Lecture 3 The Expectation Operator

Definition 1. Let $\vec{X} = (X_1, X_2, \dots, X_n)$ be an *n*-D random variable with sample space S_X and with *pdf* $f_{\vec{X}}(\vec{x})$. Let $g(\vec{x})$ be any function of $\vec{x} = (x_1, x_2, \dots, x_n)$. The **expectation operator E**(*) is defined as

$$\iota_{g(\mathbf{X})} \stackrel{\Delta}{=} E[g(\mathbf{X})] = \int_{S_{\mathbf{X}}} g(\mathbf{x}) f_{\mathbf{X}}(\mathbf{x}) d\mathbf{x}$$
(1)

[c.f. (1.7.5-6) on p.16 in the book.]

The integral (1) is an *n*-D integral (or sum, if S_x is discrete). It could be argued that (1) is the only equation one might need in order to understand anything and everything related to expected values.

<u>1. Expected Values of Functions of 1-D X</u>

Example 1.1 Consider the following examples of the function g(*).

(i)
$$g(x) = x$$
: $E(X) = \int_{S_x} x f_X(x) dx \stackrel{\Delta}{=} \mu_X$. This is called the *mean value* for X.

(ii) $g(x) = x^2$: $E(X^2) = \int_{S_x} x^2 f_x(x) dx \stackrel{\Delta}{=} \mu_{X^2}$. This is called the *mean squared value* for X.

(iii)
$$g(x) = (x - \mu_X)^2$$
: $E[(X - \mu_X)^2] = \int_{S_X} (x - \mu_X)^2 f_X(x) dx \stackrel{\Delta}{=} \sigma_X^2$. This is called the *variance* of X.

(iv) $g(x) = e^{i\omega x}$: $E(e^{i\omega X}) = \int_{S_X} e^{i\omega x} f_X(x) dx \stackrel{\Delta}{=} \Phi_X(\omega)$. This is called the *characteristic function* for X.

(v) $g(x) = ax^2 + bx + c$: $E(aX^2 + bX + c) = \int_{S_x} (ax^2 + bx + c) f_X(x) dx$. This is just a quadratic function of X.

Now, let's express (v) in terms of the parameters in (i) and (ii):

$$E(aX^{2} + bX + c) = a \int_{S_{X}} x^{2} f_{X}(x) dx + b \int_{S_{X}} x f_{X}(x) dx + c \int_{S_{X}} f_{X}(x) dx$$

Hence, we obtain : $E(aX^2 + bX + c) = a \mu_{X^2} + b \mu_X + c$. \Box

The above examples all follow the same procedure; namely, to compute E[g(X)], you simply integrate g(x) against $f_X(x)$.

Result 1.1
$$\sigma_X^2 = \mu_{X^2} - \mu_X^2$$
. *Proof:* $\sigma_X^2 \stackrel{\Delta}{=} E[(X - \mu_X)^2] = E(X^2 - 2\mu_X X + \mu_X^2) = \mu_{X^2} - 2\mu_X^2 + \mu_X^2 = \mu_{X^2} - \mu_X^2$

Example 1.2 Suppose. Let Y = aX + b. Show that $\mu_Y = \mu_X + b$, and that $\sigma_Y = |a| \sigma_X$. Solution: $\mu_Y = E(Y) = E(aX + b) = aE(X) + b = a\mu_X + b$. $\sigma_Y^2 \stackrel{\wedge}{=} E[(Y - \mu_Y)^2] = E[(aX + b - a\mu_X - b)^2] = a^2 E[(X - \mu_X)^2] \stackrel{\wedge}{=} a^2 \sigma_X^2$

Example 1.3 Let $X \sim Ber(p)$. Compute its mean, μ_X , it mean-square, μ_{X^2} , and its variance, σ_X^2 .

Solution:
$$\mu_X \stackrel{\Delta}{=} E(X) = \int_{S_X} x f_X(x) \, dx = \sum_{x=0}^1 x \Pr[X = x] = 0(1-p) + 1(p) = p \, .$$

 $\mu_{X^2} \stackrel{\Delta}{=} E(X^2) = \int_{S_X} x^2 f_X(x) \, dx = \sum_{x=0}^1 x^2 \Pr[X = x] = 0^2(1-p) + 1^2(p) = p \, .$
 $\sigma_X^2 = \mu_{X^2} - \mu_X^2 = p - p^2 = p(1-p) \, .$

Example 1.4 Let $X \sim \exp(\lambda)$. Compute its mean, μ_X , it mean-square, μ_{X^2} , and its variance, σ_X^2 .

Solution:
$$\mu_X \stackrel{\Delta}{=} E(X) = \int_{S_X} x f_X(x) dx = \int_0^\infty x (\lambda e^{-\lambda x}) dx.$$
 (1.1)

From a table of integrals, we have: $\int xe^{cx} dx = \frac{e^{cx}}{c^2}(cx-1)$. Applying this to (1.1) gives:

$$\mu_{X} = \lambda \int_{0}^{\infty} x e^{-\lambda x} dx = \lambda \left(\frac{e^{-\lambda x}}{\lambda^{2}} \right) (-\lambda x - 1) \Big|_{x=0}^{\infty} = 0 - \left(\frac{-1}{\lambda} \right) = \frac{1}{\lambda}.$$

[Note: This is not a calculus course. We will use tables whenever possible. \odot].

Similarly, from a table of integrals, we have $\int x^2 e^{cx} dx = e^{cx} \left(\frac{x}{c} - \frac{2x}{c^2} + \frac{2}{c^3} \right)$. Hence,

$$\mu_{x^{2}} = \lambda \int_{0}^{\infty} x^{2} e^{-\lambda x} dx = \lambda e^{-\lambda x} \left(\frac{x}{-\lambda} - \frac{2x}{\lambda^{2}} + \frac{2}{-\lambda^{3}} \right) \Big|_{x=0}^{\infty} = \lambda \left[0 - \left(\frac{-2}{\lambda^{3}} \right) \right] = \frac{2}{\lambda^{2}} \cdot \frac{1}{\lambda^{2}} + \frac{1}{-\lambda^{2}} \left[1 - \left(\frac{-2}{\lambda^{3}} \right) \right] = \frac{2}{\lambda^{2}} \cdot \frac{1}{\lambda^{2}} + \frac{1}{-\lambda^{2}} \left[1 - \left(\frac{-2}{\lambda^{3}} \right) \right] = \frac{1}{\lambda^{2}} \cdot \frac{1}{\lambda^{2}} + \frac{1}{-\lambda^{2}} \left[1 - \left(\frac{-2}{\lambda^{3}} \right) \right] = \frac{1}{\lambda^{2}} \cdot \frac{1}{\lambda^{2}} + \frac{1}{-\lambda^{2}} \left[1 - \left(\frac{-2}{\lambda^{3}} \right) \right] = \frac{1}{\lambda^{2}} \cdot \frac{1}{\lambda^{2}} + \frac{1}{-\lambda^{2}} \left[1 - \left(\frac{-2}{\lambda^{3}} \right) \right] = \frac{1}{\lambda^{2}} \cdot \frac{1}{\lambda^{2}} + \frac{1}{-\lambda^{2}} \left[1 - \left(\frac{-2}{\lambda^{3}} \right) \right] = \frac{1}{\lambda^{2}} \cdot \frac{1}{\lambda^{2}} + \frac{1}{-\lambda^{2}} \left[1 - \left(\frac{-2}{\lambda^{3}} \right) \right] = \frac{1}{\lambda^{2}} \cdot \frac{1}{\lambda^{2}} + \frac{1}{-\lambda^{2}} \left[1 - \left(\frac{-2}{\lambda^{3}} \right) \right] = \frac{1}{\lambda^{2}} \cdot \frac{1}{\lambda^{2}} + \frac{1}{-\lambda^{2}} \left[1 - \left(\frac{-2}{\lambda^{3}} \right) \right] = \frac{1}{\lambda^{2}} \cdot \frac{1}{\lambda^{2}} + \frac{1}{-\lambda^{2}} \left[1 - \left(\frac{-2}{\lambda^{3}} \right) \right] = \frac{1}{\lambda^{2}} \cdot \frac{1}{\lambda^{2}} + \frac{1}{-\lambda^{2}} \left[1 - \left(\frac{-2}{\lambda^{3}} \right) \right] = \frac{1}{\lambda^{2}} \cdot \frac{1}{\lambda^{2}} + \frac{1}{-\lambda^{2}} \left[1 - \left(\frac{-2}{\lambda^{3}} \right) \right] = \frac{1}{\lambda^{2}} \cdot \frac{1}{\lambda^{2}} + \frac{1}{-\lambda^{2}} \left[1 - \left(\frac{-2}{\lambda^{3}} \right) \right] = \frac{1}{\lambda^{2}} \cdot \frac{1}{\lambda^{2}} + \frac{1}{-\lambda^{2}} \left[1 - \left(\frac{-2}{\lambda^{3}} \right) \right] = \frac{1}{\lambda^{2}} \cdot \frac{1}{\lambda^{2}} + \frac{1}{-\lambda^{2}} \left[1 - \left(\frac{-2}{\lambda^{2}} \right] + \frac{1}{\lambda^{2}} + \frac{1}{-\lambda^{2}} \left[1 - \left(\frac{-2}{\lambda^{2}} \right) \right] = \frac{1}{\lambda^{2}} \cdot \frac{1}{\lambda^{2}} + \frac{1}{-\lambda^{2}} \left[1 - \left(\frac{-2}{\lambda^{2}} \right) \right] = \frac{1}{\lambda^{2}} \cdot \frac{1}{\lambda^{2}} + \frac{1}{-\lambda^{2}} \left[1 - \left(\frac{-2}{\lambda^{2}} \right) \right] = \frac{1}{\lambda^{2}} \cdot \frac{1}{\lambda^{2}} + \frac{1}{-\lambda^{2}} \left[1 - \left(\frac{-2}{\lambda^{2}} \right) \right] = \frac{1}{\lambda^{2}} \cdot \frac{1}{\lambda^{2}} + \frac{1}{\lambda^{2}} \left[1 - \left(\frac{-2}{\lambda^{2}} \right) \right] = \frac{1}{\lambda^{2}} \cdot \frac{1}{\lambda^{2}} + \frac{1}{\lambda^{2}} \left[1 - \left(\frac{-2}{\lambda^{2}} \right) \right] = \frac{1}{\lambda^{2}} \cdot \frac{1}{\lambda^{2}} + \frac{1}{\lambda^{2}} \left[1 - \left(\frac{-2}{\lambda^{2}} \right] + \frac{1}{\lambda^{2}} + \frac{1}{\lambda^{2}} \left[1 - \left(\frac{-2}{\lambda^{2}} \right) \right] = \frac{1}{\lambda^{2}} + \frac{1}{\lambda^{2}} + \frac{1}{\lambda^{2}} \left[1 - \left(\frac{-2}{\lambda^{2}} \right) \right] = \frac{1}{\lambda^{2}} + \frac{1}{\lambda^{2}}$$

Finally, $\sigma_x^2 = \mu_{x^2} - \mu_x^2 = \frac{2}{\lambda^2} - \left(\frac{1}{\lambda}\right)^2 = \frac{1}{\lambda^2}$

Example 1.5 For $X \sim N(\mu_X = 100, \sigma_X = 10)$, find the mean and standard deviation of $Y = 20\log_{10}(X)$ [e.g. converting sound pressure in bars to units of decibels].

Solution: We could try to use a table of integrals to compute $\mu_Y \stackrel{\Delta}{=} E(Y) = E\{20 \log_{10}(X)\} = 20 \int_{S_T} \log(x) e^{-(x-\mu_X)^2/2\sigma_X^2} dx$.

It could be rewarding to find the closed form for such an integral. However, we would the need to find a similar integral to compute σ_{γ} . Here, we will simply use simulations

x=normrnd(100,10,10^6,1); y=20*log10(x);

muY=mean(y) = 39.9568 stdY=std(y) = 0.8795

Are these exact? No. Use 10^{10} simulations for greater accuracy. While not asked for, we also get the pdf at right 'for free'

>> histogram(y,'Normalization','pdf')

We see that it is a skewed pdf; one that might be well-modeled as a gamma pdf. \Box

2. Expected Values of Functions of 2-D X=(X₁, X₂)

Consider the 2-D random variable $\mathbf{X} = (X_1, X_2)$.

Definition 2.1 The *mean* of $\mathbf{X} = (X_1, X_2)$ is defined as $\boldsymbol{\mu}_{\mathbf{X}} \stackrel{\Delta}{=} (\mu_{X_1}, \mu_{X_2})$.

Example 2.1 Consider the following examples of the function g(*).

(i)
$$g(\mathbf{x}) = \mathbf{x} = (x_1, x_2)$$
: $\mu_{\mathbf{x}} = E(\mathbf{X}) = (\mu_{x_1}, \mu_{x_2})$.

(ii)
$$g(\mathbf{x}) = x_1$$
: $E[g(\mathbf{X})] = E[X_1] = \int_{S_{\mathbf{X}}} x_1 f_{\mathbf{X}}(x_1, x_2) dx_2 dx_1 = \int_{S_{x_1}} x_1 [\int_{S_{x_2}} f_{\mathbf{X}}(x_1, x_2) dx_2] dx_1 = \int_{S_{x_1}} x_1 f_{x_1}(x_1) dx_1 = E(X_1)$.

Note: This result relies directly on the fact that $f_{X_1}(x_1) = \int_{S_{X_2}} f_{\mathbf{X}}(x_1, x_2) dx_2$. It is used to show the next result.

(iii)
$$g(\mathbf{x}) = ax_1 + bx_2$$
:
 $E(aX_1 + bX_2) = \int_{S_{\mathbf{x}}} (ax_1 + bx_2) f_{\mathbf{x}}(x_1, x_2) dx_2 dx_1 = a \int_{S_{x_1}} x_1 [\int_{S_{x_2}} f_{\mathbf{x}}(x_1, x_2) dx_2] dx_1 + b \int_{S_{x_2}} x_2 [\int_{S_{x_1}} f_{\mathbf{x}}(x_1, x_2) dx_1] dx_2 = a E(X_1) + b E(X_2)$

NOTE: This is a VERY important result. In words, it say that E(*) is a *linear operation*. In particular, the expected value of a sum is <u>always</u> the sum of the expected values.

Property 1: E(aX + bY + c) = aE(X) + bE(Y) + c. In words, this property states that E(*) is a *linear operator*.

(iv)
$$g(\mathbf{x}) = x_1 x_2 \quad E[g(\mathbf{X})] = E(X_1 X_2) = \int_{S_x} x_1 x_2 f_{(X_1 X_2)}(x_1, x_2) \, dx_1 dx_2$$
.

(v) $g(\mathbf{x}) = (x_1 - \mu_{X_1})(x_2 - \mu_{X_2})$: $E[g(\mathbf{x})] = E[(X_1 - \mu_{X_1})(X_2 - \mu_{X_2})] \stackrel{\Delta}{=} \sigma_{X_1 X_2}$. This is the *covariance* between X_1 and X_2 . We will, at times, also express this as $Cov(X_1, X_2) \stackrel{\Delta}{=} \sigma_{X_1 X_2}$. From (iii) and (v) we also have: $E(X_1 X_2) = \sigma_{X_1 X_2} + \mu_{X_1} \mu_{X_2}$.

(vi) We now present a second important property:

Property 2: $Var(aX+bY+c) = a^2Var(X)+b^2Var(Y)+2abCov(X,Y)$

[For the interested student, the proof of this property is given in the Appendix.]

Special Case 1 (b=0): $Var(aX + c) = a^2Var(X)$ Special Case 2 ($\sigma_{XY} = 0$): $Var(aX + bY) = a^2Var(X) + b^2Var(Y)$ Special Case 3 (a=b=1 & $\sigma_{XY} = 0$): Var(X + Y) = Var(X) + Var(Y) **Definition 2.2** The *correlation coefficient* between X and Y is defined as: $\rho_{XY} \stackrel{\Delta}{=} \frac{\sigma_{XY}}{\sigma_{X}\sigma_{Y}}$.

Definition 2.3 The matrix $Cov(\mathbf{X}) = \begin{bmatrix} \sigma_{X_1}^2 & \sigma_{X_1X_2} \\ \sigma_{X_1X_2} & \sigma_{X_2}^2 \end{bmatrix}^{\Delta} = \Sigma_{\mathbf{X}}$ is called the *covariance matrix* associated with $\mathbf{X} = (X_1, X_2)$.

Definition 2.4 Random variables X_1 and X_2 are said to be *uncorrelated* if: $E(X_1 X_2) = E(X_1)E(X_2)$. (2.1) They are said to be *independent* if: $f_{(X_1X_2)}(x_1, x_2) = f_{X_1}(x_1) \bullet f_{X_2}(x_2)$. (2.2)

Remark Any thoughtful student might ask: Why isn't the definition of *uncorrelated* defined in terms of the *correlation coefficient*, which has the range $-1 \le \rho_{XY} \le 1$? Indeed, this is most reasonable and natural. Unfortunately, as is sometimes the case in statistics, reason does not prevail B. Even so, we note that

$$\rho_{XY} \stackrel{\scriptscriptstyle \Delta}{=} \frac{\sigma_{XY}}{\sigma_X \sigma_Y} \stackrel{\scriptscriptstyle \Delta}{=} \frac{E[(X - \mu_X)(Y - \mu_Y)]}{\sigma_X \sigma_Y} = \frac{E(XY - Y\mu_X - X\mu_Y + \mu_X \mu_Y)}{\sigma_X \sigma_Y} = \frac{E(XY) - E(Y)\mu_X - E(X)\mu_Y + \mu_X \mu_Y}{\sigma_X \sigma_Y} = \frac{E(XY) - \mu_X \mu_Y}{\sigma_X \sigma_Y} \cdot \frac{E(XY) - \mu_X \mu_Y}{\sigma_X \sigma_Y} = \frac{E(XY)$$

Hence, we will have $\rho_{XY} = 0$ if and only if E(XY) = E(X)E(Y). Hence, should one choose, one could redefine the definition of *X* and *Y* being *uncorrelated* to mean that $\rho_{XY} = 0$.

Result 2.1 If random variables X_1 and X_2 are independent, then they are uncorrelated.

$$E(X_1X_2) = \int_{S_{X_2}} \int_{S_{X_1}} x_1 x_2 f_{(X_1X_2)}(x_1, x_2) dx_1 dx_2 = \int_{S_{X_2}} \int_{S_{X_1}} x_1 x_2 f_{X_1}(x_1) f_{X_2}(x_2) dx_1 dx_2 \quad by independence$$

$$= \int_{S_{X_2}} x_2 f_{X_2}(x_2) dx_2 \int_{S_{X_1}} x_1 f_{X_1}(x_1) dx_1 \quad by \ calculus \quad = E(X_2) E(X_1) \quad by \ definition.$$

Proof

Thus, we see that if two random variables are independent, then they are uncorrelated. However, the converse is <u>not</u> necessarily true. Uncorrelatedness only means that they are not related in a *linear* way. <u>This is important!</u> Many engineers assume that because X and Y are uncorrelated, they have nothing to do with each other (i.e. they are independent). It may well be that they are, in fact, very related to one another.

Example 2.2 Let (X, Y) denote the act of measuring the length and width of a rectangular membrane. Assume that X and Y are mutually independent. Compute the mean and standard deviation for the computed area A = XY.

Solution: Because of independence, $\mu_A = E(A) = E(XY) = E(X)E(Y) = \mu_X \mu_Y$.

To compute σ_A , first compute $\mu_{A^2} = E(X^2Y^2) = E(X^2)E(Y^2) = (\mu_X^2 + \sigma_X^2)(\mu_Y^2 + \sigma_Y^2) = (\mu_X\mu_Y)^2 + (\sigma_X^2\sigma_Y^2) + (\sigma_X^2\mu_Y^2 + \sigma_Y^2\mu_X^2)$.

Then $\sigma_A^2 = \mu_{A^2} - \mu_A^2 = (\sigma_X^2 \sigma_Y^2) + (\sigma_X^2 \mu_Y^2 + \sigma_Y^2 \mu_X^2)$, or $\sigma_A = \sqrt{\sigma_X^2 \sigma_Y^2 + (\sigma_X^2 \mu_Y^2 + \sigma_Y^2 \mu_X^2)}$. Notice that the units of this expression are those of area.

Suppose now that the area corresponds to that of a large field, with $X \sim N(1000 \, m, 5m)$ and $Y \sim N(5000 \, m, 20m)$. Then $\mu_A = \mu_X \mu_Y = 10^3 (5 \times 10^3 = 5(10^6) \, m^2$. Furthermore, we can approximate σ_A as

$$\sigma_{A} \cong \sqrt{\sigma_{X}^{2} \mu_{Y}^{2} + \sigma_{Y}^{2} \mu_{X}^{2}} = \mu_{X} \mu_{Y} \sqrt{(\sigma_{X} / \mu_{X})^{2} + (\sigma_{Y} / \mu_{Y})^{2}} \stackrel{\Delta}{=} \mu_{X} \mu_{Y} \sqrt{r_{X}^{2} + r_{Y}^{2}}$$

where $r_x = \sigma_x / \mu_x$ is a measure of the *relative uncertainty* in X. For the given numbers, we have $r_x = 5(10^{-3})$ and $r_Y = 4(10^{-3})$. Hence, $\sigma_A \cong (5 \times 10^6)(10^{-3})\sqrt{5^2 + 4^2} = 5\sqrt{41}(10^3) \cong 32(10^3) m^2$.

Writing $\sigma_A = \mu_X \mu_Y r_X \sqrt{1 + (r_Y / r_X)^2}$ makes it clear as to how the various parameters contribute to this uncertainty. Finally, we offer the simulation-based *pdf* for *A*. >> x=normrnd(1000,5,10^6,1); >> y=normrnd(5000,20,10^6,1); >> a=x.*y; >> histogram(a,'Normalization','pdf') 0.8 >> mean(a) = 5.0000e+06 std(a) = 3.2032e+04 0.6 Not only have we validated our theoretical results. We can also deduce that 0.4 02 • $A \sim N[5(10^6)m^2, 32(10^2)m^2]$. With this, we can compute all manner of probabilities related to A. \Box

I = 2A

Example 2.3 Consider the design circuit shown at right. Assume $V \sim N(24v, 1v)$ is independent of $R \sim N(12\Omega, 0.3\Omega)$. The power draw is $P = V^2 / R$. Using a first order Taylor series

We will validate these approximations using simulations. >> v=normrnd(24,1,10^{6},1); >> r=normrnd(12,0.3,10^{6},1); >> p=v.^2 ./r; >> histogram(p,'Normalization','pdf') mean(p) = 48.1167std(p) = 4.1847.

We see that our approximations $\mu_p \cong 48$ and $\sigma_p \cong 4.18$ are both^{0.03} slightly low. However, for a first order approximation, they're not too bad, either. We also see that *P* has a *normal pdf*. \Box

Example 2.4 Let (X,Y) denote the act of measuring the amount of time that a user of a hacked pc has wasted due to the hack, and the amount of time needed to fix the problem. Suppose that we are given the following information:

$$\mu_x = 7 hrs.$$
 $\sigma_x = 1 hr.$ $\mu_y = 36 hrs.$ $\sigma_y = 15 hrs.$ $\rho_{xy} = 0.7$

Let W = X + Y denote the total lost time associated with a hack. Find μ_w and σ_w .

Solution:
$$\mu_W = E(W) = E(X+Y) = E(X) + E(Y) = 7 + 36 = 43 hrs.$$

$$\sigma_W^2 = \sigma_X^2 + \sigma_Y^2 + 2\sigma_{XY} \text{ where } \rho_{XY} = 0.7 = \frac{\sigma_{XY}}{\sigma_X \sigma_Y} = \frac{\sigma_{XY}}{1(15)} \text{ Hence, } \sigma_{XY} = 0.7(15) = 10.5 \text{ } hrs^2 \text{ .}$$

And so: $\sigma_w^2 = 1^2 + 15^2 + 2(10.5) = 247 \, hrs^2$, hence $\sigma_w = 15.7 \, hrs$.

Remark. Had we blindly used the formula $\sigma_W^2 = \sigma_X^2 + \sigma_Y^2$, which ignores the correlation between *X* and *Y*, we would have obtained $\sigma_W = 15 hrs$. \Box

Example 2.5 Let $\mathbf{X} = (X_1, X_2)$ denotes the act of measuring the peak pressure and temperature of a given reaction. Suppose that the pressure is $X_1 \sim N(2000,100)$ and the temperature is $X_2 \sim N(5000,200)$. If pressure and temperature are correlated with $\rho = 0.9$, then $\sigma_{XY} = \rho \sigma_X \sigma_Y = 0.9(100)(200) = 1.8(10^4)$. Suppose that we have defined the following performance metric for the reaction: $P = (X_1 X_2)/(\mu_X, \mu_{X_2})$.

Compute μ_P : From (vi) in *Example* 1 we have $\mu_P = \mu_{X_1} \mu_{X_2} = E(X_1 X_2) = \sigma_{X_1 X_2} + \mu_{X_1} \mu_{X_2} = 1.8(10^4) + 10^7 \approx 10^7$.

Hence, $\mu_P \cong 1.0$. We could compute σ_P in a similar fashion. Instead, we will use simulation.

>> muX=[2000,5000]; >> covX=[100^2, 1.8e4; 1.8e4, 200^2]; >> x=mvnrnd(muX,covX,1,10^6); >> x=mvnrnd(muX,covX,10^6); >> size(x) ans =1000000 2 3 >> p=(x(:,1).*x(:,2))/(2000*5000); >> histogram(p,'Normalization','pdf')^{2.5} >> mean(p) =1.0018 >> std(p) = 0.0878 1.5

<u>Conclusion</u>: $P \sim N(1.0, 0.088)$.

Pressure

Simulate a sample size of 100 measurements of $\mathbf{X} = (X_1, X_2)$ to

arrive at a simulated scatter plot.

>> x=mvnrnd(muX,covX,100);

>> plot(x(:,1),x(:,2),'*')

>> xlabel('Pressure')

>> ylabel('Temperature')

>> title('Pressure/Temperature Scatter Plot for n=100 samples')

Estimate the correlation from the data.

>> R=corrcoef(x)

R =

1.0000 0.8966

0.8966 1.0000

The estimated correlation is the off-diagonal element 0.8966. \Box

There is one last important property that we will address in these notes:

Property 3: Cov(aX+bY+c, W) = aCov(X, W) + bCov(Y, W)

[For the interested student, the proof of this property is given in the Appendix.]

Example 2.6 For the 2-D random variable (X, Y), consider the Y-predictor: $\hat{Y} = mX + b$.

We will place two conditions on \widehat{Y} : (C1) $\mu_{\widehat{Y}} = \mu_Y$ and (C2) $Cov(Y - \widehat{Y}, X) = 0$. Find *m* and *b*. <u>Solution</u>: From (P3): $Cov(Y - \widehat{Y}, X) = Cov(Y, X) - Cov(\widehat{Y}, X) = 0$. Also: $Cov(\widehat{Y}, X) = Cov(mX + b, X) = mCov(X, X)$. These two equations give: $m = Cov(Y, X) / Cov(X, X) = \sigma_{XY} / \sigma_X^2$. In relation to (C1), then: $E(mX + b) = m\mu_X + b = \mu_Y$. Hence: $b = \mu_Y - m\mu_X$.

Example 2.7 Recall the *Matlab* computations: For an $n \times 2$ data set $\mathbf{xy} \stackrel{\Delta}{=} (\mathbf{x}, \mathbf{y})$, the command 'mean(\mathbf{xy})' gives $\begin{bmatrix} \hat{\mu}_X & \hat{\mu}_Y \end{bmatrix}$, and the command 'cov(\mathbf{xy})' gives $\begin{bmatrix} \hat{\sigma}_X^2 & \hat{\sigma}_{XY} \\ \hat{\sigma}_{XY} & \hat{\sigma}_Y^2 \end{bmatrix}$. Hence, only two commands are needed prior to computing the above estimates of *m* and *b*. Suppose that, in truth, we have:

 $\mu_X = 5$ $\sigma_X = 2$ $\mu_Y = 8$ $\sigma_Y = 3$ $\rho_{XY} = 0.8$. In the code below, instead of using (X, Y) we will use $\mathbf{X} = (X_1, X_2)$ for personal convenience.

Matlab Demonstration:

```
% PROGRAM NAME: Ch5 2Ddata.m
% Matlab to simulate data from (X1,X2)
% Linear Model: X2hat = aX1 + b
% Parameter Values:
muX = [5 8]; % means
corr12 = 0.8; % correlation coefficient
var1 = 4; var2 = 9; % variances
cov12 = corr12*(var1*var2)^.5; % covariance
SIGMA = [var1 cov12 ; cov12 var2]; % cov.matrix
a = SIGMA(1,2)/SIGMA(1,1); % true slope
b = muX(2) - a*muX(1); % true intercept
        _____
X = mvnrnd(muX,SIGMA,1000); % 1000 msmts of X
§_____
% Estimate slope & intercept
muXhat = mean(X); % estimated means
SIGMAhat = cov(X); % estimated covariance matrix
ahat = SIGMAhat(1,2)/SIGMAhat(1,1); % est. slope
bhat = muXhat(2) - ahat*muXhat(1); % est. intercept
[a ahat ; b bhat]
§_____
X2hat = ahat*X(:,1) + bhat; % X2 predictions
figure(1)
plot(X(:,1),X(:,2),'*')
hold on
plot(X(:,1),X2hat,'r','LineWidth',2)
grid
xlabel('x1')
ylabel('x2')
title('[x1,x2] Scatter Plot & Prediction')
[a ahat] = [1.2000 \ 1.1988]
```

 $[b bhat] = [2.0000 \ 2.1530]$

Appendix

Proof of Property 2: $\sigma_W^2 = a^2 \sigma_X^2 + b^2 \sigma_Y^2 + 2ab\sigma_{XY}$ *Proof*: To simplify things, define $W \stackrel{a}{=} aX + bY + c$. Recall that $\sigma_W^2 = Var(W) = E[(W - \mu_W)^2]$. Then $Var(W) = E[(W - \mu_W)^2] = E[(aX + bY + c - a\mu_X - b\mu_Y - c)^2] = E\{[a(X - \mu_X) + b(Y - \mu_Y)]^2\}.$ Using the fact that $(u + v)^2 = u^2 + v^2 + 2uv$ gives $Var(W) = E\{[a(X - \mu_X) + b(Y - \mu_Y)]^2\} = E[a^2(X - \mu_X)^2 + b^2(Y - \mu_Y)^2 + 2ab(X - \mu_X)(Y - \mu_Y)].$ Finally, using linearity of E(*): $\sigma_W^2 = a^2 E[(X - \mu_X)^2] + b^2 E[(Y - \mu_Y)^2] + 2abE[(X - \mu_X)(Y - \mu_Y)] = a^2 \sigma_X^2 + b^2 \sigma_Y^2 + 2ab\sigma_{XY}. \square$

Proof of Property 3: Cov(aX + bY + c, W) = aCov(X, W) + bCov(Y, W)

Proof: By definition, we have: $Cov(aX + bY + c, W) = E\{[(aX + bY + c) - E(aX + bY + c)] \bullet [W - E(W)]\}$. Using Property 1: $Cov(aX + bY + c, W) = E\{[(aX + bY + c) - (a\mu_X + b\mu_Y + c)] \bullet (W - \mu_W)\}$. Regrouping terms: $Cov(aX + bY + c, W) = E\{[a(X - \mu_X) + b(Y - \mu_Y)] \bullet (W - \mu_W)\}$. Again, from Property 1: $Cov(aX + bY + c, W) = aE\{a(X - \mu_X)(W - \mu_W)\} + bE\{(Y - \mu_Y)](W - \mu_W)\}$. Hence, by definition: $Cov(aX + bY + c, W) = a\sigma_{XW} + b\sigma_{YW} \Box$