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Lecture 3                   The Expectation Operator 

Definition 1. Let ),,,( 21 nXXXX 

  be an n-D random variable with sample space SX and with pdf )(xf

X


 . Let 

)(xg


be any function of ),,,( 21 nxxxx 

 . The expectation operator E(*) is defined as  

                                                        


X

xxxX XX

S

g dfggE )()()]([)(   (1) 

[c.f. (1.7.5-6) on p.16 in the book.] 

The integral (1) is an n-D integral (or sum, if XS is discrete). It could be argued that (1) is the only equation one might 

need in order to understand anything and everything related to expected values.  

 

1. Expected Values of Functions of 1-D X 

 

Example 1.1 Consider the following examples of the function g(*). 

(i) g(x) = x:       
X

S

X

X

dxxfxXE 


  )()( .    This is called the mean value for X. 

(ii) g(x) = x2 :      
2)()( 22

X

S

X

X

dxxfxXE 


  .   This is called the mean squared value for X. 

(iii) g(x) = (x – μX)2 :      222 )()(])[( X

S

XXX

X

dxxfxXE 


  .    This is called the variance of X. 

(iv) g(x) = eiωx :      )()()( 
X

S

X

xiXi

X

dxxfeeE 


 .   This is called the characteristic function for X. 

(v)  g(x) = ax2 + bx + c:      

XS

X dxxfcbxaxcbXaXE )()()( 22 . This is just a quadratic function of X. 

       Now, let’s express (v) in terms of the parameters in (i) and (ii): 

           

XXX S

X

S

X

S

X dxxfcdxxxfbdxxfxacbXaXE )()()()( 22 . 

       Hence, we obtain : cbacbXaXE XX
  2)( 2 .      □ 

The above examples all follow the same procedure; namely, to compute E[g(X)], you simply integrate g(x) against fX(x). 

 

Result 1.1 22
2 XXX   .     Proof:  2222222

22 2)2(])[( XXXXXXXXX XXEXE  


. 

 

Example 1.2 Suppose. Let baXY  .  

Show that bXY   , and that XY a  || . 

Solution: babXaEbaXEYE XY   )()()( . 

                2222222 ])[(])[(])[( XXXYY aXEababaXEYE 


  
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Example 1.3 Let )(~ pBerX . Compute its mean, 
X , it mean-square, 

2X
 , and its variance, 2

X . 

Solution: pppxXxdxxxfXE
xS

XX

X

 




)(1)1(0]Pr[)()(
1

0

 . 

               pppxXxdxxfxXE
xS

XX

X

 




)(1)1(0]Pr[)()( 22
1

0

222
2 . 

               )1(222
2 ppppXXX   . 

 

Example 1.4 Let )exp(~ X . Compute its mean, 
X , it mean-square, 

2X
 , and its variance, 2

X . 

Solution: 






0

)()()( dxexdxxxfXE x

S

XX

X

 .  (1.1) 

From a table of integrals, we have: )1(
2

 cx
c

e
dxxe

cx
cx . Applying this to (1.1) gives: 

                          








 11
0)1(

0

2

0








 




















x

x
x

X x
e

dxex .  

[Note: This is not a calculus course. We will use tables whenever possible. ]. 

Similarly, from a table of integrals, we have 







 32

2 22

cc

x

c

x
edxex cxcx . Hence, 

                     
23

0

32

0

2 22
0

22
2





  















 



























x

xx

X

xx
edxex .  

Finally, 
2

2

2

22 112
2


 








 XXX

. 

Example 1.5 For )10,100(~  XXNX  , find the mean and standard deviation of )(log20 10 XY  [ e.g. converting 

sound pressure in bars to units of decibels]. 

Solution: We could try to use a table of integrals to compute 






X

XX

S

x

Y dxexXEYE
22 2/)(

10 )log(20)}(log20{)(
 .  

It could be rewarding to find the closed form for such an 

integral. However, we would the need to find a similar 

integral to compute 
Y . Here, we will simply use 

simulations 

 x=normrnd(100,10,10^6,1);  y=20*log10(x); 

muY=mean(y) =   39.9568      stdY=std(y) =  0.8795 

Are these exact? No. Use 1010 simulations for greater 

accuracy. While not asked for, we also get the pdf at 

right ‘for free’ 

>> histogram(y,'Normalization','pdf')  
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We see that it is a skewed pdf; one that might be well-modeled as a gamma pdf. □ 

 

 

2. Expected Values of Functions of 2-D X=(X1, X2) 

Consider the 2-D random variable ),( 21 XXX . 

Definition 2.1  The mean of ),( 21 XXX  is defined as ),(
21 XX 



Xμ . 

 

Example 2.1 Consider the following examples of the function g(*). 

(i) ),()( 21 xxg  xx :    ),()(
21 XXE 



 XμX
.  

 

(ii) 
1)( xg x :   )()(]),([),(][)]([ 111112211122111

1

1

1 2

XEdxxfxdxdxxxfxdxdxxxfxXEgE

XX X S

X

S SS

   XX

X

X . 

Note: This result relies directly on the fact that 

2

1 2211 ),()(

XS

X dxxxfxf X
. It is used to show the next result. 

(iii) 
21)( bxaxg x : 

)()(]),([]),([),()()( 21212121221112212121

2 11 2

XbEXaEdxdxxxfxbdxdxxxfxadxdxxxfbxaxbXaXE

X XX X S SS SS

    XXX

X

 

NOTE: This is a VERY important result. In words, it say that E(*) is a linear operation. In particular, the expected value 

of a sum is always the sum of the expected values. 

 

Property 1: E(aX + bY + c) = aE(X) + bE(Y) + c. In words, this property states that E( * ) is a linear operator. 

 

(iv) 
21)( xxg x  

XS

XX dxdxxxfxxXXEgE 2121)(2121 ),()()]([
21

X .  

(v) ))(()(
21 21 XX xxg  x : 

2121
)])([()]([ 21 XXXX XXEgE 



x . This is the covariance between 
1X  and 

2X . We 

will, at times, also express this as 
21

),( 21 XXXXCov 


 . From (iii) and (v) we also have: 
2121

)( 21 XXXXXXE    

(vi) We now present a second important property: 

 

Property 2: Y)2abCov(X,Var(Y)bVar(X)ac)bYVar(aX 22   

[For the interested student, the proof of this property is given in the Appendix.] 

 

Special Case 1 (b=0): Var(aX + c) = a2Var(X) 

Special Case 2 (σXY = 0): Var(aX + bY) = a2Var(X) + b2Var(Y)  

Special Case 3 (a=b=1 & σXY = 0): Var(X + Y) = Var(X) + Var(Y) 
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Definition 2.2 The correlation coefficient between X and Y is defined as:  

YX

XY
XY








 . 

 

Definition 2.3 The matrix 
XX 
















2

2

221

211)(
XXX

XXX
Cov




 is called the covariance matrix associated with ),( 21 XXX . 

 

Definition 2.4 Random variables X1 and X2 are said to be uncorrelated if:  E(X1 X2 )  =  E(X1 )E(X2 ).  (2.1) 

They are said to be independent if: )()(),( 2121)( 2121
xfxfxxf XXXX  . (2.2) 

 

Remark Any thoughtful student might ask: Why isn’t the definition of uncorrelated defined in terms of the correlation 

coefficient, which has the range 11  XY ? Indeed, this is most reasonable and natural. Unfortunately, as is sometimes 

the case in statistics, reason does not prevail . Even so, we note that 

YX

YX

YX

YXYX

YX

YXYX

YX

YX

YX

XY
XY

XYEXEYEXYEXYXYEYXE

































 )()()()()()])([( . 

Hence, we will have 0XY if and only if )()()( YEXEXYE  . Hence, should one choose, one could redefine the 

definition of X and Y being uncorrelated to mean that 0XY . 

 

Result 2.1 If random variables X1 and X2 are independent, then they are uncorrelated. 

Proof:         

.)()()()(

)()(),()(

12111222

2121212121)(2121

1

1

2

2

1

21

21

21

2

definitionbyXEXEcalculusbydxxfxdxxfx

ceindependenbydxdxxfxfxxdxdxxxfxxXXE

XX

XXXX

S

X

S

X

S

XX

SS

XX

S








 

Thus, we see that if two random variables are independent, then they are uncorrelated. However, the converse is not 

necessarily true. Uncorrelatedness only means that they are not related in a linear way. This is important! Many 

engineers assume that because X and Y are uncorrelated, they have nothing to do with each other (i.e. they are 

independent).  It may well be that they are, in fact, very related to one another. 

 

Example 2.2 Let ),( YX denote the act of measuring the length and width of a rectangular membrane. Assume that X and Y 

are mutually independent. Compute the mean and standard deviation for the computed area XYA . 

Solution: Because of independence, 
YXA YEXEXYEAE   )()()()( .  

To compute
A , first compute )()()())(()()()( 222222222222222

2 XYYXYXYXYYXXA
YEXEYXE   . 

Then )()( 22222222
2 XYYXYXAAA   , or )( 222222

XYYXYXA   . Notice that the units of this expression 

are those of area. 

Suppose now that the area corresponds to that of a large field, with )5,1000(~ mmNX  and )20,5000(~ mmNY . Then 
2633 )10(5105(10 mYXA   . Furthermore, we can approximate 

A  as 

                                 22222222 )/()/( YXYXYYXXYXXYYXA rr 


  
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where 
XXXr  / is a measure of the relative uncertainty in X . For the given numbers, we have )10(5 3Xr  and 

)10(4 3Yr . Hence, 2332236 )10(32)10(41545)10)(105( mA   .  

Writing 2)/(1 XYXYXA rrr   makes it clear as to how the various parameters contribute to this uncertainty.  

Finally, we offer the simulation-based pdf for A.  

>> x=normrnd(1000,5,10^6,1); >> y=normrnd(5000,20,10^6,1); 

>> a=x.*y;  >> histogram(a,'Normalization','pdf') 

>> mean(a) = 5.0000e+06    std(a) = 3.2032e+04 

Not only have we validated our theoretical results. We can also deduce that  

])10(32,)10(5[~ 2226 mmNA


. With this, we can compute all manner of  

probabilities related to A. □ 

 

Example 2.3 Consider the design circuit shown at right. Assume )1,24(~ vvNV  is independent 

of )3.0,12(~ NR . The power draw is RVP /2 . Using a first order Taylor series 

expansion, we have )()(/
),(),(

2

RVRV R
R

P
V

V

P
P

RVRV





























  where  

4
2

),(














R

V

RV
V

P







 and 4
2

2

),(














R

V

RV
R

P







.        So: )(4)(448 RV RVP   . 

Hence: 48)(16)(448)(  RVP REVEPE   and 18.444.1161616 22  RVP  .  

We will validate these approximations using simulations. 

>> v=normrnd(24,1,10^6,1); >> r=normrnd(12,0.3,10^6,1); 

>> p=v.^2 ./r; >> histogram(p,'Normalization','pdf') 

 mean(p) = 48.1167      std(p) = 4.1847. 

 

We see that our approximations 48P   and 18.4P are both 

slightly low. However, for a first order approximation, they’re  

not too bad, either. We also see that P has a normal pdf.  □ 

 

Example 2.4 Let ),( YX denote the act of measuring the amount of time that a user of a hacked pc has wasted due to the 

hack, and the amount of time needed to fix the problem. Suppose that we are given the following information: 

                          .7 hrsX      .1hrX       .36hrsY       .15hrsY     7.0XY  

Let YXW   denote the total lost time associated with a hack. Find W and W . 

Solution: .43367)()()()( hrsYEXEYXEWEW   

XYYXW  2222   where 
)15(1

7.0 XY

YX

XY
XY






  . Hence, 25.10)15(7.0 hrsXY  . 

And so: 2222 247)5.10(2151 hrsW  , hence .7.15 hrsW    
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Remark. Had we blindly used the formula 
222

YXW   , which ignores the correlation between X and Y, we would 

have obtained .15 hrsW    □ 

 

Example 2.5 Let ),( 21 XXX denotes the act of measuring the peak pressure and temperature of a given reaction. 

Suppose that the pressure is )100,2000(~1 NX and the temperature is )200,5000(~2 NX . If pressure and temperature are 

correlated with 9.0 , then )10(8.1)200)(100(9.0 4 YXXY  . Suppose that we have defined the following 

performance metric for the reaction: )/()(
2121 XXXXP  .  

Compute 
P : From (vi) in Example 1 we have 

1 2 1 2 1 2

4 7 7

1 2( ) 1.8(10 ) 10 10P X X X X X XE X X            . 

Hence, 0.1P . We could compute 
P  in a similar fashion. Instead, we will use simulation. 

 

>> muX=[2000,5000];   >> covX=[100^2 , 1.8e4 ; 1.8e4 , 200^2]; 

>> x=mvnrnd(muX,covX,1,10^6);   >> x=mvnrnd(muX,covX,10^6); 

>> size(x)   ans =1000000           2 

>> p=(x(:,1).*x(:,2))/(2000*5000);   >> histogram(p,'Normalization','pdf') 

>> mean(p) =1.0018      >> std(p) = 0.0878 

Conclusion: )088.0,0.1(~ NP


.  

 

Simulate a sample size of 100 measurements of ),( 21 XXX  to 

arrive at a simulated scatter plot. 

>> x=mvnrnd(muX,covX,100); 

>> plot(x(:,1),x(:,2),'*') 

>> xlabel('Pressure') 

>> ylabel('Temperature') 

>> title('Pressure/Temperature Scatter Plot for n=100 samples') 

 

Estimate the correlation from the data. 

>> R=corrcoef(x) 

R = 

    1.0000    0.8966 

    0.8966    1.0000 

The estimated correlation is the off-diagonal element 0.8966.  □ 

 

There is one last important property that we will address in these notes: 

 

Property 3:  Cov(aX+bY+c, W) = aCov(X,W) + bCov(Y,W)  
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[For the interested student, the proof of this property is given in the Appendix.] 

 

Example 2.6 For the 2-D random variable ),( YX , consider the Y-predictor:  bmXY 


. 

We will place two conditions on Y


: (C1) YY
       and  (C2) 0),(  XYYCov


.      Find m and b. 

Solution: From (P3): 0),(),(),(  XYCovXYCovXYYCov


. Also: ),(),(),( XXmCovXbmXCovXYCov 


. 

These two equations give: 2/),(/),( XXYXXCovXYCovm  . 

In relation to (C1), then: 
YX bmbmXE   )( . Hence:  

XY mb   . 

 

Example 2.7 Recall the Matlab computations: For an 2n data set ),( yxxy


 , the command ‘mean(xy)’ gives 

],[ YX 


, and the command ‘cov(xy)’ gives 







2

2

YXY

XYX







. Hence, only two commands are needed prior to computing 

the above estimates of m and b. Suppose that, in truth, we have: 

5X     2X      8Y      3Y    8.0XY .  In the code below, instead of using ),( YX  we will use 

),( 21 XXX  for personal convenience. 

Matlab Demonstration: 

% PROGRAM NAME: Ch5_2Ddata.m 

% Matlab to simulate data from (X1,X2) 

% Linear Model: X2hat = aX1 + b 

% Parameter Values: 

muX = [5 8]; % means 

corr12 = 0.8; % correlation coefficient 

var1 = 4; var2 = 9; % variances 

cov12 = corr12*(var1*var2)^.5; % covariance 

SIGMA = [var1 cov12 ; cov12 var2]; % cov.matrix 

a = SIGMA(1,2)/SIGMA(1,1); % true slope 

b = muX(2) - a*muX(1); % true intercept 

%---------------------------------------------- 

X = mvnrnd(muX,SIGMA,1000); % 1000 msmts of X 

%---------------------------------------------- 

% Estimate slope & intercept 

muXhat = mean(X); % estimated means 

SIGMAhat = cov(X); % estimated covariance matrix 

ahat = SIGMAhat(1,2)/SIGMAhat(1,1); % est. slope 

bhat = muXhat(2) - ahat*muXhat(1); % est. intercept 

[a ahat ; b bhat] 

%---------------------------------------------- 

X2hat = ahat*X(:,1) + bhat; % X2 predictions 

figure(1) 

plot(X(:,1),X(:,2),'*') 

hold on 

plot(X(:,1),X2hat,'r','LineWidth',2) 

grid 

xlabel('x1') 

ylabel('x2') 

title('[x1,x2] Scatter Plot & Prediction') 

 

 [a ahat] =   [ 1.2000    1.1988 ] 

 [b bhat] =  [ 2.0000    2.1530 ] 

□ 
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Appendix          

 

Proof of Property 2: XYYXW abba  222222   

Proof: To simplify things, define cbYaXW 


. Recall that ])[()( 22

WW WEWVar   . Then 

})]()({[])[(])[()( 222

YXYXW YbXaEcbacbYaXEWEWVar   . 

Using the fact that uvvuvu 2)( 222  gives 

)])((2)()([})]()({[)( 22222

YXYXYX YXabYbXaEYbXaEWVar   . 

Finally, using linearity of E(*): 

XYYXYXYXW abbaYXabEYEbXEa  2)])([(2])[(])[( 222222222  . □ 

 

Proof of Property 3: ),(),(),( WYbCovWXaCovWcbYaXCov   

Proof: By definition, we have:  )]([)]()[(),( WEWcbYaXEcbYaXEWcbYaXCov  .  

Using Property 1:  )()]()[(),( WYX WcbacbYaXEWcbYaXCov   . 

Regrouping terms:  )()]()([),( WYX WYbXaEWcbYaXCov   . 

Again, from Property 1:    )()]())((),( WYWX WYbEWXaaEWcbYaXCov   . 

Hence, by definition: YWXW baWcbYaXCov   ),( □ 

 

 


