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Lecture 3                   The Expectation Operator
Definition 1. Let 
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 be an n-D random variable with sample space SX and with pdf 
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[c.f. (1.7.5-6) on p.16 in the book.]
The integral (1) is an n-D integral (or sum, if 
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is discrete). It could be argued that (1) is the only equation one might need in order to understand anything and everything related to expected values. 
1. Expected Values of Functions of 1-D X

Example 1.1 Consider the following examples of the function g(*).

(i) g(x) = x:       
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(ii) g(x) = x2 :      
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(iii) g(x) = (x – μX)2 :      
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(iv) g(x) = eiωx :      
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.   This is called the characteristic function for X.

(v)  g(x) = ax2 + bx + c:     
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       Now, let’s express (v) in terms of the parameters in (i) and (ii):
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       Hence, we obtain : 
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The above examples all follow the same procedure; namely, to compute E[g(X)], you simply integrate g(x) against fX(x).
Result 1.1 
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Example 1.2 Suppose. Let 
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Solution: 
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Example 1.3 Let 
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Example 1.4 Let 
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(1.1)

From a table of integrals, we have: 
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[Note: This is not a calculus course. We will use tables whenever possible. (].

Similarly, from a table of integrals, we have 
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Finally, 
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Example 1.5 For 
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Solution: We could try to use a table of integrals to compute 
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It could be rewarding to find the closed form for such an integral. However, we would the need to find a similar integral to compute 
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s

. Here, we will simply use simulations
 x=normrnd(100,10,10^6,1);  y=20*log10(x);

muY=mean(y) =   39.9568      stdY=std(y) =  0.8795
Are these exact? No. Use 1010 simulations for greater accuracy. While not asked for, we also get the pdf at right ‘for free’

>> histogram(y,'Normalization','pdf') 
We see that it is a skewed pdf; one that might be well-modeled as a gamma pdf. □
2. Expected Values of Functions of 2-D X=(X1, X2)

Consider the 2-D random variable 
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Definition 2.1  The mean of 
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Example 2.1 Consider the following examples of the function g(*).

(i) 
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(ii) 
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Note: This result relies directly on the fact that 
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(iii) 
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NOTE: This is a VERY important result. In words, it say that E(*) is a linear operation. In particular, the expected value of a sum is always the sum of the expected values.
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Property 1: E(aX + bY + c) = aE(X) + bE(Y) + c. In words, this property states that E( * ) is a linear operator.
(iv) 
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(v) 
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(vi) We now present a second important property:
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Property 2: 
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[For the interested student, the proof of this property is given in the Appendix.]
Special Case 1 (b=0): Var(aX + c) = a2Var(X)
Special Case 2 (σXY = 0): Var(aX + bY) = a2Var(X) + b2Var(Y) 
Special Case 3 (a=b=1 & σXY = 0): Var(X + Y) = Var(X) + Var(Y)
Definition 2.2 The correlation coefficient between X and Y is defined as:  
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Definition 2.3 The matrix 
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 is called the covariance matrix associated with 
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Definition 2.4 Random variables X1 and X2 are said to be uncorrelated if:  E(X1 X2 )  =  E(X1 )E(X2 ). 
(2.1)

They are said to be independent if: 
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(2.2)
Remark Any thoughtful student might ask: Why isn’t the definition of uncorrelated defined in terms of the correlation coefficient, which has the range 
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Hence, we will have 
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Result 2.1 If random variables X1 and X2 are independent, then they are uncorrelated.

Proof:         
[image: image70.wmf].
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Thus, we see that if two random variables are independent, then they are uncorrelated. However, the converse is not necessarily true. Uncorrelatedness only means that they are not related in a linear way. This is important! Many engineers assume that because X and Y are uncorrelated, they have nothing to do with each other (i.e. they are independent).  It may well be that they are, in fact, very related to one another.
Example 2.2 Let 
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Solution: Because of independence, 
[image: image73.wmf]Y

X

A

Y

E

X

E

XY

E

A

E

m

m

m

=

=

=

=

)

(

)

(

)

(

)

(

. 
To compute
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Then
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. Notice that the units of this expression are those of area.
Suppose now that the area corresponds to that of a large field, with 
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Writing 
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makes it clear as to how the various parameters contribute to this uncertainty. 
Finally, we offer the simulation-based pdf for A. 

>> x=normrnd(1000,5,10^6,1); >> y=normrnd(5000,20,10^6,1);

>> a=x.*y;  >> histogram(a,'Normalization','pdf')

>> mean(a) = 5.0000e+06    std(a) = 3.2032e+04
Not only have we validated our theoretical results. We can also deduce that 
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probabilities related to A. □
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Example 2.3 Consider the design circuit shown at right. Assume 
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We will validate these approximations using simulations.

>> v=normrnd(24,1,10^6,1); >> r=normrnd(12,0.3,10^6,1);

>> p=v.^2 ./r; >> histogram(p,'Normalization','pdf')

 mean(p) = 48.1167      std(p) = 4.1847.
We see that our approximations 
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slightly low. However, for a first order approximation, they’re 

not too bad, either. We also see that P has a normal pdf.  □
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Remark. Had we blindly used the formula 
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Pressure/Temperature Scatter Plot for n=100 samples


>> muX=[2000,5000];   >> covX=[100^2 , 1.8e4 ; 1.8e4 , 200^2];

>> x=mvnrnd(muX,covX,1,10^6);   >> x=mvnrnd(muX,covX,10^6);

>> size(x)   ans =1000000           2

>> p=(x(:,1).*x(:,2))/(2000*5000);   >> histogram(p,'Normalization','pdf')

>> mean(p) =1.0018      >> std(p) = 0.0878
Conclusion: 
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Simulate a sample size of 100 measurements of 
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arrive at a simulated scatter plot.

>> x=mvnrnd(muX,covX,100);

>> plot(x(:,1),x(:,2),'*')

>> xlabel('Pressure')

>> ylabel('Temperature')

>> title('Pressure/Temperature Scatter Plot for n=100 samples')

Estimate the correlation from the data.
>> R=corrcoef(x)

R =

    1.0000    0.8966

    0.8966    1.0000
The estimated correlation is the off-diagonal element 0.8966.  □
There is one last important property that we will address in these notes:


Property 3:  Cov(aX+bY+c, W) = aCov(X,W) + bCov(Y,W) 
[For the interested student, the proof of this property is given in the Appendix.]
Example 2.6 For the 2-D random variable 
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Example 2.7 Recall the Matlab computations: For an 
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Matlab Demonstration:
% PROGRAM NAME: Ch5_2Ddata.m
% Matlab to simulate data from (X1,X2)
% Linear Model: X2hat = aX1 + b
% Parameter Values:
muX = [5 8]; % means
corr12 = 0.8; % correlation coefficient
var1 = 4; var2 = 9; % variances
cov12 = corr12*(var1*var2)^.5; % covariance
SIGMA = [var1 cov12 ; cov12 var2]; % cov.matrix
a = SIGMA(1,2)/SIGMA(1,1); % true slope
b = muX(2) - a*muX(1); % true intercept
%----------------------------------------------
X = mvnrnd(muX,SIGMA,1000); % 1000 msmts of X
%----------------------------------------------
% Estimate slope & intercept
muXhat = mean(X); % estimated means
SIGMAhat = cov(X); % estimated covariance matrix
ahat = SIGMAhat(1,2)/SIGMAhat(1,1); % est. slope
bhat = muXhat(2) - ahat*muXhat(1); % est. intercept
[a ahat ; b bhat]
%----------------------------------------------
X2hat = ahat*X(:,1) + bhat; % X2 predictions
figure(1)
plot(X(:,1),X(:,2),'*')
hold on
plot(X(:,1),X2hat,'r','LineWidth',2)
grid
xlabel('x1')
ylabel('x2')
title('[x1,x2] Scatter Plot & Prediction')
 [a ahat] =   [ 1.2000    1.1988 ]
 [b bhat] =  [ 2.0000    2.1530 ]
□
Appendix         
Proof of Property 2: 
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Proof: To simplify things, define 
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Proof of Property 3: 
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Proof: By definition, we have: 
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Using Property 1: 
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Regrouping terms: 
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Again, from Property 1: 
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