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Lecture 17                     The Integral of a wss Process 

Let )(tX  be a wide sense stationary (wss) zero-mean process with )()]()([  XRtXtXE  . 

Define the process 
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Clearly, the mean of (1) is zero. Furthermore, 
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For any fixed   let   . Then  dd  , and (2) becomes 
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Since )()(   XX RR , we can write (3) as 
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Let   . Then  dd  , and (4) becomes 
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Now define 
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Then (5) becomes 
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Next, define 
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Then (7) becomes 
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Let   t . Then  dd  , and (9) becomes 
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Hence, 
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From (11) we see that (1) is not wss. 

Example 1. Let )(tX  be a Gauss-Markov (GM) process with ||2)(   eR XX . Then (6) is: 

                   tX

t

X

t

XX ededRtR 









 









  1)()(
2

0

2

0


. (12) 

Hence, (8) is: 
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Appropriate substitution of (13) into (11) gives: 
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This can be simplified to: 
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In particular, 
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For sufficiently small t ,  since te t   1 , (16) becomes 02

)( tY , as expected. For 

sufficiently large t  (16) becomes 
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More generally, from (15), for sufficiently large t  we have 
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Equation (18) is interesting, in that it states that for any fixed t, (under the condition 1t ), the 

autocorrelation function ),( ttRY is essentially constant- independent of  ! This behavior is 

illustrated in the sample realizations shown below. 
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Figure 1. Three sample realizations of an AR(1) process (top) and its integral process (bottom). 
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The above figure clearly suggests that (i) 0)]([ tYE for all t. The increasing variability 

illustrates the dependence of the variance (16) on t. The extreme smoothness illustrates that at 

any sufficiently large time, t, the product, )()( tYtY  is, on the average, independent of the lag, 

 . Specifically, each of the realizations in Figure 1 suggests that from any chosen large t, 

 ctYtY  )()( . But the slope, c, is, on the average, zero. Hence, on the average, 

)()( tYtY  . 

 

Verification of the variance expression (17) is given in Figure 2. 
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Figure 2. Simulation-based (n=2000) estimates of )]([ tYE  (blue), and 

2

)(tY  (red). The 

theoretical variance given by (17) is shown in green. 

 

The reader may feel that the above development was unduly pedantic. The reason for the 

attention to even the slightest details was the result of numerous unsuccessful attempts without 

sufficient care.  
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The Practical Importance of the Above Results 
 

There are many situations in which the processes of interest include a given process and its 

integral. In particular, consider the situation where an accelerometer is use to estimate the 

velocity of an object. Specifically, suppose that the acceleration is governed by the following 

difference equation: 
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The velocity equation is then  
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Let the measurement equation be given as  
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kkk VAX ][ . Then the above equations admit the state space representation: 
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The equations (20) are typical equations used in the application of Kalman filtering to estimate 

the velocity process, kV . Since kV  is the ‘integral’ of a sampled GM process, it is a nonstationary 

process that has the properties of )(tY  above. Specifically, it is smooth, and its variance grows at 

a rate proportional to k. Knowing this, one must ask: Is this what kV , in fact, behaves like?  

 

For example, suppose that it is known that kV  behaves like the AR(1) process: 
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If we approximate kA  by the first order backward difference equation 
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then we have the following block diagram 

 

 

 

 

 

 

Figure 2. Block diagram associated with (21). 
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The difference equation that relates kA to kQ is 
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Hence, we see that if we believe that (21a) is a more reasonable model for kV  than an integrated 

sampled GM process, then our model for kA  should have the form (22), which is not an AR(1) 

model, but rather, an ARMA(1,1) model. In this case, the state equation (20a) becomes 
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Comment. If one has conducted a thorough study of accelerometer measurements, and 

concluded that the AR(1) model, (19a) is the best model, then one must accept that the velocity 

has the properties of an integrated sampled GM process. Specifically, it must be acknowledged to 

be smooth, nonstationary, and have variability proportional to the sample time index, k. On the 

other hand, if the physics of the problem dictate that the velocity is wss, and can be represented 

by (21a), then the acceleration process must be specified accordingly.  

[Note: I have encountered many situations, both in textbooks and as a committee member, where 

one desires to use accelerometer data to estimate velocity and/or position. I cannot recall a single 

case where any attention to the above has been given.] 

 

Stated another way, suppose that we are interested in modeling a random process, )(tY , and its 

derivative, )(tY , both as wss random processes. Then we must first model )(tY , and then obtain 

the appropriate model for its derivative, )(tY . For, if we first model )(tY as a wss process, then 

the appropriate model for )(tY will not be wss.  

 

To appreciate this in relation to rational transfer function models, suppose that our model for 

)()( tXtY


  as a GM process is: 
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where )(tU  is a fictitious white noise process. Then the appropriate model for )(tY is: 
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However, because the transfer function in (24b) has a pole on the imaginary axis (in this case at 

zero), the system is unstable. Hence, )(tY will not be wss. On the other hand, if we model 

)(tY using the transfer function in (24a), then its derivative, )()( tXtY


 , has the model: 
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Even though the transfer function in (24c) is not a proper one, it is still, nonetheless, a stable 

system. Hence, the process )(tY  will be a wss process. 

 

Remark. The above material is, by no means, mathematically rigorous; especially in relation to 

the mathematics used by experts in the area. For example, while (24) appears reasonable enough 

on the surface, the corresponding stochastic differential equation is: 

 

                                              )()()( tUtXtX    . (25) 

In (25) the ‘input’ is not a fictitious white noise process, but rather the derivative of such a 

process.  
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Appendix                Matlab code used to generate Figure 1. 
% Program name: sumar1.m 
%================================================== 
nsim = 2000; % Number of simulations 
m = 5;       % Number of simulations to be plotted 
%================================================== 
% Sampling Specifications 
n = 1000;       % Length of partial realization (integer) 
fs = 200;      % Sampling Frequency (Hz) 
dt = 1/fs;     % Sampling Period (sec/sample) 
T = n*dt;      % Observation window (seconds) 
t = 0:dt:T-dt; % Time array 
%=================================================== 
% Continuous & Discrete Process PARAMETERS 
b = 1*(2*pi);    % -3dB BW (rad/sec) = 1 HZ 
a=exp(-b*dt);    % BW parameter for sampled process 
se = (1-a^2)^.5; % white noise std for varx = 1 
%==================================================== 
% Simulations 
e = zeros(nsim,n); x = e; y = e; % Initialize arrays 
e = se*randn(nsim,n); 
x(:,1) = randn(nsim,1); y(:,1) = x(:,1); 
for k = 2:n 
    x(:,k) = a*x(:,k-1) + e(:,k); 
    y(:,k) = y(:,k-1) + x(:,k); 
end 
y = dt*y; 
%==================================================== 
% FIGURES 1 & 2: Plots of m Simulations of the AR(1)& IAR Processes 
figure(1) 
tplot = []; xplot = []; yplot = []; 
for mm = 1:m 
    tplot = [tplot ; t]; 
    xplot = [xplot ; x(mm,:)]; 
    yplot = [yplot ; y(mm,:)]; 
end 
tplot = tplot'; xplot = xplot'; yplot = yplot'; 
plot(tplot,xplot) 
xlabel('Time (sec.)') 
ylabel('x_k') 
title('Plots of Partial Realizations of an AR(1) Process') 
grid 
pause 
figure(2) 
plot(tplot,yplot) 
xlabel('Time (sec.)') 
ylabel('y_k') 
title('Plots of Partial Realizations of an  Integrated AR(1) Process') 
grid 
pause 
%===================================================== 
% Sample Statistics for the Integrated Process 
my =  mean(y); my = my';       % Simulation-based Mean of Y(t) 
vary = var(y); vary = vary';   % Simulation-based Variance of Y(t) 
varyth = (2/b)*t';              % Theoretical (large-t) Variance of Y(t) 
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mvplot = [my varyth vary]; 
figure(3) 
tplot3 = tplot(:,1:3); 
plot(tplot3,mvplot) 
xlabel('Time (sec.)') 
title('Plots of Simulation mean (bl), variance (red) & theoretical var. 

(gr)') 
grid 

 

 


