Lecture 13 Extended Kalman filter: Tracking a Time-Varying Sinusoid

2. The Time-Varying Sinusoid-Plus-Noise Model and Related State Equations

Consider what one might call a ‘real-world’ sinusoid:

s(t) = A(t) sin[6(0)]. )

In this work, both the amplitude and frequency are subject to small amounts of random jitter about known (deterministic)
amplitude, A,, and frequency, Q. The goal here is to use the extended Kalman filter (EKF) to estimate the time-varying

amplitude and frequency. We assume here that (1) is corrupted by a second order Gauss-Markov noise process, {n(t)}, so
that the sampled measurement process is:

2(kA) = s(kA) + n(KA). @)

The following seven-dimensional state variable will be used:

xt)=[o(t) Q) 6F) at) AM) nt) nt-A)f
where

e o(t) is the frequency jitter (rad/sec)

o Qt) = o(t) +Q, is the time-varying frequency (rad/sec)
e a(t) is the amplitude jitter

o A(t) =a(t)+ A, is the time-varying amplitude

t
o« Ht)= IQ(T) dz is the phase (rad) associated with the time-varying frequency
0

e n(t) is arandom variable associated with a second order Gauss-Markov additive noise process {n(t)}
e n(t—A) is delayed an amount A from n(t).

2.1 The Sinusoid State Equations-

The frequency jitter model- The random frequency jitter, w(t), will be modeled as:
at)+ B,0(t) =e, (1) ®)

with power (i.e. variance) af) , and with bandwidth parameter f_(rad/sec). A common special case of (3) is when

L, =0. In this case w(t)is termed a random walk, or a Brownian motion. It is a model that is often used in relation to
rate gyro position noise [*]. However, it is also a model that presumes that the uncertainty associated with @(t) increases
over time. In this work we will use S, > 0, reflecting the assumption that the frequency jitter is centered about the
nominal frequency €2, and has limited uncertainty, o, about this value. It also reflects the assumption that the jitter has
a limited bandwidth (in fact, a bandwidth that is small relative to €,). The model (3) considered in this work is called a



first order Gauss-Markov (GM) model. It is intended to model slow frequency variations caused by road grade and head
wind in relation to the use of automotive cruise control.

The amplitude jitter model- The amplitude jitter, a(t), is also assumed to be a first order Gauss-Markov process
associated with the stochastic differential equation

a(t) + pa(t) =e,(t) (4)

with power 05, and with bandwidth parameter /3, (rad/sec) where S, >0 is also small relative to €. Furthermore, in

this work the processes (3 and (4) are assumed to be mutually independent. In a cruise control setting, this assumption
may or may not be justified, depending on the source of the sinusoid.

The sampled processes- Because all processes are sampled using a sampling interval A (chosen so as to avoid measurable
aliasing), the sampled versions of (3) and (4) (using impulse-invariant sampling) are, respectively,

B = &, O + U (5)
and

aQ =, + ulga) . (6)

In (5) and (6), and henceforth in this work, we will, for notational convenience, use the subscript notation for the time
indices, as opposed to the notation in (2). The relation between the model parameters in (3-4) and (5-6) are, respectively,

aw = eiﬂwA 1 O-uz(w) = 0-02)[1_ (aw)z] (7)
and
aa — e_ﬂaA , Gj(a) = O'j}[l— (aa)z] (8)

As mentioned above, we assume here that both B and £, are small relative to Q. We will assume that €3, is in the

lower half of the frequency analysis range [0, 7/ A]. Hence, the bandwidth parameters «,and o, will both be close to
1.0. To quantify this closeness, we begin by noting that the sampled frequency jitter scaled autocorrelation function is

p,,(m)=(e")" =al. Then, for a vehicle traveling at 70 miles per with an engine crankshaft frequency
Q. =27(50) rad/s. (3000 RPM) we would need to have a sampling frequency f . =5(50) = 250Hz in order to
have €, positioned at 40% of the analysis bandwidth of 125 Hz . The vehicle speed of 70 mph corresponds to ~103 fps.

Hence, if we assume road grade changes and head wind correlation length of ~100 ft, then only well after 1 second will
the jitter process w(t) have small p_(m). If we assume that o, (m,) = 0.1 for mA =1sec. then m, = 250 samples.

samp

In this case, we then have 0.1=a™ = a™, or «r, =0.99.

To obtain the difference equation for the phase, write:

kA (k-1)A kA
b = [Q@dr= [Q@)dr+ [Q(r)dr= 6 ,+QA 9)
0 0 (k-1)A
where



where the rightmost approximate equality assumes that the sampling interval A is sufficiently small that for
(k—1)A <7 < kA we have Q(7) = Q[(k —1)A].

The final two sinusoid discrete-time state equations are

Q, =Q,+oA (10)
and

A=A+a. (11)

Combining (5), (6), (9), (10) and (11) gives

o, a”? 00 0 0l[w, u(@ ] 0
R a” 0 0 0 0|Qy, ul Q|
X =6 =10 A1 0 06y + 0] + |0|=FN+u+d. (12)
a, 0 0 0 a® 0}l ay u® 0
A 0 0 0 @ 0] AL ul® | A

2.2 The Noise State Equations-

As mentioned above, in this work we assume the additive noise corresponds to a second order Gauss-Markov process,
with stochastic differential equation

i+ N+ gn=e.(t). (12)
Furthermore, we will assume that the characteristic polynomial associated with (12) has the form
S+ Bs+ B, =5 +(2m)s + o (13)

with complex roots. The parameter ¢ is the damping ratio, and the parameter e, is the undamped natural frequency. The
discrete-time version of (12) is then

_ (n)
M = _blnk - b2nk—1 +€1 (14)

where b, = -2e " cos(w,A) and b, =e " . Equation (14) can be written as:
aln -b -b, || n,._ e [0] a
O L e B RSN P L ) U NS o) 15
Ny 1 0 ||n., 0 0

3. The Kalman Filter Equations
3.1 The Kalman Filter State Equations

The Kalman filter state equation is:



X = ka +Uu, + dk+1 (16)

where, from (12) and (15), we have X, = [x(ks) xﬁ“’]tr, u, =[uf) uf(")]”, d, = [dfj) d£”>]" “and

F= diag[F(s) F(”)]. The state driving white noise, d, , has the following covariance matrix:

Q=diagQ® Q] (172)
where
0%, oZ, 0 0 0]
auz(,,)) auz(,,)) 0 0 0 )
Q= 0 0 0 0 O and Q("’{Uu(") 0] (17b)
0 0 O ofm Gj(a) 0 0
0 0 O ofm Gj(a)

For the chosen initial condition estimate x, =[0 W, 0 0 A 0 0],

the mean-squared error (mse) of the estimator, X, =X_, is simply

c: o2 0 0 0 O 0
c: o2 0 0 0 O 0
. 0 0 o0 0 0 O 0
Py =E[(Xo —X5)(Xo —%5) " 1=E(X;Xg)=| 0 0 0 o o2 0 0 (18)
0 0 0 o o 0 0
0 0 0 0 0 R() R®
0 0 0 0 0 R(® R(0]

where o, and o are the variances of the jitter processes e (t) and a(t), respectively, and where o, = 7z”/3 assumes

that &, is uniformly distributed over the interval[-7, 7).

3.2 The Kalman Filter Measurement Equations

In view of the results of the last section, the measurement equation (1) can be written as

(s)
z. = Asin@@)+n = hOx®) + [0 1 O]{X" } (19)



where h(X,) = A, sin(6,) . Because the Kalman filter is a linear filter, it is necessary to linearize h(X, ) . To thisend, a

first order Taylor series expansion about the sinusoid state estimate X\~ = [c?)k‘ VVk‘ ék‘ a, A(‘ ]” is used.
Specifically,

h(s) ()ﬁ(;) = A:Sin(ék_) + ['8&: COS(ék_)] (ek - ék_) + [Sin(ék_)](A( - '&k_) . (20)

This, in turn, can be rewritten as

h® (%) = ['&1: Cos(éki)]ek + [Sin(éki)]Ak - ['B\: Cos(éki)]éki i h'f)ek + hEES)Ak - d,. (21)

From (21) it follows that (19) may be written as
A
z, = Asin(@)+n, = [0 0 h® 0 h® 1 0fx, - d =Hx, - d,. 22)

where the matrix H, = [0 0 h® 0 h® 1 O] is used in the computation of the Kalman filter gain
K =P H{ (HPH)™ (23)

It should be noted that the rightmost term in (22) is not used, since a more accurate estimate of the measurement z, is
simply

Z, = Asin(6,)+n,. (24)

The value of the exercise (20-22) is that it identified a structure for H, , which is needed to compute K, in (23).

4. Examples

The following examples relate to the time-varying sinusoid-plus process described in Table 1. The sampling interval is
A =1sec.

TABLE 1. Time-Varying Sinusoid and Colored Noise Parameter Values (A =1sec.)
Sinusoid:
Frequency: F, =Q,/27=02Hz ; o,=0,/27=.006Hz ; B, =.16Hz ; «,=0.996
Amplitude: A, =10 ; o0,=.023 ; f,=.16 ; «,=0.996
Noise: o,=.707 ; f =w,/27=0106Hz ; =01

From Table 1 we see that the 3o value of both the frequency and amplitude jitter is approximately 7% of the nominal
values. To arrive at the value for the frequency jitter parameter «z, = 0.996, first note that the nominal frequency

F, =Q,/27 =0.2Hz is a normalized frequency for an analysis range [0, 0.5] Hz. Assuming that this normalized

frequency corresponds to an engine frequency of 50 Hz, then the real time sampling frequency is 250 Hz, which
corresponds to a sampling period A =.004 sec. To mimic the influence of changing road grade on the fluctuations in



cruise control speed, it was assumed that the frequency jitter 4z de-correlation time was approximately 4 seconds.

Hence, the jitter real time bandwidth is S, =1rad/sec[or f; =.16 Hz]. The resultis that o, = e %* =0.996. The
amplitude jitter was assumed to behave in the manner of the frequency jitter.

COMMENTS:
1. The data generation and KF codes are included in the Appendix. The student is encouraged to run it.

2. A more in-depth investigation of this problem is given in the Lectures folder. It is entitled: Extended Kalman
Filtering- Tracking a Time-Varying Sinusoid. It is included, in part, to give the student ideas as to the type of
investigation one might pursue in the context of a 573 project.
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Appendix Matlab Code
% PROGRAM NAME: sinegen AND sinekfdelt2018.m
$PURPOSE: generate a realization of a t.v. sinusoid+noise

npts=6000; % LENGTH OF REALIZATION
ntot=npts + 500;

% GENERATION OF TIME-VARYING SINUSOID with AR (1) Ampl. & Freq.

% NOMINAL AMPLITUDE AND FREQUENCY:
a0=1.0; %nominal amplitude
w0=2*pi*0.2; % nominal frequency

sea=0.01; % amplitude driving noise sigma
sew=0.01; % angular frequency driving noise sigma

seal2=sea”2;
sew2=sew”"2;

o)

% Generation of white processes

eda=sea*randn (1,ntot);

edw=sew*randn (1,ntot) ;

% Compute variances of a(t) and w(t)for use in EKF
aa=0.9; aw=0.95;

sa2=sea2/ (1-0.972);

sw2=sew2/ (1-0.95"2);

o

% Specify Initial Conditions
da(l)=edal(l);
dw (1) =edw (1) ;

theta(1)=0;
a(l)=a0;
w(l)=w0;

% Generate SIGNAL Realization
for t=2:ntot
da(t)=aa*da(t-1)+eda(t);
a(t)=a0 + da(t);

dw (t)=aw*dw (t-1) +tedw (t) ;

w(t) = w0 + dw(t);
theta(t) = theta(t-1) + w(t);
end

o
S =====================

%$Plot True Freq. and Ampl.
ftrue=w(501:ntot)/ (2*pi);

atrue=a (501l:ntot);

figure (1) % FIGURE 1

plot (ftrue)

title('Actual T.V. SINUSOID Frequency')
xlabel ('Time [sec]')

ylabel ('Frequency [Hz]")

figure (2) % FIGURE 2

plot (atrue)

title('Actual T.V.SINUSOID Amplitude')
xlabel ('Time [sec]'")

ylabel ('Amplitude')

% Compute and plot T.V. Sinusoid Realization
s=a.*sin(theta);

s=s(501:ntot) ;

figure (3) $ FIGURE 3

plot (s)

title('T.V. Sinusoid s(t) with A=1 & w=0.2")

% Generate AR(2) Noise Process
al=-1.6*cos (pi/5); a2=0.64;
Rn0=1.0; %Noise variance



%Compute Rnl and sn2:
AA=[-al -a2 1;-(1+a2) 0 0;-al -1 0]; BB=RnO*[1l;al;a2]l;
RR=AA"-1*BB;
Rnl=RR(1); Rn2=RR(2);
su2=BB(3); % additive AR noise sigma of white noise input
su=su2”.5;
u=su*randn (1,ntot) ;
% Compute and Plot Noise PSD
delf=1/2048;
fvec=0:delf:0.5-delf;
den=fft([1 al a2],2048);
den=den (1:1024) ;
ARspec=su2* (abs (den)) .”-2;
ARspecdB=10*10gl0 (ARspec) ;
figure (4) % FIGURE 4
plot (fvec, ARspecdB)
ylabel ('dB")
xlabel ('Frequency (Hz)")
title('AR(2) Noise PSD'")
nar=zeros (l,ntot);
nar (1)=u(l);
nar (2)=u(2);
for t=3:ntot
nar (t)=-al*nar(t-1)-a2*nar (t-2)+u(t);
end
n=nar (501 :ntot) ;

% CONSTRUCTION OF MEASUREMENT PROCESS REALIZATION
z=s + n;
figure (5) % FIGURE 5

nvec=1l:npts;
plot (nvec,z, 'b')

hold on

plot (nvec,s, 'm")

hold off

title('T.V. Sinusoid with & without AR (2) Noise')
[1 al a2]

PREEEREEEEE SRR RS Eh R R et E R
%****************************************************
PREEEEEEEEE ML S EEE RS EE R R e E R R

PR R I R e b b b 2h b S b S 2h I 2b e S b Sb b I b S b b db b b I Sb b S Ib e Sb b b Sb b Sh Sb S b I 2 4

PROGRAM NAME: sinekf 7D ver3.m contained in 573 2013 folder
PURPOSE: Track a t.v. sinusoid corresponding to sinegenver3.m
with 7-D state
REQUIRED INPUT:

z-array from program sinegen.m

o o0 oo oo

oe

o\

Model Matrices for xk = [wk Wk thk ak Ak nk nk-1]
for deterministic input d [0 wO O 0 a0 0 01':

oe

o\

Phi = [ aw 0 0O 0 O 0 0; % wkml <--wn sew2
aw 0 0 0 O 0 0; % Wkml
0 11 0O 0 0; % akml <--wn sea?
0 00 aa O 0 0; % thkml
0 00 aa O 0 0; % Akml
0 00 00 -al -a2;% nkml <--wn su2
0 00 0O 1 0];% nkm2
R=0; %Measurement noise variance - ideally ZERO
% EKF Initial Conditions
xm = [0 wO O 0 a0 O 0]"';
X=XM;
Pm = [sw2 Sw2 0 0 0 0 0;
sSw2 sSw2 0 0 0 0 0;
0 0 0 0 0 0 0;
0 0 0 saz2 saz2 0 0;



0 0 0 sa2 sa2 0 0;
0 0 0 0 0 Rn0 Rnl;
0 0 0 0 0 Rnl RnO];

% EKF Loop

I = eyel(7);

for k=l:npts

d = [0 wO 0O 0 a0
Q = [sew2 sew2 0 0
sew?2 sew2 0 0

0
0
0
0 0 0 0 0
0
0
0

~.

o N

0 0 sf*sea?2 sf*sea?
0 0 sf*sea?2 sf*sea?
0
0

’

’

OO O O oo

0 0 0 s ;
0 0 0 0 0];
H= [0 0 xm(5)*cos (xm(3)) 0 sin(xm(3)) 1 0];
K Pm*H'* (H*Pm*H' + R)"(-1);

zm = xXm(5) *sin(xm(3))-al*xm(6) - a2*xm(7);
xhatk=xm + K*(z (k) - zm);

x=[x,xhatk];

P=(I - K*H) *Pm;

xm=Phi*xhatk + d;

Pm=Phi*P*Phi' + Q;

end

x=x(:,2:npts+1);

tvec = 2:npts+l;

what = x(2,:);

fhat=(2*pi)~-1 * what;

thetahat = x(3,:);

ahat= x(5,:);

nhat = x(6,:);

2

[eNviloNoNoNeoNe)

% PLOTS OF STATE AND ESTIMATION ERROR PROCESSES

o

STATE PLOTS:

figure (10)

%plot (tvec, £, tvec, fhat, 'r");

subplot(4,1,1), plot(tvec, ftrue,tvec, that, 'r");

legend ('True', 'KF Estimate')

title (' (a): Sine T.V. Frequency(blue) and EKF Estimate (red)')
xlabel ('Time [sec]'")

ylabel ('Frequency [Hz]")

$xlabel ('Time (sec) ')

grid

$figure(11)

%plot (tvec,atrue, tvec,ahat, 'r'");

subplot(4,1,2), plot(tvec,atrue,tvec,ahat,'r");

legend ('True', '"KF Estimate')

title (' (b) : Sine T.V. Amplitude (blue) and EKF Estimate (red)')
$xlabel ('Time [sec]')

ylabel ('Amplitude')

$xlabel ('Time (sec) ')

grid

o)
S =====================

o)

% Reconstruct Signal Estimate

shat=ahat.*sin (thetahat):;

$figure (12)

$plot (tvec, s, tvec,shat,'r'");

subplot(4,1,3), plot(tvec,s,tvec,shat,'r");

legend ('True', 'KF Estimate')

title (' (c): T.V. Sine(blue) and EKF Estimate (red) ')
$xlabel ('Time (sec) ')



grid

sfigure (13)

$plot (tvec,n, tvec,nhat, 'r');

subplot (4,1,4), plot(tvec,n,tvec,nhat,'r")
legend ('True', 'KF Estimate')

title (' (d) : AR (2) Noise (blue) and EKF Estimate (red)')

xlabel ('Time (sec)')
grid

% ESTIMATION PERCENT ERROR PLOTS:
figure(11)

$plot (tvec, £, tvec, fhat, 'r'");

ef = 100* (fhat-ftrue) ./ftrue;;
subplot(4,1,1), plot(tvec,ef);

title (' (e) : Sine T.V. Frequency Percent Error')
xlabel ('Time [sec]')

ylabel ('S")

grid

ea = 100* (ahat-atrue) ./atrue;

subplot (4,1,2), plot(tvec,ea);

title (' (f): Sine T.V. Amplitude Percent Error')
$xlabel ('Time [sec]')

ylabel ('%")

grid

o)

% Reconstruct Signal Estimate
shat=ahat.*sin (thetahat);

rse s=sqrt(mean(s.”"2));

es = (100/rse_s) * (shat-s);
subplot(4,1,3), plot(tvec,es);

title (' (g): T.V. Sine Percent Error')
ylabel ('S%")

grid

rse_n=sqrt(mean(n.A2));

en = (100/rse_n)* (nhat-n);
subplot(4,1,4), plot(tvec,en)

title(' (h): AR(2) Noise Percent Error')

ylabel ('%")
xlabel ('Time (sec) ')
grid

)

% Compute estimated percent mse's:
rmse f=100*sqgrt (mean ( (ftrue-fhat)
rmse a=100*sqgrt (mean ( (atrue-ahat)

rmse_s=100*sqgrt (mean ( (s-shat) .”2) /mean(n.”2));
rmse_n=lOO*sqrt(mean((n—nhat).A2)/mean(n.A2));

2) /mean (ftrue.”2));
2) /mean (atrue.”2));

A
A

[rmse f rmse a rmse s rmse n]
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