
Kalman Filtering with Known Forcing Function 
 

Consider the following system: 

                            11   kkkkkk dwGxFx  (1a) 

 

                             kkkkk rvxHz   (1b) 

 

where the state and measurement processes involve known input functions dk and rk , respectively.  

 

Recall, that the Kalman filter utilizes the error  
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  (2a) 

 

multiplied by the Kalman gain, K, to recover an estimate of the state, xk where, in the case of (1),  
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. (2b) 

 

The current and one-step ahead state estimates are 
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 (3a) 

and 
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. (3b) 

 

Now, let’s see how these modified measurement (2b) and state (3b) predictor equations are incorporated 

into the Kalman filter algorithm. 

 

Step 1: For k=0 choose a value for 

0x


and compute the prediction error variance:    
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Step 2: For k=0: Compute the Kalman gain:  
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tr

kkk . 

 

Step 3: Compute the update estimate: )]([ kkkkkkk rxHzKxx   
. 

 

Step 3: Compute the update error variance: 
 kkkk PHKIP )( . 

 

Step 4: Compute 1-step prediction and associated error variance: 
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Step 5: Go to Step 2 and increment k by one.   □ 



 

Example: Prediction of the 1-D position and velocity of a flexible robot arm: 

 

 

   

 

 

 

 

 

 

 

The fluid has a mean viscosity that is included as a part of the viscous damping coefficient c. However, the 

fluid also has turbulence that results in zero-mean fluctuating loading of the mass. 

 

 

To develop the equation for the motion of m, construct a free body diagram: 

 

 

 

 

 

 

 

 

fdykdycymforces  )()(  . Hence, fkddckyycym   . Assume the system is 

underdamped, and  define 
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. Then we have 
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The system (1) is a 2-input / single output system. We will use the impulse-invariant method of obtaining 

the discrete-time version of (1). To this end, we will require the following transforms: 

 

 
 

 

 

 
 

 
 

The transfer function between d(t) and y(t) is: 
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Define dnnc  /])2/[(  . We then have 
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The discrete transfer function associate with (2a) is therefore 
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The transfer function between f(t) and y(t) is: 
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The discrete transfer function associate with (3a) is therefore 
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Hence, we have 
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Specifically, 
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Define the parameters: 
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Then the difference equation corresponding to (4a) is: 

 

                                131212211   kkkkkk fbdbdbyayay . (4b) 
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We will now assume that the fluid force adheres to an AR(2) model, so that spectral peaking associated 

with vortex shedding, etc. may be incorporated. 

 

                                                     kkkk ufcfcf   2211 . (5) 

 

Finally, we will assume that the mass incorporates a position sensor, and that there is sensor 

measurement noise. Then the measurement model is 

 

                                                               kkk vyz  . (6) 

 

We are now in a position to formulate the state and measurement equations associated with the Kalman 

filter parameters. To this end, define the known deterministic input 121  kkk dbdb . Then (4b) becomes 
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Now, define the state vector tr

kkkkk ffyyx ][ 11  . From (5) and (7) we have 
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From (8a) we have Q = diag{0 0 2

u  0}, and from (8b) 2

vR  . For the state initial condition 
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 ffyyx


, the initial prediction error covariance is 
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Since 
0 is deterministic, it does not influence any covariances. Hence, (9) becomes: 
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Now recall that the state equation 8(a) for k=0: 

                                                       0 1 1x Fx u    (12) 

Then, 0 (0)xP R  This gives: 
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Now:  
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Hence:                                                   (0) (1)x x uR FR C   (14a) 

 

                                      (1) (0) (1) (0) (0)tr tr tr tr

x x x x xR FR R R F R F     (14b) 

 

Substituting (14b) into (14a):               (0) (0) tr

x x uR FR F C  . (15) 

 

Equation (15) can be written as: (0) (0) 0tr

x x uFR F R C   . This is called the discrete-time Lyapunov Equation 

for the variable (0)xR . The Matlab code ‘dlyap(F,Cu) will solve it.  

 

As simple as the Matlab solution is, it lacks insight into the nature of the elements of 0 (0)xP R  . From (10) it 

is clear that those elements are auto- and cross-correlations at lags zero and one. So, one might ask: How can we 

arrive at these correlations via psd information. We now present a method that recovers all auto/cross-

correlations based on psds. 
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Hence, 2( ) ( ) ( ) ( ) ( ) ( )f fuY z H z H z U z H z U z  . From the Wiener-Kinchine Theorem we therefore have: 
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For numerical values, we can compute the quantities and then recover the associated correlation functions. Note 

that this is not necessary in relation to (i), as we have a direct method of solving for the autocorrelation for an 

AR(2) process. 

 

NOTE: To recover the coefficient of a transfer function H, type: [num,den]=tfdata(H,’v’).  

 



The code below recovers correlation functions from psds specified via transfer functions. 
%PROGRAM NAME: psd2xcorr.m 

%This code recovers Rxy from Sxy in dicrete time domain 

%============================================ 

%Examples: 

m=100; 

%TF1: 

H1=tf([1 0],[1,-.9],1); %Transfer Function 

[H1n,H1d]=tfdata(H,'v');  

H1nw=fft(H1n,m); H1dw=fft(H1d,m); 

H1w=H1nw./H1dw; 

%TF2: 

%H2=H1; %For Autocorrelation 

H2=tf([1 0],[1,-.4],1); %For Crosscorrelation 

[H2n,H2d]=tfdata(H2,'v');  

H2nw=fft(H2n,m); H2dw=fft(H2d,m); 

H2w=H2nw./H2dw; 

%Cross-Spectrum % Cross-Correlation 

S12=H1w.*conj(H2w); 

R12=real(ifft(S12)); 

figure(1) 

plot(R12,'*') 

title('Crosscorrelation for Two Specified TFs') 

grid 

 

 

Comment: I checked to make sure that the imaginary parts of the ifft’s were zero. They were.   

 


