
Lecture 15                                  More on Kalman Filtering and the MMAE 

 

In these notes we will go into more detail in relation to the following problem. An AR(1) process can have one of two 

possible bandwidth parameters 2

1{ }j j 
. The parameter 

1 corresponds to a process associated with a normal condition, 

and 
2 corresponds to an abnormal condition. We will make the following assumptions: 

 

(A1): When the process transitions to the abnormal condition, it 

remains  

          so for a period of time. 

 

(A2): The process power 
2

z is the same, regardless of the condition. 

 

An example of such a measured process is shown in Figure 1. It was 

derived from a Gauss-Markov process with  
2 1z  , (1) 1bwf Hz , 

(2) 3bwf Hz , and 50sampf Hz . The corresponding  AR(1) BW 

parameters are 
1 0.88  and 

2 0.69  . 

       Figure 1. Measurement of 
kz . 

 

The Kalman filter (KF) multiple model adaptive estimation (mmae) method uses two KFs run in parallel. The state and 

measurement equations are: 

                  1, , ,k j k j k ju      for 1,2j     (1a)                        ;              1 ,k j k k jz z v       (1b) 

 

where (1)Pr[ ]p    , and where 2 2 2

, 1v j z j    . From the Lecture 14 notes, we have: 
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It should be noted that in (2) there are two different 
kz 

quantities; one associated with each KF. The KF estimates of 

2

1{ }j j 
, and the estimated probability (2) are given in Figure 2. 
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                              Figure 2. (a) KF estimates of 2

1{ }j j 
, and (b) estimated probability (2). 

 

From Figure 2(a) it should be clear that the state variances 2

1{ }j jQ 
were chosen to be quite small. After the transition from 

the normal to the abnormal state, both state estimates are slow to track the change. It is for this reason that the estimated 

probabilities in the abnormal state are a bit variable. Because we began the simulation in the normal state, and assigned a 

probability of 0.9 to it, there is little variability in the estimated probability in the normal region.  

 



It should be noticed that time increases, the KF that uses the i.c. 
2 begins to move toward 

1 . This can be expected for 

any nonzero driving variance in the random walk. Similar behavior is evident in the abnormal region. The KF estimate 

that uses the i.c. 
1 moves close and closer to 

2 ; thereby influencing the probability estimate. On could avoid both 

scenarios by setting the Q-values to zero. The price paid would be that one would then have no tracking information re: 

 .  

 

We will now proceed to review the associated Matlab code in detail. We will see that a number of issues needed to be 

addressed. 

 
% PROGRAM NAME: eegmmae.m 

%Simulation of eeg: 

fbw = [1 ; 3]; %BW (Hz) for two regions 

varZ=[1;1]; %Variances for two regions 

fs=50; %Sampling frequency (Hz) 

del=1/fs; 

a=exp(-2*pi*fbw*del); %AR(1) BW parameters 

varV=varZ.*(1-a.^2); %Measurement driving variances 

T=10; %Total observation time (sec) 

npts=fix(T/del);  

t=0:del:(npts-1)*del; 

A=[a(1)*ones(1,npts/2) , a(2)*ones(1,npts/2)]; 

stdv=[sqrt(varV(1))*ones(1,npts/2) , sqrt(varV(2))*ones(1,npts/2)]; 

z=zeros(1,npts); 

z(1)=normrnd(0,sqrt(varZ(1))); 

for k=2:npts 

    z(k)=A(k)*z(k-1)+normrnd(0,stdv(k)); 

end 

figure(1) 

plot(t,A,'r') 

hold on 

plot(t,z,'k') 

title('z(t) for Varying a') 

xlabel('Time (sec)') 

legend('a','x') 

grid 

%********************************************************** 

%KF: 

% Driving noise variances for AR(1) processes 

R=[varV(1)*ones(1,npts);varV(2)*ones(1,npts)]; 

Q=[.00001 ; .00001]; %ARbw parameter state driving variances 

%COMMENT 1: Ideally, these should be found by minimizing each mse. 

%======================================================== 

% PROBABILITY INITIAL CONDITIONS 

pa0=[0.9;0.1]; %Assign prior probabilities to a1 & a2 

pm1=pa0; 

%======================================================== 

% KALMAN FILTER INITIAL CONDITIONS 

xhat=zeros(2,npts); 

xhatm=[a(1);a(2)]; 

Pm=Q; 

I=ones(2,1); 

Pra1=zeros(1,npts); 

Pra1(1)=0.9; 

%-------------------- 

for k=2:npts 

   H=z(k-1)*[1;1]; 

   Kk= Pm.*H.*(H.*Pm.*H + R(:,k)).^-1; 

   zm=H.*xhatm; 

   xhat(:,k)=xhatm + Kk.*(z(:,k)-zm); 

   P=(I-Kk.*H).*Pm; 

   xhatm=xhat(:,k); 

   Pm=P + Q; 

   %---------------------- 

   f1=normpdf(z(k),zm(1),sqrt(H(1)^2*Pm(1)+R(1,k))); 

   f2=normpdf(z(k),zm(2),sqrt(H(2)^2*Pm(2)+R(2,k))); 

   p1=f1*Pra1(k-1); 

   p2=f2*(1-Pra1(k-1)); 

   Pra1(k)=p1/(p1+p2); 

   if Pra1(k)>0.999 

      Pra1(k)=0.99; 

   elseif Pra1(k) <.001 



       Pra1(k)=0.01; 

   end 

end 

figure(2) 

plot(t,[A;xhat]) 

title('KF Estimates of a, a1hat and a2hat') 

xlabel('Time (sec)') 

legend('a','a1hat','a2hat','Location','SouthEast') 

grid 

figure(3) 

plot(t,A,'r') 

hold on 

plot(t,Pra1) 

title('Estimated Probability of a1') 

xlabel('Time (sec)') 

grid 

 

  
 


