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Lecture 5            Using Linear Methods for Nonlinear Prediction Models and Multiple Linear Prediction 

 

Example 1. Very often, engineers assume that a spring has a linear 

force-displacement relationship; that is, F = kX. This assumption relies 

on the assumption that the spring will not be stretched too far (i.e. an 

amount that is on the order of the total length of the coils, for example). 

In order to obtain a model for a newly designed spring that can be used 

over a large range of displacements, 100 springs were selected. Each 

spring was subjected to a randomly chosen amount of displacement, and 

the resulting force was recorded. A scatter plot of the results is shown at 

right. 

 

       Figure 1.1 Force-displacement data for 100 springs. 

(a) Consider first the following linear model:  XkF 


. Notice that this model includes a slope parameter, but no force-

intercept parameter. This is because physics dictates that for zero displacement there must be zero force. To obtain an 

estimate of the spring rate, k, we will require that F


be an unbiased predictor of F; that is: 

                                   )()()()( FEXEkXkEFE 


. (1a) 

The condition (1a) results in:               
XFXEFEk  /)(/)(



 . (1b) 

If we assume that we have no prior knowledge of the means, then we 

must estimate them from the data. We will use the sample means for this 

purpose. Thus, our estimator of k is: 

XFk 


/  where 





100

1100

1

j

jF F
 and 






100

1100

1

j

jX X
 . 

From the given data, we obtain the estimates X


=2.5075 in. and 

F


=33.2589 lbf. Hence, our estimate corresponding to the estimator (1c) 

is k


=13.2638 lbf /in. The model (5.17a) for this estimate of k is shown at 

right. 
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         Figure 1.2 The model XF 2368.13


. 

Remark 1. We could have just as easily restricted our model to the region of the scatter plot that appears to suggest a 

linear relationship between X and F. At higher spring displacement, x, the linear model underestimates the associated 

force. Every spring has this property! When the spring coils are stretched further and further, the required force becomes 

higher and higher in a power-law fashion. The fact is, a spring cannot be stretched any further than the total length of the 

coils no matter how much force is applied. 

 

(b) We now consider the quadratic model cbXXaF  2


. Notice that we have chosen here to include the constant, c, 

expecting that the model will be good enough that we will find 0c . This additional parameter will allow us to use the 

more standard approach to arriving at the model parameter estimate. Define 2XY


 . Then the model becomes 

                                                         cbXYaF 


 (2) 

Condition 1:                )()( FEFE 


  (i.e. F


is an unbiased estimator for F). 

This condition results in:                 )()()()( FEcXbEYEaFE 


.  (3a) 
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Using our notation for means, (3a) becomes:             XYF bac   . (3b) 

 

Condition 2:                                        0),(),(  YFFCovXFFCov


. 

In words, we require that the prediction error be uncorrelated with both X and Y. This gives the following two equations: 

                         ),(),(),(),(),( YXaCovXXbCovXcaYbXCovXFCovXFCov 


. (4a) 

                         ),(),(),(),(),( YYaCovXYbCovYcaYbXCovYFCovYFCov 


. (4b) 

Using our notation for variances and covariances, (4a-b) become: 
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Clearly, the solution for the unknown parameters a and b is then: 

                                                                     


























FY

FX

YXY

XYX

a

b








1

2

2

. (4d) 

Computing Estimates of a, b, and c: 

Let ),,( FYX


D . Then ),,( FYX 


Dμ  and 
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DΣ . Now, define the arrays 
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From ),,( FYX 


Dμ , define the array ][),( YXYX 


μ . Then (3b) becomes: 









a

b
c YXF ),(μ . (5b) 

Equations (5) provide a very simple procedure for estimating the model parameters from the 3100  data array, d: 

y=x.^2; 

d=[x,y,f]; 

C=cov(d); 

Cxy=C(1:2,1:2); 

Sxy=C(1:2,3); 

ba=Cxy^-1*Sxy; 

muhatD=mean(d); 

c=muhatD(3)-muhatD(1:2)*ba; 

fhat=ba(2)*y+ba(1)*x+c; 

%----------------------- 

%To plot prediction line use specified x-values: 

xo=0:.1:5; 

yo=xo.^2; 

fhato=ba(2)*yo+ba(1)*xo+c; 

figure(2) 

plot(x,f,'*') 

hold on 

plot(xo,fhato,'k','LineWidth',2) 

xlabel('Displacement (in.)') 

ylabel('Force (lb_f)') 

title('Nonlinear Spring model')                                                             Figure 1.3 06.007.1098.0 2  XXF


.    

The model used to generate the data set was  XXF 102 .            □ 
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Example 2  A 2-D Prediction Model Example 

Consider the 2-D prediction model:      BAXY 
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We have 

Condition 1:                        
XY μAμBYBXAY  )()()( EEE


. (6) 

Condition 2:                                        
22),(  0XYY


Cov . (7a) 

From (7a): ),(),(),(),(),( 1 XYXXAXXAXBAXXY CovCovCovCovCov  . (7b) 

The Matlab code is: 

% PROGRAM NAME: TwoDmodeldemo.m 

A = [ 10 ,1 ; 5, 5]; 

B = [3 ; 1]; 

n = 1000; 

SigmaXX_true = [1 0 ; 0 1]; 

MuX_true = [0 ; 20]; 

X = mvnrnd(MuX_true , SigmaXX_true,n); 

SigmaEE_true = eye(2); 

MuE_true = [0 ; 0]; 

E = mvnrnd(MuE_true , SigmaEE_true,n); 

Y = zeros(n,2); 

for k = 1:n 

    Y(k,:) = A*X(k,:)' + B + E(k,:)'; 

end 

nvec = 1:n; nvec = nvec'; 

figure(1) 

XY = [X , Y];%(X,Y) nx4 data array 

plot(nvec,XY) 

legend('X1','X2','Y1','Y2') 

xlabel('Measurement Number') 

title('Plots of X & Y') 

grid 

pause 

%================================ 

CXY = cov(XY) 

pause 

SigmaYX = CXY(3:4,1:2) 

SigmaYX_true = A*SigmaXX 

SigmaXX = CXY(1:2,1:2) 

SigmaXX_true 

pause 

Ahat = SigmaYX*SigmaXX^-1 

A 

pause 

MuXY = mean(XY); 

MuX = MuXY(1:2)';  

MuY = MuXY(3:4)' 

MuY_true = A*MuX_true + B 

pause 

Bhat = MuY - Ahat*MuX 

B 

%================================= 

% Compute Yhat: 

Yhat = zeros(n,2); 

for k = 1:n 

    Yhat(k,:) = Ahat*X(k,:)' + Bhat; 

end 

figure(2) 

plot(nvec,Y,'k',nvec,Yhat,'r') 

title('Prediction Performance') 
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grid 

%=================================== 

% Estimate SigmaEE: 

Ehat = Y - Yhat; 

SigmaEE = cov(Ehat) 

SigmaEE_true 

 

The data are plotted below. 
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Ahat = [10.08    0.96  ;   4.98    4.98]  &  A =[10     1  ;  5     5] 

Bhat = [3.7329  1.4105]  &  B = [3 1] 

The predictions are overlaid against the data in the plot below. 
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