                        Kalman Filtering and Probability
1. A Brief Summary of Kalman Filtering in Relation to Random Variables
1.1 The State and Measurement Models
Let 
[image: image1.wmf]tr

m

k

k

k

Z

Z

Z

]

,

,

[

1

K

=

and let  
[image: image2.wmf]tr

n

k

k

k

X

X

X

]

,

,

[

1

K

=

. Assume the relationship between these random processes is: 
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  (state equation)   ;  
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where (1a) includes the known and non-random (
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matrix-valued) parameters Fk and Gk, as well as the n-D non-measurable white noise random process wk with
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The Random Variables involved in the state model- There are two ways in which random variables can enter into (1a). The first way is via the process 
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. For any k, this n-D random variable need not have all non-zero entries. In fact, it often does not. Furthermore, the non-zero random variables may have distinctly different distributions. For example, one component might be normally distributed, while another is uniformly distributed, while a third has a Bernoulli distribution. Moreover, at any time, k, the elements of Wk can be correlated. The only requirement is that the possibly nonstationary random process,
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,  be zero-mean and have mutually uncorrelated elements. The second way that randomness can enter into (1a) is via the initial condition; which may also entail zeros, as well as various types of random variables. It is possible that the state process (1a) has no driving noise input, and has a deterministic external input; but where the initial condition is a random variable. In this case, (1a) is an example of a deterministic random process, in that conditioned on knowledge of Xk for a given time, k, it is known for all future time.
Random Variables involved in the measurement model- Clearly, the randomness will arise, in part, from the state process. In addition to this, it may also have a contribution from the measurement noise kth element of the random process
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1.2 The Kalman Filter Algorithm
From Figure 5.8 on p.219, we have the following KF algorithm:

For k=0 choose a value 
[image: image13.wmf]-

-

=

0

0

x

X

)

)

and compute the prediction error covariance 
                                                  
[image: image14.wmf]]

)

)(

[(

0

0

0

0

0

tr

X

X

X

X

E

P

-

-

-

-

-

=

)

)

. 
(3)

[Notice that by choosing 
[image: image15.wmf]-

0

x

)

=0, it follows that 
[image: image16.wmf]]

[

0

0

0

tr

X

X

E

P

=

-

. ]
Step 1: For k=0:      Compute the Kalman gain:  
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(4a)
Step 2: Compute the update estimate:    
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(4b)
Step 3: Compute the update error variance:   
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Step 4: Compute 1-step prediction:  
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Step 5: Compute the next state error covariance: 
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Step 6: Return to Step 1 and increment k by one.
Note that while steps 1-3 must precede steps 4 and 5, the order of the latter is irrelevant.
2. Probability Distributions Related to the State and Measurement Random Variables
2.1 Distributional knowledge related to Xk
Recall that the point of Kalman filtering is to recover an estimate of Xk from the measurements 
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 Hence, even though Xk is a random variable, we do not have access to it. 
2.1.1 The mean and covariance of 
[image: image23.wmf]-

-

=

k

k

k

x

X

X

)

)

|

: 

Recall that 
[image: image24.wmf]-

k

X

)

 is the KF estimator of 
[image: image25.wmf]k

X

 prior to observing 
[image: image26.wmf]k

Z

. Let 
[image: image27.wmf]-

D

-

-

=

k

k

k

X

X

E

)

 denote the error associated with this estimator. This error has zero mean and covariance denoted as:
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Suppose that we are given 
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Cleary, then
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Thus, while we do not know anything directly in relation to Xk, we do know the mean and covariance of the conditional random variable
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2.1.2 The mean and covariance of 
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Suppose that we are given 
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Cleary, then
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From Step 2 of the KF algorithm, we have
  and                                 
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2.2 Distributional knowledge related to 
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Since Zk depends on Xk, via (1b), we do not have any a priori knowledge of the distribution of 
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Define 
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The mean and covariance of (10a) are given by
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Finally, notice that the variable 
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2.3 Application of Baye’s Theorem

In its simplest form, Baye’s Theorem may be stated as

  Baye’s Theorem                
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Proof: The proof is a trivial consequence of the definition of the conditional probability
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Now, let 
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. However, whereas (11) relates to events A and B, this expression relates to random variables. Hence, more formally, (11) becomes
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where
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Example. Consider the dynamical system
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Now, suppose that the number 
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This can also be written as
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From (10b) we have
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Then for the event 
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Equation (15a) may be viewed as an updated specification of 
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Substituting (15b) into (15a) results in
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For convenience, assume that 
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We return to the first example of the semester. 
Example. Consider
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In the case where the AR(1) parameter ak changes slowly in relation to the sampling interval. In this sense, the process (16a) is a locally wss process, and it is easy to show that the process variance (or power) is given by
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The model (17) has the ability to capture the slow time variation in both the process power, and time-varying frequency content can be captured by the AR(1) parameter, ak. 
Suppose that the AR(1) parameter is changing in the manner described in Figure 1.
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Figure 1. Time-varying AR(1) parameter, ak.
Figure 2 shows a realization of this process. Note that the bandwidth is change, but the process power is not.
[image: image85.emf]0 100 200 300 400 500 600 700 800 900 1000

-3

-2

-1

0

1

2

3

Corresponding sample of unit variance t.v. AR(1) process

Time Index (k)

z

k


Figure 2. Measurement of zk associated with (3) and Figure 1. How was this generated?
Method 1: Here we will concentrate on tracking ak. In this case we will use measurements of the process (16) to filter out estimates of the ak’s. The state model used here is a simple random walk model:
                                                                
[image: image86.wmf]k

k

k

w

a

a

+

=

-

1

 ; 
[image: image87.wmf]2

w

k

Q

s

=


(18)

Hence, the quantities in the KF state/measurement model (1) are:
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There are two items here that make this KF suboptimal in the sense of minimizing the mean squared error between the state process xk and any estimator of it:
1.The parameter 
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is not a non-random quantity. However, because at time k we have knowledge of zk-1, it is conditionally non-random. In this sense, the KF is known as an extended KF. 
2.We do not have knowledge of 
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However, we do know that the process power (17b) is constant and known. Hence, with our estimate 
[image: image91.wmf]k

a

)

we can estimate this white noise variance as
[image: image92.wmf]}

)

1

(

,

0

max{

)

(

2

2

2

k

z

v

a

k

)

)

-

=

s

s

. 
An example of the EKF tracking for two specified values of 
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 is shown in the plots below.
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Figure 3. EKF estimates of ak for 
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: 0.00001 and 0.001.

The trade-off between bias and variability is clear. What is not clear is how this translates into change detection. If we define change as change in relation to the value 0.9, then Figure 3 would include numerous false detections for a threshold value of, say, 0.8. If we desire to detect whether ak is 0.9 or 0.4, with say a threshold value of 0.65, then the only incorrect detections occur in the transition region. The following method is designed to rapidly detect whether ak has one of two specified values.
Method 2: For this method, the ramp was replaced by an instantaneous change in the AR(1) parameter
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Figure 4. The top plot shows the behavior of the AR parameter. The bottom plot shows a partial realization of the measurement process.
In this method we will not track 
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 the measurements are associated with. In this setting, we will use the probability evolution model (16) in relation to each value. In this way, we are actually running TWO EKFs, and using (16) to decide which one is related to the true value of 
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. 
The results are shown in Figure 5.
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% PROGRAM NAME: mmae411.m
% Most Recent Modifications 4/16/2011
% =================================
% Multiple Model Adaptive Estimation- an Example
% AR(1) Parameter Probability Information
% =================================
% DATA GENERATION
n = 10^4;
% Construct t.v. AR(1) parameter
a11=.9; a22=.4;
a1=a11*ones(1,n/2);
a2=a22*ones(1,n/2);
 avec=[a11 ; a22]; % Vector of the two parameters being tested
 a=[a1 a2];
 figure(1)
   plot(a)
   axis([1,n,0,1])
   title('Timevarying AR(1) Parameter')
   pause
 % Compute driving noise variance for unity variance AR(1)
 sige2=(1 - a.^2);
 % Generate t.v. AR(1) Measurement Process
 x = zeros(1,n);
 x(1)=randn(1,1);
 for t=2:n
    x(t)=a(t)*x(t-1) + sige2(t)^(0.5)*randn(1,1);
 end
 figure(2)
   plot(x,'k')
   title('Sample of unit variance t.v. AR(1) process')
   pause
 R=0.1;              %  MEASUREMENT NOISE VARIANCE
v=sqrt(R)*randn(1,n);% WHITE NOISE
z=x+v;               % MEASUREMENT
%=================================================================================
%   Use of TWO Simultaneous Kalman Filters to Estimate Pr(A1) and Pr(A2) = 1-Pr(A1)
%=================================================================================
% PROBABILITY INITIAL CONDITIONS
pr=[];
pra=[0.5;0.5]; % Assign equal prior probabilities to a1 & a2
pnm1=pra;      % pdf for z(0)=[0 0]
%========================================================
% KALMAN FILTER INITIAL CONDITIONS
Xhat=[];
Pmat=[];
Kmat = [];
ehatm=[];
Q=1-avec.^2;  % white noise variances for sigma_x=1
xhatm=[0;0];
Pm=[1;1];     % Note that R has been specified above
%=======================================================
for k=1:n   
 % COMPUTATION OF pr(k) = [pk;a1) p(k;a2)]'
  zk=z(k)*[1;1];
  p1coef=(2*pi*(Pm+R)).^(-0.5);
  p1=p1coef.*exp((-0.5*(zk-xhatm).^2)./(Pm+R));
  pd=p1'*pnm1;        %This is the sum of TWO probabilities
  p=(1/pd)*p1.*pnm1;  % NOTE that pden is scalar-valued
  [pmax,i]=max(p);
   if pmax > .99
     p(i)=.99;
     j=1+mod(i,2);
     p(j)=1-p(i);
   end
  pr(:,k)=p;
  pnm1=p;
  % KALMAN FILTER COMPUTATIONS
  K=Pm.*(Pm+R).^(-1);
  Kmat=[Kmat,K];
  P=([1;1]-K).*Pm;
  Pmat=[Pmat,P];
  xhat=xhatm+K.*(zk-xhatm);
  Xhat=[Xhat,xhat];
  Pm=(avec.^2).*P + Q;
  xhatm=avec.*xhat; 
  em = x(k)*[1;1] - xhatm;
  ehatm = [ehatm em];
end
tvec=1:n;
figure(2)
  hold
  plot(tvec,Xhat(1,:),'b', tvec,Xhat(2,:),'r')
  xlabel('Time (k)')
  ylabel('x_hat(k)')
  title('AR(1) Process(BLACK), xhat(1)(BLUE) & xhat2(2)(RED)')
  pause
figure(3)
  dxhat=Xhat(1,:)-Xhat(2,:);
  plot(tvec,dxhat)
  xlabel('Time (k)')
  ylabel('del_xhat(k)')
  title('Difference in the AR(1) Process Predictions')
  pause
figure(4)
  plot(tvec,pr(1,:),'b*',tvec,pr(2,:),'r+')
  xlabel('Time (k)')
  ylabel('p(k)')
  title('Time-Varying Probability Estimate for a1(*) and a2 (+)')
  pause
figure(5)
  plot(tvec,pr(2,:))
  xlabel('Time (k)')
  title('Probability of detection')
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