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 Lecture 2   The Involvement of Bernoulli Random Variables in Discrete PDFs   

The Bernoulli Random Variable- The random variable X with sample space }1,0{XS  and with probability density 

function (pdf) 
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xXxf X  is said to be a Ber(p) random variable.  

[See also: https://en.wikipedia.org/wiki/Bernoulli_distribution  ] 

IMPORTANT NOTE: Often, a collection )( pBer random variables is denoted as 
n

kkX 1}{  . Many books use this 

notation, and we, ourselves, will use it at times. However, in this set of notes we will denote this collection as an ordered 

n-tuple  nXXX ,,, 21 X . We choose this notation here because the notion of ordering is central in relation to 

understanding the basis for the many random variables discussed here and in Chapter 4 of the book.  

At a more technical level, using the notation 
n

kkX 1}{   diminishes an appreciation of the importance of having a well-

defined sample space. On the other hand, given  nXXX ,,, 21 X , one should (almost immediately) be able to identify 

the sample space as   keachforxxxxS kn }1,0{|,,, 21  X
. Having this description, when one is asked, for example, to 

identify the subset of 
XS that corresponds to the event ]1[ Y , [where 




n

k

kXY
1

] as: 

                                              })1,0,,0,0(,,)0,,0,1,0(,)0,,0,1{(1 


A . (1) 

Because this set includes n distinct elements, each of which has probability equal to 11 )1(  npp , it becomes immediately 

apparent that: 
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Consequently, it is easier to appreciate the generalization of (2) that is the binomial pdf: 
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Many students who are simply given (3) have no idea of its origin, and can be easily intimidated by the inclusion of the 

‘choose’ term, 
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. In such instances, they revert to simply memorizing (3).  

 

 

Remark 1. I find it interesting that the authors would place the formal development of the concepts of multiple random 

variables, independence and conditional probability in Chapter 5 of their book, since, as we shall see, those concepts are 

needed for a conceptual understanding of many of the random variables presented in Chapter 4.  

We will now summarize how various popular discrete random variables are related to a collection of Bernoulli random 

variables.  

https://en.wikipedia.org/wiki/Bernoulli_distribution
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The Binomial Random Variable- [ https://en.wikipedia.org/wiki/Binomial_distribution ] In statistical jargon: Suppose we 

conduct n trials, and that each trial can be considered to be a success or a failure. Suppose further that (A1) these trials are 

mutually independent, and that (A2) the probability of success in any given trial is p. Let Y denote the total number of 

successes. Then Y has a binomial pdf with parameters n and p. In the jargon of random variables: Let  nXXX ,,, 21 X  

be a collection of independent and identically distributed (iid)  Ber(p) random variables. Then 



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is a bino(n,p) 

random variable. The pdf for Y is: yny
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 is stated, in words, 

as ‘n choose y’. [ https://en.wikipedia.org/wiki/Binomial_coefficient ]. In lay terms, it is the number of ways that one can 

position y indistinguishable objects in n ordered slots. For example, there are n ways that one can position a 1 in n slots 

(i.e. 1st position, or 2nd position, or, … , or nth position). In this case n
n
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1
. The word or here is in bold to 

emphasize the fact that it is, indeed, a union set operation (denoted as  ). Consider the event ]1[ Y . In relation to the 

sample space 
XS  for  nXXX ,,, 21 X , this event is:      }1,,0,0,0,,1,0,0,,0,1{]1[ Y . There are a total 

of n ordered n-tuples in this set. The first n-tuple has probability   ]001Pr[}0,,0,1Pr{ 21 


nXXX  . Because 

of mutual independence we have   )1()1(]0Pr[]0Pr[]1Pr[}0,,0,1Pr{ 2121 nn pppXXX 


 . Because these 

random variables are identically distributed, this becomes   1)1()1()1(}0,,0,1Pr{  nppppp  . 

 

[Related Matlab commands: binopdf, binocdf, binoinv, binornd] 

 

NOTE: The Ber(p) random variable is a special case of a bino(n=1,p) random variable. 

 

Example You are concerned with X=The act of noting whether or not any chosen part conforms to specifications. Let 

pX  ]1Pr[  denote the probability that it does not conform. You will inspect 10n randomly selected parts. Let 

 1021 ,,, XXX X  denote the 10-D data collection variables associated with X. Then ),10(~
10

1

pnbinoXY
k

k 


. 

(a)Assuming the truth model 05.0p , compute ]1Pr[ Y . Solution: ]1Pr[ Y =  binocdf(1,10,.05) = 0.9139. 

 

(b) For 05.0p  simulate 5 measurements of 10/Yp 


. 

 Solution: phat=binornd(10,.05,1,5)/10    phat =  0    0.2000    0.1000    0.1000         0 

 

(c) Explain why your estimator in (b) will never result in the estimate 0.05 that is the true value of p. 

Explanation: The sample space for 10/Yp 


 is }1,9.0,,2.0,1.0,0{ 
pS . 

 

 

https://en.wikipedia.org/wiki/Binomial_distribution
https://en.wikipedia.org/wiki/Binomial_coefficient
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The Geometric Random Variable- [ https://en.wikipedia.org/wiki/Geometric_distribution ] In statistical jargon: Suppose 

we conduct repeated trials and that each trial can be considered to be a success or a failure. Suppose further that (A1) 

these trials are mutually independent, and that (A2) the probability of success in any given trial is p. Let Y denote the 

number of the trial that the first success occurs. Then Y has a geometric pdf with parameter p. 

In the jargon of random variables: Let   XXX ,,, 21 X  be an ordered ∞-tuple of iid Ber(p) random variables. Then 

]1[min  k
k

XY is a geo(p) random variable. The pdf for Y is: 1)1()(  y
Y ppyf  on },,2,1{  YS . Consider the event      

       *,*100*,*,,1,0,0{]3[ 4321  XXXXXY   where * denotes ‘anything’. Because of mutual 

independence we have: 

      
3213214321 )1)(1(11)1)(1(*]Pr[*]Pr[]1Pr[]0Pr[]0Pr[]3Pr[ ppppppXXXXXY    . Because 

they are identically distributed, we arrive at 2)1(]3Pr[ ppY   

[Related Matlab commands: geopdf, geocdf, geoinv, geornd]     

NOTE: The geo(p) random variable is the act of measuring the first trial at which a success occurs in a sequence of 

Bernoulli trials. However, in Matlab it is defined as the number of failures prior to the first success. It should be clear then 

that the event ][ yY   is the same as Matlab’s event ]1[  yYMatlab  

 

Example Suppose that on any occasion you go out, the probability that you get to know someone new is 1.0]1Pr[ X . 

(a) What is the probability that you will need to go out exactly 5 times in order to meet a new person? 

Answer: 0656.0)1.0(9.0]5Pr[ 4 Y  = geopdf(4,0.1) 

 

(b) What is the probability that you will need to go out no more than 5 times in order to meet a new person? 

Answer: >> geocdf(4,0.1) = 0.4095 

 

(c)What is the maximum number of times you would need to go out in order to have a 90% chance of meeting someone 

new? 

Answer:    geoinv(.9,.1) = 21 

 

 

 

https://en.wikipedia.org/wiki/Geometric_distribution
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The Negative Binomial Random Variable- [ https://en.wikipedia.org/wiki/Negative_binomial_distribution ] In statistical 

jargon: Suppose we conduct repeated trials and that each trial can be considered to be a success or a failure. Suppose 

further that (A1) these trials are mutually independent, and that (A2) the probability of success in any given trial is p. Let 

Y denote the number of the trial that the rth success occurs. Then Y has a negative binomial pdf with parameters r and p. 

In the jargon of random variables: Let   XXX ,,, 21 X  be an ordered ∞-tuple of iid Ber(p) random variables. Then 

rXY
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min    is a nbino(r,p) random variable. The pdf for Y is: ryr
Y pp
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[Related Matlab commands: nbinpdf, nbincdf, nbininv, nbinrnd] 

NOTE: The nbino(r,p) random variable is the act of measuring the trial at which the rth success occurs in a sequence of 

Bernoulli trials. However, in Matlab it is defined as the number of extra trials prior to the rth success. It should be clear 

then that the event ][ yY   is the same as Matlab’s event ][ ryYMatlab   

Example In reforestation of a particular species of tree it is known that the probability that any given tree will ‘take root’ 

is 8.0]1Pr[ X . For a given tract of land, you want to grow 20r  trees.  

(a)What is the probability that you will get 20r  by planting only exactly 25y  trees. 

Solution: )2.0)(8.0(
120

125
)25( 520













Yf  =nchoosek(24,19)*(0.8^20)*(0.2^5) = 0.1568 

We can also use:  nbinpdf(5,20,.8) = 0.1568  (i.e. we need 5 extra trials) 

 

(b)What is the probability that you will get 20r  by planting no more than 25y  trees. 

Solution: nbincdf(5,20,.8) = 0.6167. 

 

 

 

 

 

https://en.wikipedia.org/wiki/Negative_binomial_distribution
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The Poisson Random Variable- [ https://en.wikipedia.org/wiki/Poisson_distribution ] In statistical jargon: Recall that in 

relation to the binomial random variable we conduct n trials, and that each trial can be considered to be a success or a 

failure. Suppose further that (A1) these trials are mutually independent, and that (A2) the probability of success in any 

given trial is p. Now we will address the situation where n is very large and where p is very small. Let pn . We will 

now assume that we do not know n or p, but that we do know pn . In fact, the mean of the bino(n,p) random variable 

is exactly pn . Let Y denote the total number of successes. Because we do not know n, we will assume that it can 

approach infinity. So, },,2,1,0{  YS . Then Y has a poisson pdf with parameter λ.  

In the jargon of random variables: Let Let   XXX ,,, 21 X  be an ordered ∞-tuple of iid  Ber(p) random variables. 

Now we will address the situation where n is very large and where p is very small. Let pn . We will now assume that 

we do not know n or p, but that we do know pn .  Then 




n

k

kXY

1

is a poiss(λ) random variable. The pdf for Y is: 

!
)(

y

e
yf

y

Y


  on },,2,1,0{  YS .  

[Related Matlab commands: poisspdf, poisscdf, possinv, poissrnd] 

 

Example Suppose that, on the average, the TSA at a given checkpoint will search 2.5 travelers per hour.  

(a)Find the probability that no more than 5 travelers will be searched in an hour. 

Solution: poisscdf(5,2.5) = 0.9580 

 

(b)Find the probability that no more than 5 travelers will be searched in the next two hours. 

Solution: poisscdf(5 , 2.5*2) = 0.616 

 

(c) Suppose that while waiting for your friend to arrive, you have noticed that the TSA has searched 7 persons in the last 

hour. Assuming that the TSA’s claimed search rate is 2.5 persons per hour, compute the probability that TSA would 

search 7 or more persons in an hour. 

Solution: 1-poisscdf(6,2.5)  = 0.0142. 

 

 

 

https://en.wikipedia.org/wiki/Poisson_distribution
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The Hypergeometric Random Variable- [ https://en.wikipedia.org/wiki/Hypergeometric_distribution ] In statistical 

jargon: Suppose we have a collection of N objects, wherein K are classified as successes, and KN  are classified as 

failures. We will draw n objects at random from this collection without replacement**. The number of successes that we 

draw, Y, has a hypergeometric pdf with parameters ),,( nKN . 

In the jargon of random variables: Let Let  nXXX ,,, 21 X  be an ordered n-tuple of Ber(pk) random variables.  In 

words, kX is the act of recording a success or failure on the kth draw. Let 




n

k

kXY

1

. Were we to draw objects with 

replacement, then it would be clear that on any given draw, the probability of a success would be simple ./ NKp  In this 

case,  nXXX ,,, 21 X  would be a collection of (A1) mutually independent and (A2) identically distributed Ber(p) 

random variables. And so Y would be a bino(n,p) random variable. However, we are now drawing without replacement. 

After a little thought, it should be clear that n
kkX 1}{   are not mutually independent. Let’s now add some rigor to this claim. 

Recall that the random variables 1X and 2X  will be independent only if ]1Pr[]1|1Pr[ 212  XXX . To show that this 

condition does not hold, note that compute pNKX


 /]1Pr[ 1
.  

Now we will compute ]1Pr[ 2 X . This is where a clear understanding of events is important. Specifically: 

]11[]10[]1[ 21212  XXXXX . Since these two events are mutually exclusive, we have 

                                   ]11Pr[]10Pr[]1Pr[ 21212  XXXXX . 

This can be expressed in terms of conditional probabilities as 

                ]1Pr[]1|1Pr[]0Pr[]0|1Pr[]1Pr[ 1121122  XXXXXXX . 

We have already noted that: pNKX


 /]1Pr[ 1 , and so NKNX /)(]0Pr[ 1  .  

It should be equally clear that: )1/(]0|1Pr[ 12  NKXX  and )1/()1(]1|1Pr[ 12  NKXX .  

Hence, p
N
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K
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K

N

KN

N

K
X








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
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
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1

1

1
]1Pr[ 2 .  

And so we see that 2X , like 1X , is a Ber(p) random variable. [In fact, one can show that every kX is a Ber(p) random 

variable! In words, n
kkX 1}{  are identically distributed Ber(p) random variables. 

Now recall that only if ]1Pr[]1|1Pr[ 212  XXX  will 1X  and 2X  be independent. From the above, we have 

)1/()1(]1|1Pr[ 12  NKXX  and NKX /]1Pr[ 2  . It follows that 1X  and 2X  are not independent.  

In conclusion, the collection n
kkX 1}{  includes identically distributed Ber(p) random variables, but they are not mutually 

independent (as they would be in the case of sampling with replacement). The random variable Y has a 

hypergeometric(N,K,n) pdf: 
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
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




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
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yfY /)(  on }},min{,)},(,0max{{ nKKNnSY  . 

https://en.wikipedia.org/wiki/Hypergeometric_distribution
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While the sample space may appear a bit weird, think about it for a moment. If you are drawing n objects and KNn  , 

then you must draw at least )( KNn   successes.  

[Related Matlab commands: hygepdf, hygecdf, hygeinv, hygernd] 

 

Example Suppose that one of your favorite CDs has 10 tracks, 3 of which you really, really like. You have just put your 

CD player into the ‘shuffle’ mode, where it will randomly select tracks to play. You need to go to class after the 5th track 

is played.  

(a)Find the probability that you will hear exactly 2 of the 3 tracks that you like so much? 

Solution: 

























5

10
/

3

7

2

3
)2(Yf = >> hygepdf(2,10,3,5) = 0.4167 

(b)What is the probability that you won’t hear any of your best tracks? 

Solution: 

























5

10
/

5

7

0

3
)0(Yf = >> hygepdf(0,10,3,5) = 0.0833 

(b)What is the probability that you will hear at least of your best tracks? 

Solution: 1-hygecdf(1,10,3,5)  = 0.5000 

 

 

 

 


