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BODE DIAGRAMS 

The frequency response of a linear system is determined experimentally by apply- 
ing a sinusoidal input signal and then measuring the sinusoidal response of the 
system. The frequency response data includes the measurement of the amplitude 
and phase shift of the sinusoidal output compared to the amplitude and phase of the 
input signal as the input frequency is varied. The relationship between the output 
and input to the system can be used by the designer to determine the performance 
of the system. Furthermore, frequency response data can be used to deduce the 
performance of a system to an arbitrary input that may or may not be periodic. 

The magnitude of the amplitude ratio and phase angle can be presented graph- 
ically in a number of ways. However, one of the most useful presentations of the 
data is in the so-called Bode diagram, named after H. W. Bode for his pioneering 
work in frequency response analysis. In a Bode diagram the logarithm of the 
magnitude of the system transfer function, I G(iw) I, and the phase angle, 4, are 
plotted separately versus the frequency. 

The frequency response, output-input amplitude ratio, and phase with respect 
to the input can be determined analytically from the system transfer function 
written in factored time constant form: 

This transfer function has simple zeros at - 1/T,, - l/Tb, . . ., a pole at the origin 
of order r, simple poles at -1/T,, -1/T2, . . ., and complex poles at -5% 2 

i w , m .  The steady-state response can be shown to be determined by substi- 
tuting iw for the Laplace variable s in the system transfer function. Substituting iw 
for s one can express the transfer function in terms of the magnitude of its ampli- 
tude ratio and phase angle as follows: 

20 log )G(iw)I = 20 log k + 20 log 11 + iwT,) 

+ 2 0 l o g ( l  + iwT,I + - . .  - 20 r log (iw ( (D.2) 

- 201% 11 + iwT,I - 201% 11 + iwT21 

- 20 log( 1 + 2 5 ( 0 / 4 i  - (w/w,J2 ( . . . 
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and the phase angle in degrees 

LG(iw) = tan-' wT, + tan-' wT, + . . . - r(90•‹) - tan-' wTl 

-tan-' wT, . . . - tan-' (mi*" *) 
The magnitude has been expressed in terms of decibels. A magnitude in decibels is 
defined as follows: 

(magnitude of output ( 
Magnitude in dB = 20 log I magnitude of input I (D.4) 

where the logarithm is to the base 10. 
The Bode diagram now can be constructed using a semilog plot. The magnitude 

in decibels and phase angle are plotted separately on a linear ordinate versus the 
frequency on a logarithmic abscissa. Because the Bode diagram is obtained by 
adding the various factors of G(iw) one can construct the Bode diagram quite 
rapidly. 

In the general case the factors that will make up the transfer function are a 
constant term (system gain), poles at the origin, simple poles and zeros on the real 
axis, and complex conjugate poles and zeros. The graphical representation of each 
of these individual factors is described in the following section. 

System Gain 

The log magnitude of the system gain is as follows: 

20 log k = constant dB 

and the phase angle by 

Figure D. 1 shows the Bode plot for a positive system gain. 
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FIGURE D.l 
Bode representation of the magnitude and phase of the system 
gain k. 
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Poles or Zeros at the Origin (io)" 

The log magnitude of a pole or zero at the origin of order r can be written as 

20 log I (io)" 1 = 220r log w dB (D.6) 

and the phase angle is given by 

The log-magnitude is 0 dB at w = 1.0 radls and has a slope of 20 dBIdecade, 
where a decade is a factor of 10 change in frequency. Figure D.2 is a sketch of the 
log magnitude and phase angle for a multiple zero or pole. 

Simple Poles or Zeros (1 + ioT)" 

The log magnitude of a simple pole or zero can be expressed as 

2 20 log I 1 + ioT I = -C 20 log d l  + (wT)~ (D.8) 

For very low values of oT, that is, o T  -=3 1, then 

220 log d l  + (wT)' = 0 

and for very large values of oT, that is, wT >> 1, then 

220 log d l  + (oT)* s 220 log wT (D. 10) 

From this simple analysis one can approximate the log magnitude plot of a simple 
pole or zero by two straight line segments as shown in Figure D.3. One of the 
asymptotic lines is the 0 dB line and the second line segment has a slope of 20 
dB1decade that intersects the 0 dB line at the frequency o = 1/T. The intersection 
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- Bode representation of the magnitude 
- of a simple pole or zero. 
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FIGURE D.4 
Bode representation of the phase angle of a simple pole or 
zero. 

frequency is called the corner frequency. The actual log magnitude differs from the 
asymptotic approximation in the vicinity of the corner frequency. 

The phase angle for a simple pole or zero is given by 

L(l + iwT)" = f tan-' wT (D. 1 1) 

Figure D.4 is a sketch of the phase angle. 

Complex Conjugate Pole or Zero 
[l + i2@/wn - (w/wJ2]* l 

The log magnitude of the complex pole can be written as 

1 
20 log 

1 + i2[w/wn + (w/w,J2 

= -20 log[(l - (o/w,)~)~ + (~[w/w,)~]"~ (D. 12) 

= - 10 log[(l - (W/O")~)~ + (2[w/~")~] 
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FIGURE D.5 
Bode representation of the magnitude of a complex conjugate 
pole. 

FIGURE D.6 
Bode representation of the phase angle of a complex 
conjugate pole. 

The log magnitude can be approximated by two straight line segments. For exam- 
ple, when w/w, 4 1 

and when w/w, S 1 

20 log 
1 

(D.13) 
1 + i25iL)/wn - (w/w,J2 

The two straight line asymptotes consist of a straight line along the 0 dB line for 
o/wn = 1 4 1 and a line having a slope of -40 dB/decade for w/wn %- 1. The 

-40 log w/wn (D.14) 20 log 
1 

1 + i25& - (w/w,J2 
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asymptotes intersect at o/o, = 1 or o = on, where on is the corner frequency. 
Figure D.5 shows the asymptotes as well as the actual magnitude plot for various 
damping ratios for a complex pole. 

The phase angle for a complex pole is given by 

Figure D.6 shows the phase angle for a complex pole. Similar curves can be 
developed for a complex zero. 

If the transfer function is expressed in time constant form, then the Bode 
diagram easily can be constructed from the simple expressions developed in this 
section. 




