Kalman Filtering with Known Forcing Function

Consider the following system:
X1 = R +Gw + (1a)
z, =H./ X, +Vv, (1b)

where the state and measurement processes involve known input functions dx and r«, respectively.

Recall, that the Kalman filter utilizes the error

multiplied by the Kalman gain, K, to recover an estimate of the state, xk where, in the case of (1),
Z = Hy X +1y. (2b)

The current and one-step ahead state estimates are
X, =X +Kyey (3a)

and
Xep = FX +dy,, . (3b)

Now, let’s see how these modified measurement (2b) and state (3b) predictor equations are incorporated
into the Kalman filter algorithm.

Step 1: For k=0 choose a value for X, and compute the prediction error variance:

R = EL06 —%)(% —%)"].
A
If we choose [Xg = 0y, then we have By = E[XoXér] where X, =X, —d,

Step 2: For k=0: Compute the Kalman gain: K, =P, H,/ (H P, H; +R)™.
Step 3: Compute the update estimate: X, =X, + K, [Zk — (Hk)A(k_ +1, )],

Step 3: Compute the update error variance: Pk = (l - Kk H k)Pk_ :

Step 4. Compute 1-step prediction and associated error variance:
o= o - tr tr
Xea = FXe +diy R = KRR + GG,

Step 5: Go to Step 2 and increment k by one. ©



Example: Prediction of the 1-D position and velocity of a flexible robot arm:
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The fluid has a mean viscosity that is included as a part of the viscous damping coefficient c. However, the
fluid also has turbulence that results in zero-mean fluctuating loading of the mass.

To develop the equation for the motion of m, construct a free body diagram:

k(y—d) «——

c(y'-d) «——

Zforces=my=—c(y—d)—k(y—d)—f. Hence, my+cy+ky=cd+kd—f. Assume the system is

. /k c
underdamped, and define = |—,(=—F—+, = 1—¢? . Then we have
p , m ¢ ZM Wy = , ¢

V+20m y+aty =20w.d+o’d —(1/m)f . (1)

The system (1) is a 2-input / single output system. We will use the impulse-invariant method of obtaining
the discrete-time version of (1). To this end, we will require the following transforms:

b ze T sin(bT)
- - @ —at _- bt
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5+a & cos(bi) 2> —ze cos(bT)
(s+a)’ + b’ 2 —2z¢” 7 cos(bT) + T

The transfer function between d(t) and y(t) is:

Yq(s) H,(s) = 2lw,s+0 200,58+ &} _ 2Zos+a}
D(s) ' s“+2lws+a’  ST+2lws+(Cw,) +of - (o) (s+lw) +ab

S+(a)n/2§)+é/a)n_é’a)n =2§6()|: S+§wn +(a)n/2§)_é’a)n

H,(s) =2{w, 2 . 2 2. 2 2, 2
(S+§a)n) +a)d (S+é/a)n) +a)d (S+§a)n) +a)d
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Define ¢ =[(w,/2¢) - @,/ @, . We then have

s+lw, o,
H.(s)=2 n . d
1) éV“)”[(swwn)zﬂoj ve (s+;wn)2+w§} )

The discrete transfer function associate with (2a) is therefore

H,(2) = zm[

1-[e" cos(w,T)]z" co [e %" sin(e,T)]z ™
1-2[e " cos(w,T)]z  +e 7722 7 1-2[e " cos(e,T)]z * +e7*" 22

1+e " [cesin(w,T)-cos(w,T)]z*
H,(z)=2 d d 2b
1(2) gw{ 1-2[e ™" cos(w,T)]z " +e 2"z 72 (2b)
The transfer function between f(t) and y(t) is:
Y
e _ H,(s) = 1/ may,) e e (3a)
F(s) (s+¢w,)" + o
The discrete transfer function associate with (3a) is therefore
[e™™" sin(w,T)]z™"
H,(z)=1/m . 3b
(1) =( @y)® 1 z[e—;wnT COS(a)dT)]Zfl 4o 2ot 52 (3b)
Hence, we have
Y(2) =Y4(2)+Y; (2) = Hi(2) D(2) + H,(2) F(2).
Specifically,
[1-2[e ™" cos(w,T)]z " +e > 22Y (2) = 2, {L + e " [c o sin(w, T) — cos(w, T )]z "}D(z) (42)

+[W ma, )™ sin(w,T)]z*F(2)

Define the parameters:

Then the difference equation corresponding to (4a) is:

Yo =@ Y1ty o +bd, +bd, , +bf . (4b)



We will now assume that the fluid force adheres to an AR(2) model, so that spectral peaking associated
with vortex shedding, etc. may be incorporated.
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Finally, we will assume that the mass incorporates a position sensor, and that there is sensor
measurement noise. Then the measurement model is

Z, =Y, +V,. (6)

We are now in a position to formulate the state and measurement equations associated with the Kalman
filter parameters. To this end, define the known deterministic input_. Then (4b) becomes

Ye = Ya + Y, +0, +h,f . (7)

Now, define the state vector x, =[y, Y., f, f.,]". From (5) and (7) we have

(8a)

vl 0 0 Oy = g =Hyo, @

From (8a) we have Q = diag{0 0 & 0}, and from (8b) R = & . For the state initial condition
Xo =1Yo Y4 fo f,]+06,000]'=[0000]+,000]'=[0,000]", the initial prediction error covariance is

Py =Cov(X, —X,) =Cov(y,—0,, Y, f.T,). 9

Since 0, is deterministic, it does not influence any covariances. Hence, (9) becomes:

RO R,®M| (RO R, D
RM RO (R, ® R, (O

o e o ) ER O R, (1)} [Rf © ® <1>1 o
v D ROY(R@) R (0)
Now recall that the state equation 8(a) for k=0:
X, =Fx, +U (12)
Then, By =R, (0) This gives:
E(%%g ) = FE(X4X) ) + E(UyX ) = R,(0) = FR, (1) + E(U_;X; ) (13a)

E(Xoxi) = FE(X—1XE1) + E(U—1X£r1) =R, (1)tr =FR,(0)+ E(U_lxl (13b)



Now:
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. = tr 0
Also: E(U,x") =E( y [v. v, f. f,])=0
0
0
Hence: R,(0)=FR, () +C, (14a)
RMO"=FR(0) =R @®=R(0)F"=R (0)F" (14b)
Substituting (14b) into (14a): R (0)=FR (0)F" +C,. (15)

Equation (15) can be written as: FR (0)F" —R (0)+C, =0. This is called the discrete-time Lyapunov Equation
for the variable R (0) . The Matlab code ‘dlyap(F,Cu) will solve it.

As simple as the Matlab solution is, it lacks insight into the nature of the elements of P, =R (0). From (10) it

is clear that those elements are auto- and cross-correlations at lags zero and one. So, one might ask: How can we
arrive at these correlations via psd information. We now present a method that recovers all auto/cross-
correlations based on psds.

U@ =H,@U)
1-cz7-c,2

Hence, Y, (z) = H,(2)H, (2)U (z) = H(2)U (z) . From the Wiener-Kinchine Theorem we therefore have:

Recall: Y, (z2) =H,(z)F(z)and f, =c,f,_, +C,f, _, +U,gives F(z)=

2
2
K

(i): 8, @=E(H,@ue[ |-H.@

(ii): S, () =E(Y, @F(2))=E[H,(F OF @) |=H,@)|H, @) o

- —_— —_— — 2

(iii): S,(2) =E(Y, (2)Y; (2)) =E[ H,(2)F ()H,(2)F (2) | =|H,(DH 1, (2)| o

For numerical values, we can compute the quantities and then recover the associated correlation functions. Note
that this is not necessary in relation to (i), as we have a direct method of solving for the autocorrelation for an

AR(2) process.

NOTE: To recover the coefficient of a transfer function H, type: [num,den]=tfdata(H,’v’).



The code below recovers correlation functions from psds specified via transfer functions.
$PROGRAM NAME: psd2xcorr.m

$This code recovers Rxy from Sxy in dicrete time domain 6 AutosomeEon for Shecen T
%*Examples: |

m=100; WF 1
STF1: " ;
Hl=tf([1 0],[1,-.9],1); %Transfer Function s ¥ N
[Hln,Hld]=tfdata(H, 'v'); * ;
Hlnw=fft (Hln,m); Hldw=fft (Hld,m); o i
Hlw=Hlnw./Hldw; & f
$TF2: b \\M _’,,««-"“}f
$H2=H1; S%For Autocorrelation 0 ‘ ‘
H2=tf([1 0],([1,-.4],1); %$For Crosscorrelation 0 2 4 &0 & 100
[H2n,H2d]:tfdata(H2, 'V') ; 16 (T‘ " forTwo' i TF§
H2nw=fft (H2n,m); H2dw=fft (H2d,m); I

H2w=H2nw./H2dw; Tar

%$Cross—-Spectrum $ Cross-Correlation 12

S12=Hlw.*conj (H2w) ;
Rl2=real (ifft (S12));
figure (1) 08l
plot (R12,'*")

title('Crosscorrelation for Two Specified TFs')
grid
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Comment: I checked to make sure that the imaginary parts of the ifft’s were zero. They were. ©
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