
Kalman Filtering with Known Forcing Function

Consider the following system:

 11 kkkkkk dwGxFx (1a)

 kkkkk rvxHz (1b)

where the state and measurement processes involve known input functions dk and rk , respectively.

Recall, that the Kalman filter utilizes the error

 kkk zze

 (2a)

multiplied by the Kalman gain, K, to recover an estimate of the state, xk where, in the case of (1),

 kkkk rxHz

. (2b)

The current and one-step ahead state estimates are

 kkkk eKxx
 (3a)

and

 11

 kkkk dxFx

. (3b)

Now, let’s see how these modified measurement (2b) and state (3b) predictor equations are incorporated

into the Kalman filter algorithm.

Step 1: For k=0 choose a value for

0x

and compute the prediction error variance:

]))([(00000

trxxxxEP

.

If we choose 00 dx
, then we have]~~[000

trxxEP
where 000

~ dxx

Step 2: For k=0: Compute the Kalman gain:
1)(RHPHHPK tr

kkk

tr

kkk .

Step 3: Compute the update estimate:)]([kkkkkkk rxHzKxx
.

Step 3: Compute the update error variance:
 kkkk PHKIP)(.

Step 4: Compute 1-step prediction and associated error variance:

 11

 kkkk dxFx

 ;
tr

kk

tr

kkkk GGFPFP

1

Step 5: Go to Step 2 and increment k by one. □

Example: Prediction of the 1-D position and velocity of a flexible robot arm:

The fluid has a mean viscosity that is included as a part of the viscous damping coefficient c. However, the

fluid also has turbulence that results in zero-mean fluctuating loading of the mass.

To develop the equation for the motion of m, construct a free body diagram:

fdykdycymforces)()(. Hence, fkddckyycym . Assume the system is

underdamped, and define
21,

2
, ndn

km

c

m

k
. Then we have

 fmddyyy nnnn)/1(22 22 . (1)

The system (1) is a 2-input / single output system. We will use the impulse-invariant method of obtaining

the discrete-time version of (1). To this end, we will require the following transforms:

The transfer function between d(t) and y(t) is:

22

2

2222

2

22

2

1
)(

2

)()(2

2

2

2
)(

)(

)(

dn

nn

nnnn

nn

nn

nnd

s

s

ss

s

ss

s
sH

sD

sY

 .

2222221
)(

)2/(

)(
2

)(

)2/(
2)(

dn

nn

dn

n
n

dn

nnn
n

ss

s

s

s
sH

m

c

k

fluid

)(td)(ty

)(dyc

)(dyk

m f

22221
)(

)/]()2/[(

)(
2)(

dn

ddnn

dn

n
n

ss

s
sH

 .

Define dnnc /])2/[(. We then have

22221
)()(

2)(
dn

d

dn

n
n

s
c

s

s
sH

 (2a)

The discrete transfer function associate with (2a) is therefore

221

1

221

1

1
)]cos([21

)]sin([

)]cos([21

)]cos([1
2)(

zezTe

zTe
c

zezTe

zTe
zH

T

d

T

d

T

T

d

T

d

T

n
nn

n

nn

n

221

1

1
)]cos([21

)]cos()sin([1
2)(

zezTe

zTTce
zH

T

d

T

dd

T

n
nn

n

 . (2b)

The transfer function between f(t) and y(t) is:

222

)(
)/1()(

)(

)(

dn

d
d

f

s
msH

sF

sY

 . (3a)

The discrete transfer function associate with (3a) is therefore

221

1

2
)]cos([21

)]sin([
)/1()(

zezTe

zTe
mzH

T

d

T

d

T

d
nn

n

 . (3b)

Hence, we have

)()()()()()()(21 zFzHzDzHzYzYzY fd .

Specifically,

)()]sin()/1[(

)(})]cos()sin([1{2)(])]cos([21[

1

1221

zFzTem

zDzTTcezYzezTe

d

T

d

dd

T

n

T

d

T

n

nnn

 (4a)

Define the parameters:

)sin()/1(;)]cos()sin([2;2

;;)]cos([2[

321

2

21

TembTTcebb

eaTea

d

T

ddd

T

nn

T

d

T

nn

nn

.

Then the difference equation corresponding to (4a) is:

 131212211 kkkkkk fbdbdbyayay . (4b)

0 0 1 0 1

(0) (1) (0) (1)

(1) (0) (1) (0)
(, , .)

(0) (1) (0) (1)

(1) (0) (1) (0)

y y y f y f

y y y f y f

y f y f f f

y f y f f f

R R R R

R R R R
P Cov y y f f

R R R R

R R R R

We will now assume that the fluid force adheres to an AR(2) model, so that spectral peaking associated

with vortex shedding, etc. may be incorporated.

 kkkk ufcfcf 2211 . (5)

Finally, we will assume that the mass incorporates a position sensor, and that there is sensor

measurement noise. Then the measurement model is

 kkk vyz . (6)

We are now in a position to formulate the state and measurement equations associated with the Kalman

filter parameters. To this end, define the known deterministic input 121 kkk dbdb . Then (4b) becomes

 132211 kkkkk fbyayay . (7)

Now, define the state vector tr

kkkkk ffyyx][11 . From (5) and (7) we have

1 1 2 3

1

1

1 1 2 1

1

0 0

1 0 0 0 0 0

0 0 0

0 0 1 0 0 0

k k k

k k

k k k k

k k k

k k

y ya a b

y y
x Fx u

f fc c u

f f

. (8a)

 kkkkkkkk vHxzvxvyz 0001 . (8b)

From (8a) we have Q = diag{0 0 2

u 0}, and from (8b) 2

vR . For the state initial condition

]'000[]'000[]'0000[]'000[]'[00010100

 ffyyx

, the initial prediction error covariance is

 0 0 0 0 0 1 0 1() (, , .)P Cov x x Cov y y f f

 . (9)

Since
0 is deterministic, it does not influence any covariances. Hence, (9) becomes:

 (10)

Now recall that the state equation 8(a) for k=0:

 0 1 1x Fx u (12)

Then, 0 (0)xP R This gives:

 0 0 1 0 1 0 1 0() () () (0) (1) ()tr tr tr tr

x xE x x FE x x E u x R FR E u x (13a)

 0 1 1 1 1 1 1 1() () () (1) (0) ()tr tr tr tr tr

x xE x x FE x x E u x R FR E u x (13b)

Now:

 1 0 0 1 0 1 2 2 2

0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0
() ()

() 0 0 0 0

0 0 0 0 0 0 0 0 0

tr

u

u u u

E u x E y y f f C
u E y u

.

Also: 1 1 1 2 1 2

0

0

0
() ()

0

trE u x E y y f f
u

0

Hence: (0) (1)x x uR FR C (14a)

 (1) (0) (1) (0) (0)tr tr tr tr

x x x x xR FR R R F R F (14b)

Substituting (14b) into (14a): (0) (0) tr

x x uR FR F C . (15)

Equation (15) can be written as: (0) (0) 0tr

x x uFR F R C . This is called the discrete-time Lyapunov Equation

for the variable (0)xR . The Matlab code ‘dlyap(F,Cu) will solve it.

As simple as the Matlab solution is, it lacks insight into the nature of the elements of 0 (0)xP R . From (10) it

is clear that those elements are auto- and cross-correlations at lags zero and one. So, one might ask: How can we

arrive at these correlations via psd information. We now present a method that recovers all auto/cross-

correlations based on psds.

Recall: 2() () ()fY z H z F z and kkkk ufcfcf 2211 gives
1 2

1 2

1
() () () ()

1
fuF z U z H z U z

c z c z

Hence, 2() () () () () ()f fuY z H z H z U z H z U z . From the Wiener-Kinchine Theorem we therefore have:

(i): 2 2
2() () () ()f fu fu uS z E H z U z H z

(ii):
2

2

2 2() () () () () () () ()yf f fu uS z E Y z F z E H z F z F z H z H z

(iii):
2

2

2 2 2() () () () () () () () ()y f f fu uS z E Y z Y z E H z F z H z F z H z H z

For numerical values, we can compute the quantities and then recover the associated correlation functions. Note

that this is not necessary in relation to (i), as we have a direct method of solving for the autocorrelation for an

AR(2) process.

NOTE: To recover the coefficient of a transfer function H, type: [num,den]=tfdata(H,’v’).

The code below recovers correlation functions from psds specified via transfer functions.
%PROGRAM NAME: psd2xcorr.m

%This code recovers Rxy from Sxy in dicrete time domain

%==

%Examples:

m=100;

%TF1:

H1=tf([1 0],[1,-.9],1); %Transfer Function

[H1n,H1d]=tfdata(H,'v');

H1nw=fft(H1n,m); H1dw=fft(H1d,m);

H1w=H1nw./H1dw;

%TF2:

%H2=H1; %For Autocorrelation

H2=tf([1 0],[1,-.4],1); %For Crosscorrelation

[H2n,H2d]=tfdata(H2,'v');

H2nw=fft(H2n,m); H2dw=fft(H2d,m);

H2w=H2nw./H2dw;

%Cross-Spectrum % Cross-Correlation

S12=H1w.*conj(H2w);

R12=real(ifft(S12));

figure(1)

plot(R12,'*')

title('Crosscorrelation for Two Specified TFs')

grid

Comment: I checked to make sure that the imaginary parts of the ifft’s were zero. They were.

