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Lecture 1                                  The Kalman Filtering Algorithm 
 
 
AN OVERVIEW OF KALMAN FILTERING 
 
I. The Dynamical System Model 
 
Let tr

mkkk zzz ],,[ 1 = and let  tr
nkkk xxx ],,[ 1 = . Assume the relationship between these random processes is:  

 
                                                                           1k k k k+ = +x F x w  (1a) 
                                                                             k k k k= +z H x v  (1b) 
 
where (1a) includes the known and non-random ( nn× matrix-valued) parameter Fk, as well as the n-D non-measurable 
white noise random process wk with 
 
                                                      ( ) ( )tr

k k j kE jδ+ = •w w Q  and ( ) ( )tr
k k j kE jδ+ = •v v R . (2) 

 
Equations (1) are discrete-time equations. Often they are arrived at by sampling the associated differential equations. 
 
 
Challenge #1: To obtain a physically meaningful dynamical model for the state process x(t).  
 
Challenge #2: To sample the state process x(t) in such a manner, so as to not distort (e.g. alias) the information in xk. 
 
Challenge #3: To accurately characterize the state white noise process wk covariance matrix Qk. 
 
 
 
II. The Kalman Filter Algorithm 
 
From Figure 5.8 on p.219 of the book, we have the following KF algorithm: 
 
Step 1: For k=0 carefully choose a value for 0

−x and compute the prediction error variance 0 0 0 0 0[( )( ) ]trE− − −= − −P x x x x  . 
This is the state predictor prior to obtaining the current measurement zk in (1b). 
 
Step 2: For k=0:      Compute the Kalman gain:  1)tr tr

k k k k k
−- -

kK = P H (H P H + I . 
 
Step 3: Compute the update estimate: ( )k k k k k k

− −= + −x x K z H x   . This is the state predictor after obtaining the current 
measurement zk in (1b). 
 
 
Step 4: Compute the update error variance:  ( )k k k k

−= −P I K H P . 
 
Step 5: Compute 1-step prediction and associated error variance:   1k k k

−
+ =x F x     ;    1

tr
k k k k
−
+ = +P F P F I  

 
Step 6: Go to Step 2 and increment k by one. 
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Remark #1: Recall that we only have measurements of kz  Hence, the KF is an algorithm that allows us to obtain an 
estimate, kx , of the non-measurable state kx . In the jargon of electrical engineering, we are using kz to ‘filter out’ an 
estimate of kx .  
 
Remark #2: Once we have kx , Step 5 above provides us with a prediction,  1k+x , of unknown 1k+x . 
 
 
 
Example   APPLICATION TO A TIME-VARYING AR(1) PROCESS 
 
In this example we will mainly focus on the problem of detecting changes related to a time-varying first order 
autoregressive, AR(1), measurement process: 
                                                            )()(; 22

1 kvEvzaz vkkkkk σ=+= −  (3a) 
 
In the special case where the AR(1) parameter ak and the white noise variance )(2 kvσ do not depend on the time index, k, 
the process (3) is a wss random process as long as the condition 1|| <a holds.  
 
In the case where the AR(1) parameter ak changes slowly in relation to the sampling interval, the process (3a) is a locally 
wss process, and it is easy to show that the driving white noise is nonstationary with variance 
 
                                                                           )()1()( 222 kak zkv σσ −≅ . (3b) 
 
The model (3b) has the ability to capture the slow time variation in both the process power, and time-varying frequency 
content can be captured by the AR(1) parameter, ak.  
 
In relation to the process (3), suppose that the AR(1) parameter is changing in the manner described in Figure 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                   Figure 1. Time-varying AR(1) parameter, ak (left), and partial realization of zk (right). 
 
The process power is held constant, while the dynamics go from slow to fast over time. As shown in Figure 1, we see that 
the change from a wss process with a=0.9 to one with a=0.4 does not occur instantaneously. Rather, there is a transition 
region (400-500) where the parameter value decreases linearly. 
 
QUESTION: What can you say about the general structure of the partial realization in Figure 1? 
 

ANSWER:   ________________________________________________________________________________ 
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To implement a KF we will use the following state model: 
 
                  kkk waa += −1    with  2

wkQ σ=       (random walk model, also called the total ignorance model) (4a) 
 
We will assume that the measurement model is: 
 
                                             kkkk vzaz += −1      with      22 1)( kv ak −=σ  (4b) 
 
Hence, the quantities in the model (2) become:   2 2

1; 1; ; ; 1k k k k w k k k kx a F Q H z R aσ −= = = = = −  . 
 
 
There are two items here that make this KF suboptimal in the sense of minimizing the mean squared error between the 
state process xk and any estimator of it: 
 
1. The parameter 1−= kk zH is not a non-random quantity. However, because at time k we have knowledge of zk-1, it is 
conditionally non-random. In this sense, the KF is known as an extended KF.  
 
2. We do not have knowledge of )(2 kR vk σ= , which is the driving white noise for the process (3). However, we do know 
that the process power (3b) is constant and known. Hence, with our estimate ka we can estimate this white noise variance 
as })1(,0max{)( 222

kzv ak  −= σσ . [You will eventually be able to show this, yourself  ] 
 
The most difficult quantity to specify is the state noise variance 2

wkQ σ= :  
 
If we set this value to zero, then we are forcing the AR parameter ak to remain constant and equal to the initial condition 
specified (in this case, 0.9). If we make this variance to large, then the KF will track more rapid changes in the AR 
parameter, but with more variability. A similar trade-off occurs in sliding window types of analyses. If the window is 
short, more rapid changes can be tracked, but with higher variability. A longer window leads to slower response to 
changes, but with less variability.  
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Figure 3. KF estimates of ak for 2

wkQ σ= : 0.00001 and 0.001. 
 
The trade-off between bias and variability is clear. What is not clear is how this translates into change detection. If we 
define change as change in relation to the value 0.9, then Figure 3 would include numerous false detections for a threshold 
value of, say, 0.8. If we desire to detect whether ak is 0.9 or 0.4, with say a threshold value of 0.65, then the only incorrect 
detections occur in the transition region. 
 
QUESTION: What is the implication of the random walk (or, ignorance) model (4a)? 
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ANSWER: Since the sampling interval is 1=∆ , we have kwak

σσ = . [You will prove this in due course.  ] In words, 
we are assuming that as time, k, progresses, we know less and less about ka . We know the initial condition, 9.00 =a . 
However, after, say, .sec400=k , we are assuming wak

σσ 20= . For 014.00002.0 ==wσ , the wσ4± uncertainty for 

400a is 056.0± . Even so, by using the measurements 400
1}{ =kkz , we continue to have a pretty good estimate 400a . We are 

constantly updating this estimate, even as a sliding window would do.  
 
 
QUESTION: How would I find the optimal value for wσ ? 
 
ANSWER: In previous times this was an extremely difficult thing to do. Nowadays, we can run simulations to find it. 
These will also give us an idea of how sensitive the KF performance is in relation to departures away from wσ . If the 
performance is robust in this respect, then we can be comforted by the fact that we need not have a precise knowledge of 

wσ .  
 
QUESTION: What if I have a better model for ka ? For example, what if I know that in the good condition ka follows the 
more realistic model: 
 

kgoodk daaa +=  where kkk wdada += −1α . Then how would I incorporate this model? And would it perform any better? 
 
ANSWER: Recall the general state model: 1k k k k+ = +x F x w . We would need to extend this model to accommodate the 
constant gooda . For example: 

                                                  
1 1

1

1 1

0 0 0
1 0 0 0
0 0 0

k a k k

k k good

k k k k

da da w
a da a
z a z v

α+ +

+

+ +

         
         = + +         
                  

. (5) 

 
The rightmost term in (5) is a deterministic ‘input’ to the system.  We will address how to modify the KF equations to 
accommodate this input in due course.  
 
QUESTION: But then what happens if/when gooda changes to bada ? 
 
ANSWER: Good question! First we would need to reliably detect a change from gooda . If we know that it changes to a 
known bada , then we could change the middle state input (5) to bada . Alternatively, we could run two KFs simultaneously, 
and choose the one that is more likely to be the correct one. This method is known as multiple model adaptive estimation 
(MMAE). We will also cover this topic in due course.  
 
CONCLUSION: It is reasonable to speculate that the more we know, the better the KF will do. However, this knowledge 
has a price. We need to know more concepts to incorporate this knowledge.  
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Matlab Code This code is related to the code used to obtain Figure 1. It is not the exact code.  
 
% PROGRAM NAME: tvaAR1KF.m     10/24/17 
% Track a t.v. AR(1) Parameter 
clear all 
close all 
%================================ 
% Construct t.v. AR(1) parameter 
r1=400; %Length of a1 
A1=0.9; %Values for a1 
a1=A1*ones(1,r1); %Values for a1 
r2=200; %Length of ramp reduction in a 
A3=0.6; %Values for a3 
dA=A1-A3; %Total drop in A 
dr=dA/r2; 
ramp=0:dr:dr*r2; 
 a2= A1- ramp; 
 a3=A3*ones(1,r1+r2-length(a2)); 
 a=[a1 a2 a3]; 
 % Compute driving noise variance for unity variance AR(1) 
 sige2=(1 - a.^2); 
 % Generate t.v. AR(1) Measurement Process 
 z(1)=randn(1,1); 
 for t=2:1000 
    z(t)=a(t)*z(t-1) + sige2(t)^(0.5)*randn(1,1); 
 end 
%=========================================================== 
% Compute the KF estimate of a t.v. AR(1) parameter 
kmax=length(z); 
F=1;% Random walk model: a(k)=a(k-1) + u(k) 
Q=0.0002; %Assumed Var(u) $$$ PLAY WITH THIS $$$ 
% INITIAL CONDITIONS: 
xhat_old = 0.9; 
P_old = Q;  
%-------------------- 
I=1; 
K=zeros(1,kmax); xhat=0.9*ones(1,kmax); 
for k=2:kmax 
   H=z(k-1); 
   R=max([0,(1 - a(k)^2)]); %Estimate of the white noise variance for var(z)=1.0 
 
   Kk=P_old*H'*(H*P_old*H' + R)^(-1); 
   K(k)=Kk; 
   xhat(k)=xhat_old + Kk*(z(k) - H*xhat_old); 
   Pk=(I - Kk*H)*P_old; 
   xhat_old=F*xhat(k); 
   P_old=F*Pk*F' + Q; 
end 
%=================================== 
%Various Plots: 
ahat=xhat; 
figure(1) 
 plot(a) 
 %axis([1,1000,0,1]) 
hold on 
plot(ahat) 
legend('a','ahat') 
title(['Time-varying AR(1) Parameter & KF Estimate for Q= ',num2str(Q),' ']) 
grid 
%------------ 
BW=-log(a)/(2*pi); BWhat=-log(ahat)/(2*pi); 
figure(2) 
 plot(BW) 
 %axis([1,1000,0,1]) 
hold on 
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plot(BWhat) 
legend('BW','BWhat') 
title(['Time-varying BW & KF Estimate for Q= ',num2str(Q),' ']) 
xlabel('Time (sec)') 
ylabel('Hz') 
grid 
%------------ 
figure(3) 
 plot(z) 
 title('Realization of Unit Variance t.v. AR(1) Process') 
 grid 


