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                                  An Investigation of Rate Gyro Noise Properties 

 

1. The Noise Associated with Rate Gyro Angular Velocity and Position 

Angular Velocity- 

Typically, the noise associated with a rate gyro angular velocity, )()( tt   is assumed to be white noise. In other 

words, it is a random process that has a flat power spectral density (psd). For example, suppose that for a chosen sampling 

interval, Δ seconds, the rate gyro noise has a rated standard deviation sec// o

o  .  

 

Question: What are the units of o ?      Answer: ]sec/[]secsec)/[( oo

o    

 

Recall that the sampling frequency is Hzfsamp  /1  Hence, the Nyquist frequency is Hzff sampNyquist  2/12/  

Furthermore, suppose that it is assumed to have a flat psd over the analysis frequency range .],[ Hzff NyquistNyquist  Since 

the noise ‘power’ is defined as its variance,
2

 , it follows from the conservation of energy that its psd is   
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)/()(  .  (1a) 

It is important to note that the psd (1a) does not depend on Δ. For a given Δ, the power (i.e. variance) of the sampled 

signal )( k is, as we know,  /)( 22

o . Hence, as 0 , )()( ttk   , which is a continuous-time white 

noise process. And so we can readily conclude that such a process has infinite variance! Consequently, the parameter 
2

o is not variance; rather, it is a variance intensity parameter. Alternatively, it is the value of the psd (1a). 

 

To obtain the value of (1a) in decibels (dB), we use 

                                                           dBfSfS dB )(log10)( 10   . (1b) 

Unfortunately, most rate gyros do not specify the psd. Instead, they specify that amplitude spectral density (asd), which is 

the square root of the psd. Thus, in relation to (1a), we have: 
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Notice that the dB value of (1c) is still (1b), since when converting amplitude to dB one uses 10log20 .  

 

Angular Position- Clearly, neglecting initial angular position, we have: 

                                                                           
t

dt
0

)()(  .  (2a) 

And so, (2a) becomes the approximation: 
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Now, the random variables 
k

jj 1)}({   each have variance  /22

o . Moreover, the white noise assumption implies 

that they are mutually uncorrelated. Hence, the variance of (2b) is: 
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If we let 


ktk , then (3a) becomes 

                                                                        
2)]([ okk ttVar   . (3b) 

Equivalently, 

                                                           deg)()]([ kokk tttStd   


. (3c) 

Notice that as the time kt increases, so does the uncertainty of the angular position )( kt  due to the rate gyro sensor 

noise. The random process 


1)}({ kkt with this behavior is called an angular random walk (ARW). 

Example 1. Suppose that a given rate gyro has a specified ARW uncertainty rate hrr o

ARW /003. . Furthermore, it is 

claimed that after 6 minutes the uncertainty in angular position is 0.001o.   

Question 1: How does the uncertainty rate relate to (3c)? 

Answer: Recall from the above Q/A that ]sec/[o

o   . Hence, oARWr  . In words, the ARW uncertainty 

rate is the standard deviation intensity  of the continuous-time random walk )(t .  Equivalently, it is the asd (1c). 

Question 2: For a sampling frequency Hzfsamp 50 , what is the numerical value of the standard deviation of the gyro 

rate,  ? 

Answer :                    sec/)10(5.
sec3600

1
/003. 4 oo

ARW

hr
hrr  .  

                Hence,                 sec/)10(54.3
02.

)10(5.
/ 4

4
o

o




 . 

Question 3: What is the relationship between deg)()]([ kokk tttStd   


 and sec/)/ o

o  . 

Answer:                           kktt kok    )()( . (4)  

Question 4: Why is the relation (4) important if one desires to verify the manufacturer’s claimed value for rARW ? 
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Answer: It is important because we only have the sampled the rate signal, )( k  at a specified sampling frequency, 

 /1sampf . Hence, we can only estimate  . We can never estimate o directly. Even so, having an estimate 




allows us to estimate o  using  


o . 

Question 5: Some manufacturers specify ARWr in units Hzhro // . Show the relation between ]/[)1( hrr o

ARW  and 

]//[)2( Hzhrr o

ARW . 

Answer: Clearly, 
22

oARWr   is the value of the psd, )( fS , given by (1a), with dimensions 








time

timeangle

/1

)/( 2

.  Hence, 

oARr   has dimensions 
( / )

1/

angle time

time

 
 
 

. But we also know that this same oARr  has dimensions 








time

angle
. And 

so, the numerical value of oARr   can be given either of these sets of units, as long as the time units are one and the 

same! 

 

Comment on the excerpt from  

http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=6&ved=0CFYQFjAF&url=http%3A%2F%2Fww

w.imar-navigation.de%2Fdownloads%2FDecision_assistant-

Dateien%2FDecision_assistant.pdf&ei=icKUUozNLs3YyAHZjoGwDA&usg=AFQjCNE-hD1hPhxHSXCtPnl_Ua7IB2-

EDg&bvm=bv.57155469,d.eW0 

 

in relation to the above development. 

 

http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=6&ved=0CFYQFjAF&url=http%3A%2F%2Fwww.imar-navigation.de%2Fdownloads%2FDecision_assistant-Dateien%2FDecision_assistant.pdf&ei=icKUUozNLs3YyAHZjoGwDA&usg=AFQjCNE-hD1hPhxHSXCtPnl_Ua7IB2-EDg&bvm=bv.57155469,d.eW0
http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=6&ved=0CFYQFjAF&url=http%3A%2F%2Fwww.imar-navigation.de%2Fdownloads%2FDecision_assistant-Dateien%2FDecision_assistant.pdf&ei=icKUUozNLs3YyAHZjoGwDA&usg=AFQjCNE-hD1hPhxHSXCtPnl_Ua7IB2-EDg&bvm=bv.57155469,d.eW0
http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=6&ved=0CFYQFjAF&url=http%3A%2F%2Fwww.imar-navigation.de%2Fdownloads%2FDecision_assistant-Dateien%2FDecision_assistant.pdf&ei=icKUUozNLs3YyAHZjoGwDA&usg=AFQjCNE-hD1hPhxHSXCtPnl_Ua7IB2-EDg&bvm=bv.57155469,d.eW0
http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=6&ved=0CFYQFjAF&url=http%3A%2F%2Fwww.imar-navigation.de%2Fdownloads%2FDecision_assistant-Dateien%2FDecision_assistant.pdf&ei=icKUUozNLs3YyAHZjoGwDA&usg=AFQjCNE-hD1hPhxHSXCtPnl_Ua7IB2-EDg&bvm=bv.57155469,d.eW0
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Comment: It is stated that the two values that manufacturers give are equivalent, but not equal. To see what’s going on 

here, let’s follow their suggested procedure: 

Suppose that 
22

oARWr  given as 








hr

o 2)(
. Since from (4), we have tt o

22 )(   , then the time units associated with 

)(t must be the same as those associated with 
22

oARWr  (i.e. hours here) for this variance to make any sense. Similarly, 

the psd frequency units must be cycles/hour. Otherwise the area under the psd will be dimensionally inconsistent.  

This begs the question: Why would manufacturers present 
22

oARWr   in units of 








Hz

hro 2)/(
? One reason might be that it 

has simply become a convention.  
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In any case, if one is given 
22

oARWr  in units 








Hz

hro 2)/(
, then it is necessary to convert Hz  to cycles/hour. Specifically: 
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Equivalently, 

                                                      hr
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hr o
oo

/
60
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
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






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Conclusion: If you have a psd estimate for )( k  where the units of Δ are seconds, then you need to convert those units 

to hours if you want the area under the curve to make sense. □ 

 

2. The Color of the Rate Noise 

The above analysis assumed that the rate noise was white over the analysis bandwidth. Consider, however, the noise psd 

shown below. 

 

Clearly, when using a sufficiently high sampling rate, the noise is not at all white; but is highly ‘colored’. The above psd 

was obtained using kHzfsamp 100 .  
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Analysis of the Results Presented in: 

mems gyroscope performance comparison using allan variance  

[This site is apparently no longer active.  ] 

www.feec.vutbr.cz/EEICT/2011/sbornik/03.../03.../14-xvagne04.pdf 

by M Vagner - Cited by 1 - Related articles 

presented. Keywords: MEMS, gyroscope, Allan variance, stability, bias, random walk ... The rate gyroscope output is 

disturbed by two main groups of errors. 

 

 

 

COMMENT: Since (2) is a r.v. it follows that for any T, (3) is also a r.v. Even so, by appealing to the psd and (3) it is 

assumed that as T goes to infinity, (3) is not a random variable. This is, in a word, sloppy. For one thing, a sequence of 

random variables, such as (3) as a function of k, can converge in different ways (e.g. almost surely, in probability, or in 

mean square senses). Also, it should be remembered that in (3) and (6) tau is a fixed value. Hence, the question arises: 

QUESTION: Given a sequence of r.v.s 1{ ( )}k k 

 , how is it possible that there exists a proper integral such as (4)? 

It is clear that this sequence depends on the chosen sampling interval Δ. So is the above presuming implicitly that Δ is 

sufficiently small such that 1 [0, ){ ( )} { ( )}k k t t 

     ? But if this is presumed, then from (2) we have 

http://www.feec.vutbr.cz/EEICT/2011/sbornik/03-Doktorske%20projekty/03-Kybernetika%20a%20automatizace/14-xvagne04.pdf
https://scholar.google.com/scholar?bav=on.2,or.r_qf.&bvm=bv.57752919,d.aWM,pv.xjs.s.en_US.JVi-ZN0rCA0.O&biw=1280&bih=637&um=1&ie=UTF-8&lr&cites=10970573263372556683
https://scholar.google.com/scholar?bav=on.2,or.r_qf.&bvm=bv.57752919,d.aWM,pv.xjs.s.en_US.JVi-ZN0rCA0.O&biw=1280&bih=637&um=1&ie=UTF-8&lr&q=related:ixm4KUJOP5hP5M:scholar.google.com/
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( ) [ ( ) ( )] /t t t        . This can be viewed simply as ( ) ( )t t   for small τ. For large τ I’m not sure what it is.  

I will be the first to confess that I am not well-versed in the Vann Allen variance (see below). However, I do have a 

modest understanding of random processes. And to me, the above is cryptic, at best. So, I can only imagine how cryptic it 

might be to a student.  Yuck! 

 

We will now investigate the above results. To this end, we begin with equations (1-3): 

Definition 1. The Allan Variance is defined as: 

                                               2
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 (which makes no sense if Δ is sufficiently small) 
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)()(


  

and where )(t  is a continuous-time random walk with rate parameter o . 

Let kk tt  1  denote the sampling interval. Then 
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Case 1 (  ): In this case, the intervals ],[ kk tt  and ],[  kk tt  are disjoint intervals. Hence, 
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Case 2 (  ):  
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In this case, the intervals ],[ kk tt  and ],[   kk tt  are disjoint intervals. Hence, 
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From (2) and (4) we arrive at: 
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Equation (4) is a true variance. On the contrary, the use of  is an attempt to use ergodicity to 

claim that the this true variance can be obtained by time-averaging. It would be an interesting exercise to try to prove that 

this true variance really is . However, it is an exercise that I have no interest in pursuing at 

this time; given my frustrated state of mind with the above presentation of the topic. Let me only point out that the true 

variance is clearly a function of Δ; whereas Δ is nowhare to be found in this integral.  

 

 

 

 

 


