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Lecture 2                Some Popular Continuous Random Variables
In the last lecture we addressed a number of popular discrete random variables. In these notes we will address sompe popular continuous random variables. Recall how these types of random variables are defined.

Definition 1 Let X denote a random variable with sample space 
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. If the number of elements in 
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is finite or countably infinite, then X is said to be a discrete random variable. If 
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is a continuum on the real line, then X is said to be a continuous random variable.

The Uniform Random Variable- A random variable X with 
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and with probability density function (pdf) 
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 is said to be a uniform random variable.

[Related Matlab commands are: unifpdf, unifcdf, unifrnd]

[ https://en.wikipedia.org/wiki/Uniform_distribution_(continuous) ]

Example 1 Calibration of many instruments and modeling of many signals entail the use of sinusoids. Recall that a sinusoid signal has the form 
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. Hence, the amplitude at 
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depends on the phase variable 
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. By taking repeated snapshots of this sinusoid at randomly spaced intervals (e.g. using an oscilloscope in the free-run mode), one can assume that  
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= the act of recording the phase is a random variable that has a uniform distribution over 
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(a) Compute the corresponding cumulative distribution function (cdf).  
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(b) Compute 
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 =  unifcdf(0.1,-pi,pi)-unifcdf(-0.1,-pi,pi)  = 0.0318.
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(c) Simulate 3 snapshots of 
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 over a 5-second time window.

%Example 1
t=0:.001:5;
nt=length(t);
nsim=3;
th=unifrnd(-pi,pi,nsim,1);
s=zeros(nsim,nt);
for k=1:nsim
    s(k,:)=sin(2*t + th(k));
end
plot(t,s)
title('Snapshots of s(t)')
xlabel('Time (sec)')
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grid
(d)Suppose that the scope is switched from the free-run mode to the trigger mode, and that the trigger is set to take a snapshot when 
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 crosses zero with a positive slope. There will always be a slight amount of trigger ‘jitter’. Assume that 
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. Repeat (c) for this case.
The only needed code change is: th=unifrnd(-.2,.2,nsim,1);
The Exponential Random Variable- The pdf is 
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,

0

[

)

(

¥

=

=

-

X

x

X

S

with

e

x

f

l

l

.
[Related Matlab commands are: exppdf, expcdf, exprnd]

[ https://en.wikipedia.org/wiki/Exponential_distribution ]

(a)Compute the corresponding cumulative distribution function (cdf).  
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(b)Given the event 
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Notice that this cdf is exactly the same as that in (a), except that now the sample space is 
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. Because of this, the exponential distribution is said to be memoryless (e.g. Given that a part has survived an amount of time 
[image: image24.wmf]0
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, its failure probability is exactly the same as it was when it was new). 
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(c)From https://en.wikipedia.org/wiki/Exponential_distribution  copy/paste the following: (i) 
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, (ii) 
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, and (iii) plots of the pdf for various values of 
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The Normal Random Variable- The pdf is 
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[Related Matlab commands are: normpdf, normcdf, normrnd]

[  https://en.wikipedia.org/wiki/Normal_distribution  ]

Example 1 continued. Many periodic signals can be modeled as a sum of sinusoids. Suppose that for a chosen sinusoid we have 
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(e)Compute 
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= normcdf(50,45,3) - normcdf(40,45,3) = 0.9044
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(f)Repeat (c) for this case.

The needed code change is: th=normrnd(45,3,nsim,1);
Example 2 Suppose that when a lathe cutting tool is good the diameter of any turned shaft is 
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, and that when the tool is bad it is 
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(a)For each condition compute 
[image: image36.wmf]]

01

.

2

99

.

1

Pr[

<

<

D

.

                     
[image: image37.wmf]]

01

.

2

99

.

1

Pr[

<

<

g

D

 =  normcdf(2.01,2,.005)-normcdf(1.99,2,.005) = 0.9545
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 =  normcdf(2.01,2.01,.005)-normcdf(1.99,2.01,.005) = 0.5000

(b)Suppose that any shaft with diameter not in the range 
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 is considered as waste, and that the expense associated with each shaft is $20. Compute the total waste cost for every 1000 shafts.
For a good cutting tool, we can expect that ~955 will be good and 45 will be waste. So the cost is ~$900.

For a bad cutting tool, we can expect that ~500 will be good and 500 will be waste. So the cost is ~$10,000.

(c)To reduce the cost associated with a bad cutting tool, you have incorporated a protocol that is: Whenever a shaft diameter exceeds 2.015 the cutting tool shall be replaced. Compute the probability that you will erroneously replace a good cutting tool.
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 = 1-normcdf(2.015,2,.005)  = 0.0013
(d)Compute the probability that you will not replace a bad cutting tool. 
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 = normcdf(2.015,2.01,.005)  = 0.8413
(e)In view of (c-d), comment on the effectiveness of the protocol.
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The Gamma Random Variable- The pdf is too ugly to give here (
[Related Matlab commands are: gampdf, gamcdf, gamrnd]

[  https://en.wikipedia.org/wiki/Gamma_distribution ]

(a)From https://en.wikipedia.org/wiki/Gamma_distribution copy/paste the following: (i) 
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, (ii) 
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, and (iii) plots of the pdf for various values of the shape parameter k, and the scale parameter 
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(b)From the plots in (a) identify the one that most resembles a bell shape (i.e. normal) pdf.   BLUE 
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(c) Compute expressions for k and 
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 as functions of 
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Example 3 A collection of 100 surface roughness measurements yielded the estimates 
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. The skewed nature of the histogram suggested that X could be modeled by a gamma distribution.
(a)Compute the values of the shape parameter k, and the scale parameter 
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(b)Plot the pdf over an appropriate range of x-values.

Since 
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I will try a plot over 0-100.
>> x=0:.01:100;

>> f=gampdf(x,4.516,10.8389);

>> plot(x,f)

Not so good (. So try 0-150. Sweet (
(c) Unlike yourself, your colleague did not look at the data histogram. He simply assumed that X was normally distributed. Compute 
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 for his model, and compare it to the value given by yours.

HIS: 1-normcdf(48.89+3*14.85,48.89,14.85) = 0.0013 ; MINE: 1-gamcdf(48.89+3*14.85,10.8389,4.5106) = 0.0065
[image: image66.emf]My probability is 5 times greater than his. 
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