
                        Kalman Filtering and Probability 
 

 

1. A Brief Summary of Kalman Filtering in Relation to Random Variables 
 

1.1 The State and Measurement Models 

 

Let tr

mkkk ZZZ ],,[ 1  and let  tr

nkkk XXX ],,[ 1  . Assume the relationship between these random processes 

is:  

 

                                          kkkk WXFX 1   (state equation)   ;  

0X


(initial condition) (1a) 

                                           kkkk VXHZ   (measurement equation) (1b) 

 

where (1a) includes the known and non-random ( nn matrix-valued) parameters Fk and Gk, as well as the n-D 

non-measurable white noise random process wk with 

 

                                        )()( jQWWE tr

jkk   and )()( jRVVE tr

jkk  . (2) 

 

The Random Variables involved in the state model- There are two ways in which random variables can enter 

into (1a). The first way is via the process tr

nkkk WWW ],,[ 1  . For any k, this n-D random variable need not 

have all non-zero entries. In fact, it often does not. Furthermore, the non-zero random variables may have 

distinctly different distributions. For example, one component might be normally distributed, while another is 

uniformly distributed, while a third has a Bernoulli distribution. Moreover, at any time, k, the elements of Wk 

can be correlated. The only requirement is that the possibly nonstationary random process, }{ kW ,  be zero-mean 

and have mutually uncorrelated elements. The second way that randomness can enter into (1a) is via the initial 

condition; which may also entail zeros, as well as various types of random variables. It is possible that the state 

process (1a) has no driving noise input, and has a deterministic external input; but where the initial condition is 

a random variable. In this case, (1a) is an example of a deterministic random process, in that conditioned on 

knowledge of Xk for a given time, k, it is known for all future time. 

 

Random Variables involved in the measurement model- Clearly, the randomness will arise, in part, from the 

state process. In addition to this, it may also have a contribution from the measurement noise kth element of the 

random process }{ kV . This process has the same amount of allowed variety of random variables, and has the 

same constraint as the state noise process }{ kW . 

 

 

1.2 The Kalman Filter Algorithm 

 

From Figure 5.8 on p.219, we have the following KF algorithm: 

 

For k=0 choose a value   00 xX


and compute the prediction error covariance  

 

                                                  ]))([( 00000

trXXXXEP  


.  (3) 

 

[Notice that by choosing 

0x


=0, it follows that ][ 000

trXXEP  . ] 

 



 

Step 1: For k=0:      Compute the Kalman gain:  1)(   k

tr

kkk

tr

kkk RHPHHPK . (4a) 

 

Step 2: Compute the update estimate:    )(   kkkkkk XHZKXX


. (4b) 

 

Step 3: Compute the update error variance:    kkkk PHKIP )( . (4c) 

 

Step 4: Compute 1-step prediction:  kkk XFX




1  (4d) 

 

Step 5: Compute the next state error covariance: k

tr

kkkk QFPFP 

1  (4e) 

 

Step 6: Return to Step 1 and increment k by one. 

 

Note that while steps 1-3 must precede steps 4 and 5, the order of the latter is irrelevant. 

 

2. Probability Distributions Related to the State and Measurement Random Variables 

 

2.1 Distributional knowledge related to Xk 

 

Recall that the point of Kalman filtering is to recover an estimate of Xk from the measurements }{ kjZ   Hence, 

even though Xk is a random variable, we do not have access to it.  

 

2.1.1 The mean and covariance of   kkk xXX


| :  

 

Recall that 

kX


 is the KF estimator of kX  prior to observing kZ . Let 


  kkk XXE


 denote the error associated 

with this estimator. This error has zero mean and covariance denoted as: 

 

                                         )(]))([( tr

kk

tr

kkkkk EXXXXEP 


 


. (5) 

 

Suppose that we are given   kk xX


. Since 


  kkkkkk EXXXXX


)( , it follows that  

 

                                                    kkkkk xxXX


| . (6a) 

 

Cleary, then 

 

                kkkk xxXXE


)|( ,        and             kkkkk PECovxXXCov )()|(


. (6b) 

 

Thus, while we do not know anything directly in relation to Xk, we do know the mean and covariance of the 

conditional random variable   kkk xXX


| , are as is given in (6).  

 

 

 

 

 

 



2.1.2 The mean and covariance of kkk xXX


| :  

Recall that kX


 is the KF estimator of kX  that incorporates kZ . Let kkk XXE





 denote the error associated 

with this estimator. This error has zero mean and covariance denoted as: 

 

                                         )(]))([( tr

kk

tr

kkkkk EXXXXEP 


. (7) 

 

Suppose that we are given kk xX


 . Since kkkkkk EXXXXX 
 

)( , it follows that  

 

                                                  kkkkk xxXX 


| . (8a) 

 

Cleary, then 

 

              kkkk xxXXE


 )|( ,        and           kkkkk PECovxXXCov  )()|(


. (8b) 

 

 

 

 

 

From Step 2 of the KF algorithm, we have 

 

  and                                 )( 


 kkkkk ZZKXX


 with  


  kkk XHZ


. (8c) 

 

 

2.2 Distributional knowledge related to   kkk xXZ


|  

Since Zk depends on Xk, via (1b), we do not have any a priori knowledge of the distribution of }{ kZ . However,  

we may write (1b) as 

 

                                      kkkkkkkk VXHVXHZ   )(


. (9) 

 

Define 


  kkk XHZ


and 


  kkk xHz


. It follows immediately that 

 

                           kkkkkkkkkkkk VHzVHxHxXZ   
| . (10a) 

 

The mean and covariance of (10a) are given by 

 

              kkkkkk zxHxXZE


)|(    and   k

tr

kkkkkk RHPHxXZCov   )|(


. (10b) 

 

Finally, notice that the variable kkk xXZ


| is not a random variable, but a number, kz . This is because to be 

given kk xX


 requires that we are given kk zZ  . 

 

 



2.3 Application of Baye’s Theorem 

 

In its simplest form, Baye’s Theorem may be stated as 

 

  Baye’s Theorem                )Pr(/)Pr()|Pr()|Pr( BAABBA  . (11) 

 

Proof: The proof is a trivial consequence of the definition of the conditional probability 

           )Pr(/)Pr()|Pr( BBABA 


. We may also write this as )Pr(/)Pr()|Pr( AABAB 


.  

           Since )Pr()Pr( ABBA  , the result (11) follows immediately. □ 

 

Now, let WxXZ kkk


 


| , and let A be a random variable with sample space SA. Then, from (11), we have, 

Notationally, )Pr(/)Pr()|Pr()|Pr( WAAWWA  . However, whereas (11) relates to events A and B, this 

expression relates to random variables. Hence, more formally, (11) becomes 

 

                                             )(/)()|()|( wfafawfwaf   (12a) 

where 

                                                     

AS

daawfwf ),()(  (12b) 

 

Example. Consider the dynamical system 

 

                                                       kkk UXaX  1  (13a) 

                                                         kkk VXZ  . (13b) 

 

 

Now, suppose that the number ASaaa  },{ 21 , with paA  ]Pr[ 1 . Then (12) becomes 

                     ]Pr[
),(),(

)|(
]|Pr[ 1

21

1
1 aA

awfawf

awf
wWaA 










 .  

 

This can also be written as 

 

            ]Pr[
]Pr[)|(]Pr[)|(

)|(
]|Pr[ 1

2211

1
1 aA

aAawfaAawf

awf
wWaA 










 . (14a) 

 

From (10b) we have 

 

                                      kzaWE


)|(    and   2)()|( Vk aPaWCov   . (14b) 

 

Then for the event ][  kk zzwW


, (14a) becomes 

 

 

            ]Pr[
]Pr[)|(]Pr[)|(

)|(
]|Pr[ 1

2211

1
1 aA

aAazzfaAazzf

azzf
zaA

kkkk

kk
k 
























. (15a) 

 



Equation (15a) may be viewed as an updated specification of ]Pr[ 1aA  , based on having zk. With this 

viewpoint, we express this updated probability as  

 

                                                  ]|Pr[]Pr[ 111







 kzaAaA


. (15b) 

 

Substituting (15b) into (15a) results in 

 

]|Pr[
]|Pr[)|(]|Pr[)|(

)|(
]|Pr[ 11

122111

1
1
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








 












 k

kkkkkk

kk
k zaA

zaAazzfzaAazzf

azzf
zaA







 (16) 

 

For convenience, assume that ))(,(~| 2

Vkk aPzNaW  .  

 
 

We return to the first example of the semester.  

 

Example. Consider 

 

                                                 )()(; 22

1 kvEvzaz vkkkkk    (17a) 

 

In the case where the AR(1) parameter ak changes slowly in relation to the sampling interval. In this sense, the 

process (16a) is a locally wss process, and it is easy to show that the process variance (or power) is given by 

 

                                                        )1/()()( 222

kvz akk   . (17b) 

 

The model (17) has the ability to capture the slow time variation in both the process power, and time-varying 

frequency content can be captured by the AR(1) parameter, ak.  

 

 

Suppose that the AR(1) parameter is changing in the manner described in Figure 1. 
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Figure 1. Time-varying AR(1) parameter, ak. 

 

Figure 2 shows a realization of this process. Note that the bandwidth is change, but the process power is not. 
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Figure 2. Measurement of zk associated with (3) and Figure 1. How was this generated? 

 

 

Method 1: Here we will concentrate on tracking ak. In this case we will use measurements of the process (16) to 

filter out estimates of the ak’s. The state model used here is a simple random walk model: 

 

                                                                kkk waa  1  ; 2

wkQ   (18) 

 

Hence, the quantities in the KF state/measurement model (1) are: 

 

                                           )(;;;1; 2

1

2 kRzHQGFax vkkkwkkkkk    . 

 

There are two items here that make this KF suboptimal in the sense of minimizing the mean squared error 

between the state process xk and any estimator of it: 

 

1.The parameter 1 kk zH is not a non-random quantity. However, because at time k we have knowledge of zk-1, 

it is conditionally non-random. In this sense, the KF is known as an extended KF.  

 

2.We do not have knowledge of )(2 kR vk  , which is the driving white noise for the process (17a).  

 

However, we do know that the process power (17b) is constant and known. Hence, with our estimate ka


we can 

estimate this white noise variance as })1(,0max{)( 222

kzv ak


  .  

 

An example of the EKF tracking for two specified values of 2

wkQ   is shown in the plots below. 
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Figure 3. EKF estimates of ak for 2

wkQ  : 0.00001 and 0.001. 



 

The trade-off between bias and variability is clear. What is not clear is how this translates into change detection. 

If we define change as change in relation to the value 0.9, then Figure 3 would include numerous false 

detections for a threshold value of, say, 0.8. If we desire to detect whether ak is 0.9 or 0.4, with say a threshold 

value of 0.65, then the only incorrect detections occur in the transition region. The following method is designed 

to rapidly detect whether ak has one of two specified values. 

 

 

Method 2: For this method, the ramp was replaced by an instantaneous change in the AR(1) parameter 
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Figure 4. The top plot shows the behavior of the AR parameter. The bottom plot shows a partial realization of 

the measurement process. 

 

In this method we will not track ka . Instead, we will cast this as a problem of determining which of two known 

values of ka  the measurements are associated with. In this setting, we will use the probability evolution model 

(16) in relation to each value. In this way, we are actually running TWO EKFs, and using (16) to decide which 

one is related to the true value of ka .  

 

The results are shown in Figure 5. 
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% PROGRAM NAME: mmae411.m 
% Most Recent Modifications 4/16/2011 
% ================================= 
% Multiple Model Adaptive Estimation- an Example 
% AR(1) Parameter Probability Information 
% ================================= 
% DATA GENERATION 
n = 10^4; 
% Construct t.v. AR(1) parameter 
a11=.9; a22=.4; 
a1=a11*ones(1,n/2); 
a2=a22*ones(1,n/2); 
 avec=[a11 ; a22]; % Vector of the two parameters being tested 
 a=[a1 a2]; 
 figure(1) 
   plot(a) 
   axis([1,n,0,1]) 
   title('Timevarying AR(1) Parameter') 
   pause 
 % Compute driving noise variance for unity variance AR(1) 
 sige2=(1 - a.^2); 
 % Generate t.v. AR(1) Measurement Process 
 x = zeros(1,n); 
 x(1)=randn(1,1); 
 for t=2:n 
    x(t)=a(t)*x(t-1) + sige2(t)^(0.5)*randn(1,1); 
 end 
 figure(2) 
   plot(x,'k') 
   title('Sample of unit variance t.v. AR(1) process') 
   pause 
 R=0.1;              %  MEASUREMENT NOISE VARIANCE 
v=sqrt(R)*randn(1,n);% WHITE NOISE 
z=x+v;               % MEASUREMENT 
%================================================================================= 
%   Use of TWO Simultaneous Kalman Filters to Estimate Pr(A1) and Pr(A2) = 1-Pr(A1) 
%================================================================================= 
% PROBABILITY INITIAL CONDITIONS 
pr=[]; 
pra=[0.5;0.5]; % Assign equal prior probabilities to a1 & a2 
pnm1=pra;      % pdf for z(0)=[0 0] 
%======================================================== 
% KALMAN FILTER INITIAL CONDITIONS 
Xhat=[]; 
Pmat=[]; 
Kmat = []; 
ehatm=[]; 
Q=1-avec.^2;  % white noise variances for sigma_x=1 
xhatm=[0;0]; 
Pm=[1;1];     % Note that R has been specified above 
%======================================================= 
for k=1:n    
 % COMPUTATION OF pr(k) = [pk;a1) p(k;a2)]' 
  zk=z(k)*[1;1]; 
  p1coef=(2*pi*(Pm+R)).^(-0.5); 
  p1=p1coef.*exp((-0.5*(zk-xhatm).^2)./(Pm+R)); 
  pd=p1'*pnm1;        %This is the sum of TWO probabilities 
  p=(1/pd)*p1.*pnm1;  % NOTE that pden is scalar-valued 
  [pmax,i]=max(p); 
   if pmax > .99 
     p(i)=.99; 
     j=1+mod(i,2); 
     p(j)=1-p(i); 
   end 
  pr(:,k)=p; 
  pnm1=p; 
  % KALMAN FILTER COMPUTATIONS 
  K=Pm.*(Pm+R).^(-1); 



  Kmat=[Kmat,K]; 
  P=([1;1]-K).*Pm; 
  Pmat=[Pmat,P]; 
  xhat=xhatm+K.*(zk-xhatm); 
  Xhat=[Xhat,xhat]; 
  Pm=(avec.^2).*P + Q; 
  xhatm=avec.*xhat;  
  em = x(k)*[1;1] - xhatm; 
  ehatm = [ehatm em]; 
end 
tvec=1:n; 
figure(2) 
  hold 
  plot(tvec,Xhat(1,:),'b', tvec,Xhat(2,:),'r') 
  xlabel('Time (k)') 
  ylabel('x_hat(k)') 
  title('AR(1) Process(BLACK), xhat(1)(BLUE) & xhat2(2)(RED)') 
  pause 
figure(3) 
  dxhat=Xhat(1,:)-Xhat(2,:); 
  plot(tvec,dxhat) 
  xlabel('Time (k)') 
  ylabel('del_xhat(k)') 
  title('Difference in the AR(1) Process Predictions') 
  pause 
figure(4) 
  plot(tvec,pr(1,:),'b*',tvec,pr(2,:),'r+') 
  xlabel('Time (k)') 
  ylabel('p(k)') 
  title('Time-Varying Probability Estimate for a1(*) and a2 (+)') 
  pause 
figure(5) 
  plot(tvec,pr(2,:)) 
  xlabel('Time (k)') 
  title('Probability of detection') 

 

 

 

 

 
 


