrcoef(xz); 
rxz = Rxz(1,2); 
pause 
% Compute the de-meaned autocorreltation function 
dw = w - mean(w); 
rdw = xcorr(dw,'coef'); 
figure(5) 
plot(rdw,'*') 
xlabel('Integer time k') 

 

 


