
1

Lecture 13 Extended Kalman filter: Tracking a Time-Varying Sinusoid

2. The Time-Varying Sinusoid-Plus-Noise Model and Related State Equations

Consider what one might call a ‘real-world’ sinusoid:

)](sin[)()(ttAts . (1)

In this work, both the amplitude and frequency are subject to small amounts of random jitter about known (deterministic)

amplitude, 0A , and frequency, 0 . The goal here is to use the extended Kalman filter (EKF) to estimate the time-varying

amplitude and frequency. We assume here that (1) is corrupted by a second order Gauss-Markov noise process,)}({ tn , so

that the sampled measurement process is:

)()()(knkskz . (2)

The following seven-dimensional state variable will be used:

 trtntntAtatttt)()()()()()()()(x

where

)(t is the frequency jitter (rad/sec)

 0)()(tt is the time-varying frequency (rad/sec)

)(ta is the amplitude jitter

 0)()(AtatA is the time-varying amplitude

t

dt
0

)()(is the phase (rad) associated with the time-varying frequency

)(tn is a random variable associated with a second order Gauss-Markov additive noise process)}({ tn

)(tn is delayed an amount Δ from)(tn .

2.1 The Sinusoid State Equations-

The frequency jitter model- The random frequency jitter,)(t , will be modeled as:

)()()(tett (3)

with power (i.e. variance)
2

 , and with bandwidth parameter (rad/sec). A common special case of (3) is when

0 . In this case)(t is termed a random walk, or a Brownian motion. It is a model that is often used in relation to

rate gyro position noise [*]. However, it is also a model that presumes that the uncertainty associated with)(t increases

over time. In this work we will use 0 , reflecting the assumption that the frequency jitter is centered about the

nominal frequency 0 , and has limited uncertainty, about this value. It also reflects the assumption that the jitter has

a limited bandwidth (in fact, a bandwidth that is small relative to 0). The model (3) considered in this work is called a

2

first order Gauss-Markov (GM) model. It is intended to model slow frequency variations caused by road grade and head

wind in relation to the use of automotive cruise control.

The amplitude jitter model- The amplitude jitter,)(ta , is also assumed to be a first order Gauss-Markov process

associated with the stochastic differential equation

)()()(tetata aa (4)

with power
2

a , and with bandwidth parameter a (rad/sec) where 0a is also small relative to 0 . Furthermore, in

this work the processes (3 and (4) are assumed to be mutually independent. In a cruise control setting, this assumption

may or may not be justified, depending on the source of the sinusoid.

The sampled processes- Because all processes are sampled using a sampling interval Δ (chosen so as to avoid measurable

aliasing), the sampled versions of (3) and (4) (using impulse-invariant sampling) are, respectively,

)(

1

 kkk u (5)

and

)(

1

a

kkak uaa . (6)

In (5) and (6), and henceforth in this work, we will, for notational convenience, use the subscript notation for the time

indices, as opposed to the notation in (2). The relation between the model parameters in (3-4) and (5-6) are, respectively,

 e ; 222)(1)(
u

 (7)

and

 aea

 ; 222)(1)(au a . (8)

As mentioned above, we assume here that both and a are small relative to 0 . We will assume that 0 is in the

lower half of the frequency analysis range]/,0[. Hence, the bandwidth parameters and a will both be close to

1.0. To quantify this closeness, we begin by noting that the sampled frequency jitter scaled autocorrelation function is

mmem

)()(. Then, for a vehicle traveling at 70 miles per with an engine crankshaft frequency

./)50(2 srado (3000 RPM) we would need to have a sampling frequency Hzfsamp 250)50(5 in order to

have 0 positioned at 40% of the analysis bandwidth of Hz125 . The vehicle speed of 70 mph corresponds to ~103 fps.

Hence, if we assume road grade changes and head wind correlation length of ~100 ft, then only well after 1 second will

the jitter process)(t have small)(m . If we assume that 1.0)(1 m for .sec11 m then 2501 m samples.

In this case, we then have
25011.0

m
, or 99.0 .

To obtain the difference equation for the phase, write:

 kk

k

k

kk

k ddd 1

)1(

)1(

00

)()()((9)

where

3

where the rightmost approximate equality assumes that the sampling interval Δ is sufficiently small that for

 kk)1(we have])1[()(k .

The final two sinusoid discrete-time state equations are

 kk 0 (10)

and

 kk aAA 0 . (11)

Combining (5), (6), (9), (10) and (11) gives

)()(

1

)(

1

)(

0

0

)(

)(

)(

)(

1

1

1

1

1

)(

)(

)(

)(

0

0

0

0

0000

0000

0010

0000

0000

s

k

s

k

s

k

s

a

k

a

k

k

k

k

k

k

k

k

a

a

k

k

k

k

k

k

Au

u

u

u

A

a

A

a

duxFx

. (12)

2.2 The Noise State Equations-

As mentioned above, in this work we assume the additive noise corresponds to a second order Gauss-Markov process,

with stochastic differential equation

)(21 tennn n . (12)

Furthermore, we will assume that the characteristic polynomial associated with (12) has the form

22

21

2)2(nn ssss (13)

with complex roots. The parameter is the damping ratio, and the parameter n is the undamped natural frequency. The

discrete-time version of (12) is then

)(

11211

n

kkkk enbnbn (14)

where)cos(21

d
neb

and

 neb
2

2 . Equation (14) can be written as:

)()(

1

)(

1

)(

)(

2

121

1

)(

0

0

001

n

k

n

k

n

k

n

n

k

k

k

k

kn

k

e

n

nbb

n

n
duxFx

. (15)

3. The Kalman Filter Equations

3.1 The Kalman Filter State Equations

The Kalman filter state equation is:

4

 11 kkkk duxFx (16)

where, from (12) and (15), we have trn

k

s

kk

)()(xxx , trn

k

s

kk

)()(uuu , trn

k

s

kk

)()(ddd , and

)()(nsdiag FFF . The state driving white noise, kd , has the following covariance matrix:

)()(nsdiag QQQ (17a)

where

22

22

22

22

)(

)()(

)()(

)()(

)()(

000

000

00000

000

000

aa

aa

uu

uu

uu

uu

sQ

 and

00

02

)()(nunQ

. (17b)

For the chosen initial condition estimate trAW 00000 001 x ,

the mean-squared error (mse) of the estimator, 10

 xx

 is simply

)0()1(00000

)1()0(00000

00000

00000

000000

00000

00000

)(]))([(
22

22

2

22

22

0000000

0

nn

nn

aa

aa

trtr

RR

RR

EE

xxxxxxP

 (18)

where
2

 and
2

a are the variances of the jitter processes)(t and)(ta , respectively, and where 3/22

0
 assumes

that 0 is uniformly distributed over the interval),[.

3.2 The Kalman Filter Measurement Equations

In view of the results of the last section, the measurement equation (1) can be written as

)(

)(

)()(01)()sin(
n

k

s

ks

k

s

kkkk hnAz
x

x
0x . (19)

5

where)sin()(kkk Ah x . Because the Kalman filter is a linear filter, it is necessary to linearize)(kh x . To this end, a

first order Taylor series expansion about the sinusoid state estimate trkkkkk

s

k AaWx

)(
is used.

Specifically,

)()][sin()()]cos([)sin()()(kkkkkkkkkk

s AAAAh

x . (20)

This, in turn, can be rewritten as

 kk

s

k

s

kkkkkkkkk

s dAhhAAAh

)(

5

)(

3

)()]cos([)][sin()]cos([)(

x . (21)

From (21) it follows that (19) may be written as

 kkkkk

ss

kkkk ddhhnAz

xHx01000)sin()(

5

)(

3 . (22)

where the matrix 01000)(

5

)(

3

ss

k hhH is used in the computation of the Kalman filter gain

1)(tr

kkk

tr

kkk HPHHPK . (23)

It should be noted that the rightmost term in (22) is not used, since a more accurate estimate of the measurement kz is

simply

 kkkk nAz

)sin(. (24)

The value of the exercise (20-22) is that it identified a structure for kH , which is needed to compute kK in (23).

4. Examples

The following examples relate to the time-varying sinusoid-plus process described in Table 1. The sampling interval is

.sec1

 TABLE 1. Time-Varying Sinusoid and Colored Noise Parameter Values (.sec1)

Sinusoid:

 Frequency: 996.0;16.;005.2/;2.02/00 HzHzHzF ff

 Amplitude: 996.0;16.;023.;0.10 aaaA

Noise: 1.0;106.02/;707. Hzf nnn

From Table 1 we see that the 3 value of both the frequency and amplitude jitter is approximately 7% of the nominal

values. To arrive at the value for the frequency jitter parameter 996.0 , first note that the nominal frequency

HzF 2.02/00 is a normalized frequency for an analysis range [0 , 0.5] Hz. Assuming that this normalized

frequency corresponds to an engine frequency of 50 Hz, then the real time sampling frequency is 250 Hz, which

corresponds to a sampling period .sec004. To mimic the influence of changing road grade on the fluctuations in

6

cruise control speed, it was assumed that the frequency jitter 4 de-correlation time was approximately 4 seconds.

Hence, the jitter real time bandwidth is sec/1 rad [or Hzf 16.]. The result is that 996.0

 e . The

amplitude jitter was assumed to behave in the manner of the frequency jitter.

COMMENTS:

1. The data generation and KF codes are included in the Appendix. The student is encouraged to run it.

2. A more in-depth investigation of this problem is given in the Lectures folder. It is entitled: Extended Kalman

Filtering- Tracking a Time-Varying Sinusoid. It is included, in part, to give the student ideas as to the type of

investigation one might pursue in the context of a 573 project.

Partial Output:

7

Appendix Matlab Code
% PROGRAM NAME: sinegen_AND_sinekfdelt2018.m

%PURPOSE: generate a realization of a t.v. sinusoid+noise

%=======================

npts=6000; % LENGTH OF REALIZATION

ntot=npts + 500;

%===

% GENERATION OF TIME-VARYING SINUSOID with AR(1) Ampl. & Freq.

% ==

% NOMINAL AMPLITUDE AND FREQUENCY:

a0=1.0; %nominal amplitude

w0=2*pi*0.2; % nominal frequency

%======================

sea=0.01; % amplitude driving noise sigma

sew=0.01; % angular frequency driving noise sigma

sea2=sea^2;

sew2=sew^2;

%=======================

% Generation of white processes

eda=sea*randn(1,ntot);

edw=sew*randn(1,ntot);

% Compute variances of a(t) and w(t)for use in EKF

aa=0.9; aw=0.95;

sa2=sea2/(1-0.9^2);

sw2=sew2/(1-0.95^2);

%=====================

% Specify Initial Conditions

da(1)=eda(1);

dw(1)=edw(1);

theta(1)=0;

a(1)=a0;

w(1)=w0;

% Generate SIGNAL Realization

for t=2:ntot

da(t)=aa*da(t-1)+eda(t);

a(t)=a0 + da(t);

dw(t)=aw*dw(t-1)+edw(t);

w(t) = w0 + dw(t);

theta(t) = theta(t-1) + w(t);

end

%=====================

%Plot True Freq. and Ampl.

ftrue=w(501:ntot)/(2*pi);

atrue=a(501:ntot);

figure(1) % FIGURE 1

plot(ftrue)

title('Actual T.V. SINUSOID Frequency')

xlabel('Time [sec]')

ylabel('Frequency [Hz]')

figure(2) % FIGURE 2

plot(atrue)

title('Actual T.V.SINUSOID Amplitude')

xlabel('Time [sec]')

ylabel('Amplitude')

% Compute and plot T.V. Sinusoid Realization

s=a.*sin(theta);

s=s(501:ntot);

figure(3) % FIGURE 3

plot(s)

title('T.V. Sinusoid s(t) with A=1 & w=0.2')

% ===

% ADDITIVE NOISE REALIZATION AND PSD

% ===

% Generate AR(2) Noise Process

a1=-1.6*cos(pi/5); a2=0.64;

Rn0=1.0; %Noise variance

8

%Compute Rn1 and sn2:

AA=[-a1 -a2 1;-(1+a2) 0 0;-a1 -1 0]; BB=Rn0*[1;a1;a2];

RR=AA^-1*BB;

Rn1=RR(1); Rn2=RR(2);

su2=BB(3); % additive AR noise sigma of white noise input

su=su2^.5;

u=su*randn(1,ntot);

% Compute and Plot Noise PSD

delf=1/2048;

fvec=0:delf:0.5-delf;

den=fft([1 a1 a2],2048);

den=den(1:1024);

ARspec=su2*(abs(den)).^-2;

ARspecdB=10*log10(ARspec);

figure(4) % FIGURE 4

plot(fvec,ARspecdB)

ylabel('dB')

xlabel('Frequency (Hz)')

title('AR(2) Noise PSD')

nar=zeros(1,ntot);

nar(1)=u(1);

nar(2)=u(2);

for t=3:ntot

 nar(t)=-a1*nar(t-1)-a2*nar(t-2)+u(t);

end

n=nar(501:ntot);

% ===

% CONSTRUCTION OF MEASUREMENT PROCESS REALIZATION

% ===

z=s + n;

figure(5) % FIGURE 5

nvec=1:npts;

plot(nvec,z, 'b')

hold on

plot(nvec,s,'m')

hold off

title('T.V. Sinusoid with & without AR(2) Noise')

[1 a1 a2]

%**

%**

%**

%**

% PROGRAM NAME: sinekf_7D_ver3.m contained in 573 2013 folder

% PURPOSE: Track a t.v. sinusoid corresponding to sinegenver3.m

% with 7-D state

% REQUIRED INPUT:

% z-array from program sinegen.m

%======================================

% Model Matrices for xk = [wk Wk thk ak Ak nk nk-1]

% for deterministic input d = [0 w0 0 0 a0 0 0]':

Phi = [aw 0 0 0 0 0 0; % wkm1 <--wn sew2

 aw 0 0 0 0 0 0; % Wkm1

 0 1 1 0 0 0 0; % akm1 <--wn sea2

 0 0 0 aa 0 0 0; % thkm1

 0 0 0 aa 0 0 0; % Akm1

 0 0 0 0 0 -a1 -a2;% nkm1 <--wn su2

 0 0 0 0 0 1 0];% nkm2

R=0; %Measurement noise variance - ideally ZERO

%=====================================

% EKF Initial Conditions

xm = [0 w0 0 0 a0 0 0]';

x=xm;

Pm = [sw2 sw2 0 0 0 0 0;

 sw2 sw2 0 0 0 0 0;

 0 0 0 0 0 0 0;

 0 0 0 sa2 sa2 0 0;

9

 0 0 0 sa2 sa2 0 0;

 0 0 0 0 0 Rn0 Rn1;

 0 0 0 0 0 Rn1 Rn0];

%====================================

% EKF Loop

I = eye(7);

for k=1:npts

d = [0 w0 0 0 a0 0 0]';

Q = [sew2 sew2 0 0 0 0 0;

 sew2 sew2 0 0 0 0 0;

 0 0 0 0 0 0 0;

 0 0 0 sf*sea2 sf*sea2 0 0;

 0 0 0 sf*sea2 sf*sea2 0 0;

 0 0 0 0 0 su2 0;

 0 0 0 0 0 0 0];

H = [0 0 xm(5)*cos(xm(3)) 0 sin(xm(3)) 1 0];

K = Pm*H'*(H*Pm*H' + R)^(-1);

zm = xm(5)*sin(xm(3))-a1*xm(6) - a2*xm(7);

xhatk=xm + K*(z(k) - zm);

x=[x,xhatk];

P=(I - K*H)*Pm;

xm=Phi*xhatk + d;

Pm=Phi*P*Phi' + Q;

end

x=x(:,2:npts+1);

tvec = 2:npts+1;

what = x(2,:);

fhat=(2*pi)^-1 * what;

thetahat = x(3,:);

ahat= x(5,:);

nhat = x(6,:);

%===

tvec = 1:npts;

%==

% PLOTS OF STATE AND ESTIMATION ERROR PROCESSES

% STATE PLOTS:

figure(10)

%plot(tvec,f,tvec,fhat,'r');

subplot(4,1,1), plot(tvec,ftrue,tvec,fhat,'r');

legend('True','KF Estimate')

title('(a): Sine T.V. Frequency(blue) and EKF Estimate(red)')

xlabel('Time [sec]')

ylabel('Frequency [Hz]')

%xlabel('Time (sec)')

grid

%figure(11)

%plot(tvec,atrue,tvec,ahat,'r');

subplot(4,1,2), plot(tvec,atrue,tvec,ahat,'r');

legend('True','KF Estimate')

title('(b): Sine T.V. Amplitude(blue) and EKF Estimate(red)')

%xlabel('Time [sec]')

ylabel('Amplitude')

%xlabel('Time (sec)')

grid

%=====================

% Reconstruct Signal Estimate

shat=ahat.*sin(thetahat);

%figure(12)

%plot(tvec,s,tvec,shat,'r');

subplot(4,1,3), plot(tvec,s,tvec,shat,'r');

legend('True','KF Estimate')

title('(c): T.V. Sine(blue) and EKF Estimate(red)')

%xlabel('Time (sec)')

10

grid

%figure(13)

%plot(tvec,n,tvec,nhat,'r');

subplot(4,1,4), plot(tvec,n,tvec,nhat,'r')

legend('True','KF Estimate')

title('(d): AR(2) Noise (blue) and EKF Estimate (red)')

xlabel('Time (sec)')

grid

% ESTIMATION PERCENT ERROR PLOTS:

figure(11)

%plot(tvec,f,tvec,fhat,'r');

ef = 100*(fhat-ftrue)./ftrue;;

subplot(4,1,1), plot(tvec,ef);

title('(e): Sine T.V. Frequency Percent Error')

xlabel('Time [sec]')

ylabel('%')

grid

ea = 100*(ahat-atrue)./atrue;

subplot(4,1,2), plot(tvec,ea);

title('(f): Sine T.V. Amplitude Percent Error')

%xlabel('Time [sec]')

ylabel('%')

grid

% Reconstruct Signal Estimate

shat=ahat.*sin(thetahat);

rse_s=sqrt(mean(s.^2));

es = (100/rse_s)*(shat-s);

subplot(4,1,3), plot(tvec,es);

title('(g): T.V. Sine Percent Error')

ylabel('%')

grid

rse_n=sqrt(mean(n.^2));

en = (100/rse_n)*(nhat-n);

subplot(4,1,4), plot(tvec,en)

title('(h): AR(2) Noise Percent Error')

ylabel('%')

xlabel('Time (sec)')

grid

%=======================

% Compute estimated percent mse's:

rmse_f=100*sqrt(mean((ftrue-fhat).^2)/mean(ftrue.^2));

rmse_a=100*sqrt(mean((atrue-ahat).^2)/mean(atrue.^2));

rmse_s=100*sqrt(mean((s-shat).^2)/mean(n.^2));

rmse_n=100*sqrt(mean((n-nhat).^2)/mean(n.^2));

[rmse_f rmse_a rmse_s rmse_n]

