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Linear Regression and Wiener Filtering 

1. Introduction 

 

The topic of Wiener filtering sets the stage for the topic of Kalman filtering; the latter being simply real time 

implementation of the former. To arrive at this point required at least a minimal understanding of the following topics: 

 

T1: Random Variables ; T2: wss Random Processes ; T3: Dynamical Systems; T4: Signal Processing. 

 

Each one of these topics is covered in at least one entire course; typically within an electrical engineering curriculum. Yet, 

here we are, in the 8th week of a single course. And the student is expected to have a basic understanding of all four of 

these topics. Some students in the class may have had a course related to T1. Others may have had a course related to T3. 

The catalogue prerequisites for this course include either T1 or T3. Why is this? Well, simply, to require both T1 and T3 

would likely not garner a sufficient number of qualified students to run the course.  

 

The point of the above discussion is to encourage you, the student, to rest assured that your cohorts are probably as 

uncomfortable as you are with your lack of a firm grasp of any of the above topics. [There’s an old saying: Missouri 

(misery) loves company. That’s why god created Kansas!  ] If it seems as though topics have not received due attention, 

and have been covered in an incomplete, and even chaotic fashion, it’s because that is the case. Yes, one could always try 

to lessen the chaos. However, given the fact that all four topics must be addressed within eight weeks, along with the fact 

that they all must be connected to one another, it is only natural to expect some amount of chaos.  

 

In this lecture we will attempt to connect the dots, so to speak. The medium for this effort is Wiener filtering. We will 

begin this effort by revisiting the concept of linear models in relation to random variables. We will then couch this model 

in the framework of a random process. This will then be followed by bringing a model for a dynamical system into the 

picture.  

 

2. The Linear Model Problem 

 

Let  trnxxx 21x  and  trnyyy 21y  be two n-dimensional random variables, and consider the linear 

model:                                                              bxAy 


 (1) 

We desire to find the expression for A and b that minimize the mean-squared error 
2

yy


 Emse .  

Fact 1: The value for A will satisfy the orthogonality condition (i) 0xyy  ])[( trCov


(i). The value for b will satisfy the 

unbiased condition (ii) )()( yy


EE  . We will now use these facts to obtain the explicit expressions for A and b. 

 

       )()()(])[()()(])[( 1 trtrtrtrtrtrtr CovCovCovCovCovCovCov yxxxAxxAxbAxxyyx0xyy



. (2a) 

 

                                   )()()()()()( xAybbxAbAxyy EEEEEE 


. (2b) 

 

Equations (2) are usually expressed in the notational form: yx
1

xxΣΣA    and xy μAμb  . (2c) 

 

3. Linear Modeling in the Context of Random Processes 
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Now suppose that x and y are segments of a jointly wide sense stationary (wss) 2-dimensional random process 

  
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tt yx }{ . For convenience, we will assume that 0 yx  . Then 
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. (3) 

 

In this setting, it follows that the optimal predictor is:           xAy 


 where yxxxRRA 1 . (4) 

 

At this point, note the similarity of (4) with (2c). Since we implicitly assume that all wss process have zero mean, then the 

equation xy μAμb  in (2c) becomes moot (i.e. it is no longer relevant). Now, recall that ( ) ( , ) X YE XY Cov X Y    . 

Since the means are zero, we have ( ) ( , )E XY Cov X Y . Hence, (4) is simply a special case of (2c), where then means are 

zero, and the indices associated with the random variables are time indices. 

 

3. The Signal-Plus-Noise Problem 

 

Now, let’s assume:                                                    nsx   (5) 

 

where s and n are mutually independent signal and noise processes. In this setting we are attempting to predict y=s using 

x. Hence, in this notation, (4) becomes:     

                                                        s Ax  where snssx RRRRA 1

)(

1 



  . (6) 

 

Even though (6) is optimal (i.e. mmse) it does not offer much insight into how the structure of the signal and noise 

influence the accuracy of the estimate. For this reason, we will work in the frequency domain. But first, we will delve a bit 

into the eigenstructure of (6). Recall the following: 

 

 FACT 1: Let Q be a symmetric matrix. Then *

QQQ VΛVQ   where 
)(Q

k is the kth real eigenvalue of 

 )()(

2

)(

1

Q

n

QQdiag  QΛ  and where 
)(Q

kv is the kth eigenvector of  )()(

2

)(

1

Q

n

QQ

Q vvvV  . Moreover, 

IVVVV Q

*

Q

*

QQ  . (In words, the eigenvectors are orthonormal to one another.) Finally, we also have *

QQQ VΛVQ 11   . 

 

[If you haven’t noticed, we are also bringing the topic of matrix theory into play. ] 

 

In order to apply this fact to (6), write 
*

ssss VΛVR   and 
*

xxxx VΛVR  . Then (6) becomes: 

 

                                                        s Ax  where 
**1

sssxxx VΛVVΛVA  . (7) 

 

Now, in general, (7) does not appear to offer any further insight than does (6). In an effort to pursue such insight, consider 

the following example. 

 

Example 1. Suppose that the noise is a white noise process with power 
2

n . Then IR 2

nn  , and so  
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IRRRR 2

nsnsx  . In this case: 
*2* )( snssxxxx VIΛVVΛVR  . Hence, (7) becomes: 

 

              xAs


 where 
**12 )( srsssnss VΛVVΛIΛVA    and where ]/[ 2)()()(

n

s

k

s

k

r

k   . (8) 

 

Now write xVVx *

xx . Substituting this into (8) gives: 

 

                                            
*( ) ( )s r s s rx  s Ax V Λ V V Λ X         where xVX *

s . (9a) 

 

The form (9) offers insight as to the nature of the estimator s . Write (9a) as: 

 

                                                                
* *( )s r s rs x

 

  S V Λ V Λ X . (9b) 

In the transformed domain (using the transformation matrix 
*

sV ), equation (10) shows that the kth element of S is: 

                                                                

( )
( )

( ) 2

s
r k

k k k ks

k n

S X X



 

 


. (9c) 

For a value of k such that 
( ) 2s

k n  [i.e. a high signal-to-noise ratio (SNR)], we have 
k kS X . At a value of k such that 

( ) 2s

k n   (i.e. a low SNR), we have 0kS  . More generally, (9c) states that 
k k kS SNR X . Hence, with a little thought, it 

should become clear that (9c) is intuitively appealing.  

 

 

In fact, as we will now show, (9c) is a Wiener filter, with the exception that 
*

sV  is not the DFT matrix 
*

F . The question 

of just how does 
*

sV  relate, if at all, to 
*

F , is a bit complicated to address in this set of notes. All I will say here is that: 

 

As the matrix dimension n , 
*

sV  gets ‘close and closer’ to 
*

F , where the term ‘close’ is used in a type of ‘weak’ 

sense. In a similar sense, the eigenvalues of 
*

xxxx VΛVR  get closer and closer to the psd values for x. 

 

[NOTE: I currently (as of 10/14/19) have a manuscript that quantifies ‘closeness’ in the above statements being reviewed 

by the journal Linear Algebra and Its Applications. I mention this because as of this date, the term ‘closeness’ has been 

vague, at the very least.] 

 

This question is much more amenable to an investigation using simulations. The following problem is very approachable 

in relation to this course: 

 

Problem: Given a segment  trnxxx 21x of a wss random process, where nsx  , and where the psds of the 

signal and noise processes are known, how suboptimal is the Wiener filter solution to the mmse solution, as a function of 

the dimension, n. 

 

Sub-Problem 1: How suboptimal is it in the case where the noise is white and the signal is AR(1)?  
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Linear Regression in the Frequency Domain in the context of a Linear System 

 

For  n/2  define the Fourier transform matrix: 

                                                       n
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. (10) 

Note that the n/1  factor in (10) was chosen under the assumption that the processes involved are regular wss random 

processes. 

 

FACT 2: IFFFF
**  . 

 

In words, Fact 2 means that F is a unitary matrix. Let Fvw  . Then 
22

vvvFvFv(Fv)(Fv)www
*****  . What 

this means is that a unitary transformation is ‘size-preserving’.  The ‘size’ of w, as measured by 
2

w , is the same as the 

‘size’ of v.  If we take ‘size’ to be the energy contained in a process, then this says that we can sum up the energy in time 

or in frequency. In either case, we get the same energy. Computationally, (10) is almost the ‘fft’ command in Matlab. 

Note, however, that because we included the n/1  factor, it is not exactly the same. In Matlab there is no such factor. 

Instead, a factor of n/1  is included in the ‘ifft’ command.  

 

The Wiener filter solution, analogous to (9) is: 

        F(HX)s


        where    xFX
*  and },,{ 10  nhhdiag H with 

)()(

)(

knks

ks
k

SS

S
h






 . (11) 

A comparison between (11) and (9c) is worth noting. In fact, as the matrix size n   the eigenvalues in (9c) do, indeed, 

converge In distribution to the psd elements in (11). Hence, for large n, the key difference between (11) and (9c) is that 

(11) uses the DFT matrix, while (9c) uses the eigenvector matrix.  

 

4. Using Matlab to Construct a Linear Model 

We will address this in relation to the 3-D random variable, ),,( 21 YXX , only because this setting is simple, and yet 

readily illustrates the general construction. Denote the data associated with ),,( 21 YXX  as )( Y,X,X 21 , as defined above 

(1.2). To estimate ),,( 21 Y , we use the command: 

                                                )(12 Y,X,X 21meanym  . 

This command will result in ),,( 21 Y


. To arrive at the covariance estimates, we use the command: 

                                                 )cov(12 Y,X,X 21yc . 

This command will result in 
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Let the 22 matrix shaded in green be denoted as 
XX


, and let the 12 matrix shaded in blue be denoted as 
XY


Then 

(1.8e) can be written as: 

                                XYXXXYXX 

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

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 












1

2

1

2

1








. 

The Matlab command for obtaining XX


 is  c12 = c12y(1:2,1:2), and the command for XY


 is cxy=c12y(1:2,3). Hence, 

the Matlab command for arriving at ),( 21 


 is: b12= c12^-1 * cxy. Once we have ),( 21 


, the Matlab command to 

obtain 0


 is: b0 = m12y(3) – b12’ * m12y(1:2)’. 

WARNING: This setting addresses covariances. However, for wss random processes that are known a priori to be zero-

mean processes, the use of sample covariances, as opposed to sample expected values, can cause numerical problems (e.g. 

negative psd estimates). So, the question then becomes: How can the above covariance method be used in relation to 

correlations? To answer this question, write ( ) ( ) ( , ) ( ) ( )t t t t t tR E X X Cov X X E X E X        . Hence, if we know a 

priori that the mean is zero, then ( ) ( ) ( , )t t t tR E X X Cov X X     . The problem with using Matlab’s ‘cov’ command is 

that it automatically subtracts the sample mean. So the moral of the story here is: Do not use the ‘cov’ command. Rather, 

use the ‘xcorr’ command to obtain estimates of the correlations, and then use the ‘toeplitz’ command to obtain the 

associated matrices. Although, keep in mind that if one uses the ‘unbiased’ flag in the ‘xcorr’ command, then it is possible 

that the estimated psd values could become negative.  

 

Example. Consider the following difference equation models for a signal process ks  and noise process kn : 

     
kkkkkk vnnuss   11 5.0;9.0  , where ku  and kv  are white noise processes. Assume that the white noise 

variances are such that the signal and noise variances are each equal to one. This is the situation wherein the total signal-

to-noise ratio (SNR) is one, or 0 dB.  

Remark: Since the above are discrete-time processes, they do not have Laplace transforms. Rather, they have z-

transforms. Specifically: 1

1 1

( ) 1
( ) {0.9 } ( ) 0.9 ( ) ( ) ( )

( ) 1 0.9
k k k

S z
Z s Z s u S z z S z U z H z

U z z



 
       


. This system 

transfer function has a poll at 
1 0.9z  . If we assume that this discrete-time process was obtained by sampling a 

continuous-time process using a sampling period 1sec.  , then the relation between the Laplace variable s and the Z-

variable z is: 
sz e  . In this case, the discrete-time and continuous-time system poles relate as: 1

1

sz e  . Writing 

1 1 1s i    gives 1 1 1 1( )

1

i iz e e e        . So a LHP continuous-time pole corresponds to a discrete-time pole inside 

the unit circle. In the case of this signal, the discrete-time pole 0.9 is, indeed, in the unit circle, and so this corresponds to a 

stable system. The corresponding continuous-time poles is:
1 1ln( ) / ln(0.9) 0.1054s z      . This corresponds to a first 

order transfer function with -3dB bandwidth 0.1054 rad/sec. This is also called a lowpass filter. On the other hand, the 

noise process has 
1

( ) 1
( )

( ) 1 0.5

N z
H z

U z z
 


. The pole is -0.5. Were we to desire to recover the associated continuous-time 
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pole, we would have 
1 1ln( ) / ln( 0.5) -0.6931 + 3.1416is z     . Notice that the pole is in the LHP, but that it has an 

imaginary part equal to  . However, since the sampling interval 1sec.  , the sampling frequency 2s  , and the 

Nyquist frequency is 
N  . The problem here is that, if one were to compute or plot the FRF associated with 

1
( )

1 0.5

i

i
H z e

e







 
 


, one would discover that this is a highpass filter. As such, one needs to beware of casually 

mapping the discrete-time pole back to a continuous-time pole, since aliasing becomes a major complicating issue.  

(a) Compute the numerical values for 
2

u and 
2

w  

Solution: For an AR(1) process 222 )1( ywky   . So, since  122  ns  : 

 19.01)9.01( 22 u  &   75.01])5.0(1[ 22 v  

(b) Use the Wiener-Kinchin Theorem to obtain an explicit expression for the psd of the AR(1) process: 

                                                                            
1k k ky y u   .   (*) 

Solution: Recall that 

/2 /2
( )

/2
/2/2

1 1
( ) lim ( ) lim

( 1)

T n
i t i k

k
T n

k nT

Y i y t e dt y e
T n

    

 


  
 

 where T n  . 

Hence, the Fourier transform of 
1k kv y  is: 

/2 /2
( ) [( 1) ]

1

/2 /2

1
( ) lim lim ( )

( 1) ( 1)

in n
i k i k i

k k
n n

k n k n

e
V i v e y e e Y i

n n


   

 
      


 

 

    
   

  .  

Hence, the FT of (*) results in: 
( )

( )
1 i

U i
Y i

e 




 



   for 1sec  . [c.f. also the above Remark.] 

Hence, from the WK Theorem:  

              

22
2

2 2

[| ( ) | ]
( ) [| ( ) | ]

|1 | 1 2 cos( )

u
y i

E U i
S E Y i

e 


 

   
  

  
   for | | / 2 /s       . 

(c) Using the values in (a), along with the given AR bandwidth parameters,  

to arrive at psd overlaid plots for the signal and noise pds’s. 

Solution: [See code @ (c).] 

Notice that even though the total SNR=0dB, the spectral SNR is 

frequency dependent. At low frequencies the SNR is ~10dB, while at 

high frequencies it is ~-15dB. 
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 Figure 2(b) Signal and noise psd’s. 

(d) Use your results in (b) to obtain a plot of the theoretical Wiener filter  

for the signal. [Do not use dB units.] 

Solution: [See code @ (d).] 

 

 

 

 Figure 2(c) Theoretical Wiener filter. 

(e) Use Matlab to generate a 1024-point sample of the signal-plus-noise wss process. [Generate an additional 1000 points, 

and then discard the first 1000 values so that the process can be assumed to be stationary.] Then run this process through 

the Wiener filter in (c) to obtain a signal estimate. Overlay the plots of the time domain signal-plus-noise, the signal and 

the estimated signal processes. 

Solution: [See code @ (e).] 

 

 

 

 

 

 

 

Figure 2(e) Comparison of the measurement, signal and WF estimate of the signal. Entire data set (left), and zoomed 

region (right).[Blue=measurement; Green=Signal; Red=WF estimate.] 

 

APPENDIX     Matlab Code 

%LECTURE_14_EXAMPLE.m 

%Part(c) 

fv=0.001:0.001:0.5; 

wv=2*pi*fv; 

Ss=0.19*(1.81 - 1.8*cos(wv)).^-1; 

Sn=0.75*(1.25 + cos(wv)).^-1; 

SsdB=10*log10(Ss); 

SndB=10*log10(Sn); 

Smat=[SsdB ; SndB]; 

figure(3) 

plot(fv,Smat); 
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xlabel('Frequency (Hz)') 

ylabel('dB') 

title('Theoretical Signal & Noise PSDs') 

grid 

%Part(d) 

r=Ss./Sn; 

H=(1+r.^-1).^-1; 

figure(4) 

plot(fv,H) 

xlabel('Frequency (Hz)') 

ylabel('H(w)') 

title('Theoretical Wiener Filter') 

grid 

%Part(e) 

ns=0.19^0.5*randn(1,2024); 

nn=0.75^0.5*randn(1,2024); 

n=[ns ; nn]; 

a=[0.9 ; -0.5]; 

xm1=n(:,1); 

x=xm1; 

for i=2:2024 

   xi=a.*xm1 + n(:,i); 

   x=[x xi]; 

   xm1=xi; 

end 

s=x(1,1001:2024); 

n=x(2,1001:2024); 

y=s+n; 

fv=0:1/1024:1-1/1024; 

wv=2*pi*fv; 

Ss=0.19*(1.81 - 1.8*cos(wv)).^-1; 

Sn=0.75*(1.25 + cos(wv)).^-1; 

r=Ss./Sn; 

H=(1+r.^-1).^-1; 

Y=fft(y); 

Shat=H.*Y; 

shat=ifft(Shat); 

shat=real(shat); 

sv=[y;s;shat]; 

tv=1:1024; 

figure(5) 

plot(tv,y,'b',tv,s,'g',tv,shat,'r') 

xlabel('Time (sec)') 

title('Comparison of the Measurement, Signal and WF 

Processes') 

grid 
 

Example continued. Now consider the prediction problem in the time domain. Recall: 

s Ax  where snssx RRRRA 1

)(

1 



  where nsx  is the measurement data. We know that 
2( ) k

s s sR k   and 

2( ) k

n n nR k   . Hence, { (0), , ( 1)}s s sToeplitz R R n R and { (0), , ( 1)}n n nToeplitz R R n R . Hence, 
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{ (0), , ( 1)}x s n s n x xToeplitz R R n    R R R R .  


