
Lecture 11                 Tracking an AR(2) Signal Corrupted by AR(1) Noise   (11/1/19) 

 

It might seem strange that we would address the topic of Kalman Filtering (KF) prior to having an understanding of how it 

was derived. We will go through that derivation. It is my belief that most students would be far more motivated to go 

through it, were they first to appreciate what it is, and how valuable it can be. In this lecture we will attempt such 

motivation. 

 

The following equations define what is meant as a dynamical system: 

 

The state equation:                                        
kkkkk wGxFx 1
 . (1a) 

 

The measurement equation:                           
kkkkk vDxHz  . (1b) 

 

In (1a) the variable [ (2), (2), ( )]tr

k k k kx x x nx is called the system state at time index k. [Note that the index can also be a 

spatial index.] The state evolves per (1a). In (1b) the variable [ (2), (2), ( )]tr

k k k kz z z mz is called the measurement (or 

observation) at time index k. The variable [ (1), (2), ( )]tr

k k k kw w w pw is called the state driving white noise. It can be 

viewed as the input to a system having an output
kx . The variable [ (1), (2), ( )]tr

k k k kv v v qv is called the measurement 

white noise. Notice that, unlike
kw , which drives the state 

kx to the next state 
1kx , the measurement noise 

kv  does not 

drive the measurement 
kz anywhere. It is simply additive measurement noise  

 

Equations (1) do not define the KF. Rather, they simply model a dynamical system. Our motivation for KF will proceed 

by addressing what is called the signal-plus-noise problem. 

 

Consider a measurement process
ttt nsz   that is the sum of a signal that is statistically independent of the noise, and 

where the signal and noise processes are: 

 

Signal: The signal, ts  is an AR(2) process 
tttt usasas   2211
 

Noise: The noise, tn  is an AR(1) process: 
ttt vnbn  11
 

 

Step 1: Obtain the state and measurement equations. 

 

The state and measurement equations needed to implement a Kalman Filter to estimate the signal are obtained as follows: 

 

Let  1
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t t ts s s . We then have:      
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We also have:                                      ( ) 2

1 1 1F ; Qn

t t t n t t n vn b n v n w        . (2b) 

 

Equations (2) can be expressed directly as: 
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They can also be expressed as: 
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The advantage of (3b) is that it highlights the composition of the signal and noise states. 



The measurement process 
ttt nsz   is written as: 

 

                                                            1 0 1t t tz  H x x  (4) 

 

Hence, the measurement white noise covariance matrix is R 0 . 

 

Step 2: Obtain the initial prediction error covariance matrix.  

 

If we choose the state initial condition to be 
tr]000[0 

x


, then the associated state prediction error is 

0 0 0 0 0[0 0 0]tr     e x x x x . The associated prediction error covariance matrix is then: 
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We are now in a position to implement a KF to estimate the state from the measurement. 

 

 

Numerical Example- Signal: 0.1)0(;81.05562.0 21   stttt Russs .  Noise: 0.1)0(;7.0 1   nttt Rvnn  

Note that the SNR is 0 dB. The PSD plot in Figure 1 shows that even though SNR=0dB, the local SNR in the peak region 

of the signal PSD is ~13dB. The sample mse is ~0.3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                   Figure 1 Plots of the PSDs and the prediction results. 

 

From the above plots, we make the following observations: 

 

(O1): The psd plot shows that, even though the signal-to-noise ratio (SNR), which is typically defined as 

2 2/ (0) / (0)s n s nSNR R R 


  , is 1.0 or 0dB, the effective SNR that is the SNR in the frequency region in which notable 

signal is present, is much greater than 0dB. Hence, the problem is not a challenging as it might seem. In fact, we could 

simply use a band-pass filter (BPF) and get a pretty good estimate of the signal. 

 

(O2): From the KF results, we see that, even though we desire to get only an estimate of the signal, we also get an 

estimate of the noise- for free .  

 

We will now review some of the elements of the KF code. 

 

 

 

Matlab Code: 
% PROGRAM NAME: AR2plus1.m   10/25/17 

% SIGNAL: 



% The following is for Rs0 = 1.0 

Rs0 = 1; 

a1=-.5562; a2=.81; 

%Recover Rs(1) and Var_u 

A=[1 -a1 -a2; 0 1+a2 0;0 a1 1]; 

v=[1 -a1 -a2]'; 

b=A^-1*v; 

varu=b(1); 

Rs1 = b(2); 

nfft=4096; 

Ss=varu*(abs(fft([1,a1,a2],nfft))).^-2; 

SsdB=10*log10(Ss(1:nfft/2)); 

%NOISE 

b1 = -0.7;  

SNRdB=0; %Specified SNR in dB $$$$$ 

SNR=10^(SNRdB/10); 

varn = 1/SNR; % 

varv = varn*(1-b1^2); 

Rn0 = varn; 

Sn=varv*(abs(fft([1,b1],nfft))).^-2; 

SndB=10*log10(Sn(1:nfft/2)); 

figure(1) 

Sx=Ss+Sn; 

SxdB=10*log10(Sx(1:nfft/2)); 

df=1/nfft; 

f=0:df:.5-df; 

plot(f,[SsdB;SndB;SxdB]) 

title('PSDs') 

legend('Signal','Noise','Measurement') 

xlabel('Frequency (Hz)') 

ylabel('dB') 

grid 

%================================= 

% DATA GENERATION 

u=varu^0.5 * randn(1,2500); 

v=varv^0.5 * randn(1,2500); 

n = zeros(1,2500); 

s = zeros(1,2500); 

z = zeros(1,2500); 

for k = 3:2500 

    s(k) = -a1*s(k-1) - a2*s(k-2) + u(k); 

    n(k) = -b1*n(k-1) + v(k); 

end 

s = s(501:2500); 

n = n(501:2500); 

z = s + n; 

%===================================== 

% DEFINE KF MODEL MATRICES 

% TO BE USED BY kfwss.m below 

F = [-a1 -a2 0;1 0 0 ;0 0 -b1]; 

Q = [varu 0 0;0 0 0;0 0 varv]; 

H = [1 0 1]; 

R = 0; 

xhat_old = [0;0;0]; 

P_old = [Rs0 Rs1 0;Rs1 Rs0 0;0 0 Rn0]; 

% This portion computes the Kalman filter state estimate 

% for wss state and measurement processes. 

% MODEL:  

% x(k) = F x(k-1)  +  w(k-1) 

% z(k) = H x(k) + v(k) 

I=eye(3); 

K=[]; 

xhat=[]; 

for k=1:2000 

Kk= P_old*H'*(H*P_old*H' + R)^(-1); 

K=[K,Kk]; 

xhatk=xhat_old + Kk*(z(k)-H*xhat_old); 

xhat=[xhat,xhatk]; 

Pk=(I-Kk*H)*P_old; 

xhat_old=F*xhatk; 

P_old=F*Pk*F' + Q; 

end 

% ====================================== 

figure(2) 

tvec = 1:2000; 

plot(tvec,z,'k',tvec,s,'b') 

title('Sample of the Measurement & Signal') 

legend('Measurement','Signal') 

xlabel('Time (sec)') 



grid 

hold on 

shat = xhat(1,:); 

err = s - shat; 

msehat = mean(err.^2); 

plot(tvec,shat,'r') 

title(['The True & Estimated Signals, with msehat=',num2str(msehat),' ']) 

legend('Msmnt','Signal','KF Estimate')  

mse=mean((s-shat).^2) 


