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Lecture 9                                                      Review of Linear Systems 

We will motivate this topic by connecting the concept of a linear system to the Wiener filter example in Lecture 14. To 

this end, we must first define what a linear system is. 

Definition 1. A linear system is a relation between two time-varying quantities. Denote the input to the system as ( )u t  

and denote the output as ( )y t . A relation between ( )u t and ( )y t of the form 

                                                                       ( ) ( , ) ( )y t h t u d  




   (1) 

defines the linear system ( , )h t  . If ( , ) ( )h t h t   , the system is called a time-invariant linear system. Furthermore, if 

the upper limit of integration is t, then the system is called a causal system. 

In this lecture we will focus on time-invariant causal linear systems. In this case, (1) becomes: 

                                                         .

0 0

( ) ( ) ( ) ( ) ( )

t t

y t h t u d h u t d          . (2) 

The rightmost equality in (2) follows from the change of variable theorem. The relation (2) is called a convolution 

integral.  

Now consider the input ( ) ( )u t t , which is a unit impulse (i.e. a Dirac delta function). Then 

                                                                

0

( ) ( ) ( ) ( )

t

y t h t d h t      . (3) 

Since the output ( )y t is the response to an impulse, and since ( ) ( )y t h t , the quantity ( )h t is called the system impulse 

response function.  

Definition 2. The Laplace transform of ( )y t defined on [0, ) is 

0

( )) ( ) st

t

Y s y t e dt






   for s i   . For s i , the 

function ( )Y i is called the Fourier transform of ( )y t . 

Example 1. [See also Lecture 14 Example.] Consider the following difference equation models for a signal process ks  

and noise process kn : 

     kkkkkk vnnuss   11 5.0;9.0  , where ku  and kv  are white noise processes.  

(a)Suppose that the difference equation 
10.9k k ks s u  was arrived at by sampling a continuous-time signal ( )s t . We 

claim that 

0

( ) ( ) ( )

t

s t h u t d    where ( ) th t e  . To show this, we will approximate the input as 
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( ) ( ) (1/ ) ( )Ku t t n     where 
1 0

( )
0 0

K

for n
n

for n



  


is called the Kronecker delta function. The Riemann sum 

approximation of the above integral is: 

                                           
( )

0

( ) ( )(1/ ) ( ) ( )
n

n

K

k

s n h k n k h n e   



          . 

In words, ( )s n is the response to any input ( )u n , and the system impulse response is 
( )( ) nh n e    . Define the 

parameter e 


  . Then 
( )( ) n nh n e      . Hence, for any input ( ) nu n u



  , we have 
0

n
k

n n k

k

s u 



 . However, 

this can be written as: 

                                    
1

1

( 1) 1

0 1 0

n n n
k k k

n n k n k n n k n n n

k k k

s u u u u u s u    




    

  

         .  (4) 

The relation 
1n n ns s u   is exactly the given relation 

10.9k k ks s u  for 0.9  . 

 

The above example entailed a fair bit of mathematics. Fortunately, we will be able to skirt a lot of such mathematics once 

we have a few more properties associated with linear systems. The following are some of the most important properties. 

Property 1. [The convolution theorem]. The Laplace transform of the convolution equation 

0

( ) ( ) ( )

t

y t h t u d    is 

( ) ( ) ( )Y s H s U s . 

Proof: Because both ( )h t and ( )u t are causal functions of time (i.e. they are both zero for 0t  , we can write ( )y t as:  

0

( ) ( ) ( )y t h t u d


  




  . Taking the Laplace transform of this expression gives: 

                                      
( )

0 0 0

( ) ( ) ( ) ( )st s t s

t t

Y s y t e dt h t u e e d dt 



  
  

   

  

     . 

For any chosen  , define the variable v t   . Then dv dt , so that the above equation becomes: 

                  

0 0 0 0

( ) ( ) ( ) ( ) ( ) ( ) ( )sv s sv sv s

v v

Y s h v u e e d dv h v e e dv u e d H s U s 

 

   
   

    

   

      .   □ 

 

This is most important property in relation to linear time-invariant systems. It states that convolution in the time domain 

is equivalent to multiplication in the s-domain.  

From Property 1, we have ( ) ( ) / ( )H s Y s U s . 

Definition 3. The system transfer function is ( ) ( ) / ( )H s Y s U s . 
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Property 2. The system transfer function ( )H s  is the Laplace transform of the system impulse response function ( )h t . 

Proof: For ( ) ( )u t t , 

0

( ) ( ) 1st

t

U s t e dt






  . Hence, ( ) ( ) ( )Y s H s U s becomes ( ) ( )Y s H s .    □ 

A word of caution here. Even though mathematically we have ( ) ( )Y s H s , the units in this equality do not match. The 

units of ( )Y s are the units of the output ( )y t , whereas the units of ( )H s are the units of ( )y t divided by those of ( )u t .  

The system transfer function is the s-domain relation between the input and output for any input. This is why transfer 

functions are so powerful. They describe the properties of the system, itself. 

 

Property 3.  Let ( ) ( )y t Y s . Then 
0( ) ( )y t sY s y  . 

Proof: By definition, the Laplace transform of ( )y t   is

0

( ) st

t

y t e dt







 .   Let 
stu e and ( )dv y t dt . Then 

stdu se  and ( )v y t , so that integration by parts gives:  

 
0

0 0

( ) ( ) ( ) 0 (0) ( )st st st

t
t t

y t e dt udv uv vdu y t e s y t e dt y sY s

 


  


 

           .   □ 

 

Using Property 3, we have:  
2

0 0( ) ( ) ( ) ( )g t y t G s s Y s sy y     . This follows directly from the fact that 

 0 0 0( ) ( ) ( ) ( )g t y t sG s g s sY s y y      . Hence, we can generalize Property 2 as 

Property 3’.  Let ( ) ( )y t Y s . Then 
( ) 1 ( 1)

0 0( ) ( )m m m my t s Y s s y y     , where 
( ) ( )( ) ( ) /m m my t d y t dt



 . 

 

 

 

Notice that is all initial conditions are zero, then 
( ) ( ) ( )m my t s Y s . This is the case in the definition of the system 

transfer function associated with a linear constant-coefficient differential equation. 

 

Property 4. Consider the system described by: 
( ) (1) ( ) (1)

1 0 1 0( ) ( ) ( ) ( ) ( ) ( )n m

n ma y t a y t a y t b u t b u t b u t       , 

and assume that all 1n initial conditions are zero. Since the forcing input ( )u t has, by definition, no initial conditions, 

the Laplace transform of the equation is: 1 0 1 0( ) ( ) ( ) ( ) ( ) ( )n m

n ma s Y s a sY s a Y s b s U s b sU s b U s       . 

Hence, the system transfer function is: 1 0

1 0

( ) ( ) / ( )
m

m

n

n

b s b s b
H s Y s U s

a s a s a

  
 

  
.  

 

Example 1 continued. For impulse response ( ) th t e  , the system transfer function is: 

              

( )
( )

0 0 0 0

1 ( )
( ) ( )

( ) ( )

s t
st t st s t

t t t t

e Y s
H s h t e dt e e dt e dt

s s U s


 

 

    
    

   

     
     .  
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Hence, a system with this impulse response can be written as the differential equation: ( ) ( ) ( )y t y t u t  . Recall that a 

Gauss-Markov process is a process that has an autocorrelation function of the form 
2 | |( ) yR e     . The psd for such a 

process is :     

              

0

2 | | 2 2

0

2

2 2 2

2 2

0 0

( ) ( )

21 1

i i i i

y y y y y

yi i

y y y

S R e d e e d e e d e e d

e e d e e d
i i

       

   

        


    

     

  
     

  

 

  

    

 
    

   

   

 

. 

 

Define the fictitious system transfer function 
1 ( )

( )
( )

Y s
H s

s U s
 


 where the fictitious input is white noise. Then 

( )
( )

U i
Y i

i




 



, so that from the Wiener-Kinchin Theorem we have: 

2
2

2 2 2 2

[| ( ) | ]
( ) [| ( ) | ]y

E U i c
S E Y i


 

   
  

 
where the white noise psd is 

2( ) [| ( ) | ]uS E U i c   . If we set 

22 yc  , we see that the GM process ( )y t can be viewed as the output of a system with transfer function 

1
( )H s

s 



 that is excited by a fictitious white noise input with psd 

2( ) 2u yS   .  □ 

 

Property 5. [The time delay theorem.]  Let ( ) ( )y t Y s . Then 0

0( ) ( )
st

y t t e Y s


  .  

Proof:   0 0 0 0

0

( )

0 0

0 0

( ) ( ) ( ) ( )
st s t t st stst s

t t t

y t t e dt e y t t e dt e y e d e Y s



 
  

     

  

       .   □ 

SUMMARY 

The above was a brief but dense introduction to time-invariant single input-single output linear systems and how they 

relate to wss random processes. Important properties of Laplace transform pairs were given. In relation to these, some 

proofs were included. This is not a course in mathematics. The goal of including proofs was to illustrate how material in 

past calculus courses relates to the material at hand. Hopefully, this will give the student more confidence in 

understanding the material, as opposed to simply memorizing it. For our purposes, the most important result is that often a 

wss random process can be associated with a differential equation having a real ‘output’, but a fictitious white noise 

‘input’. Given such a model, the notion of a transfer function allows one to use multiplication in the s-domain, as opposed 

to convolution in the time-domain. Finally, when setting s i the transfer function becomes the system frequency 

response function (FRF). This allows one to view the problem in the frequency domain, which often can give much more 

insight than viewing the problem in the time domain.  

 


