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Lecture 12/4-6/19 

In this lecture we investigated the situation where the plane was 

statically unstable, but had a stable Dutch roll mode. The transfer 

function for this situation was chosen to be: 
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The impulse response ( )pg t is shown at right. Clearly, the system is 

unstable. 

 Figure 1 Plot of ( )pg t .  

 

Next, we considered the use of unity feedback proportional control to stabilize 

(1). The block diagram is shown at right. In class it was shown that the closed 

loop transfer function associated with Figure 2 is: 
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The system (2) will be stable only if all three roots of 3 2( ) 10 19 248 25( 1)p s s s s K     are in the proper Left Half Plane 

(LHP). To find the range of stabilizing K-values, one could use the Routh array: 
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The first column of the array will have no sign changes for the K-values 1 19.848K  . Hence, this is the range of 

stabilizing K-values.  

 

However, the fact that (2) is stable for 1 19.848K  does not mean that 

it is desirable. Consider the impulse response shown at right for 15K  . 

The response is stable, but totally unacceptable. 

 

The use of the Routh array, as valuable as it is, is an exercise in algebra. 

To gain a more visual appreciation, we will now address the use of the 

root locus; which is a geometric approach. 

 

 

 Figure 3 Closed loop impulse response for 15K  . 

 

We are interested in the CL system roots that are the solution to: 
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For any chosen value of K, (3) will have three roots. Hence, as we vary K, there will be three trajectories of roots in the 

complex plane. These trajectories are also called loci; hence, the term root locus. 

 

Now, to arrive at the root locus associated with (3), we could simply use the ‘roots’ command, as you have done in past 

homeworks.  However, this is what I would call a ‘turn the crank’ method. It lends little geometric insight as to what’s 

really going on. We will now approach the problem of constructing the root locus for (1) in a less rote manner. More 

importantly, this approach will lead one to naturally posit control structures that can improve matters. 

 

To this end, note that (3) is equivalent to: 

 

                                                             
3 2

25
1 0

10 19 248 25

K

s s s
 

  
. (4) 

 

The only caveat in re-casting (3) as (4) is that (4) is only well-defined for s-values that are not the roots of  
3 2( ) 10 19 248 25OLp s s s s    . For any one of those three roots, (3) will be zero if and only if 0K  . 

 

Now, recall that 3 2( ) 10 19 248 25OLp s s s s    is the denominator polynomial of the plant transfer function (1). However, 

in view of Figure 2, (1) is also the open loop transfer function; i.e. that transfer function one arrives at by opening the 

feedback loop at the summing junction, and then gathering up all the transfer functions in that loop. Hence, the subscript 

OL in ( )OLp s . In gathering up the transfer functions, we arrive at the open loop transfer function: 
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From (5), we see that in this example (4) becomes: 

 

                                                                                1 ( ) 0KG s  . (6) 

 

This leads us to the Matlab command ‘rlocus’. While it is natural to assume 

that the required argument for this command would be the polynomial (1), 

whose root locus is desired. However, generally, such a polynomial could 

problematic to express as a function of K. On the other hand, (4), which is 

equivalent to (3), is not at all problematic. We simply give ( )G s as the 

argument of ‘rlocus’. The commands below resulted in the root locus plot in 

Figure 4: 

 

     G=tf(25,[10 19 248 -25]);   rlocus(G)  grid 

 Figure 4 Root locus associated with (3). 

 

The x’s in Figure 4 are the roots of (3) when 0K  . These roots are exactly the poles of the open loop transfer function. 

As K is increased, the roots of (3) depart from the OL poles in the manner shown in Figure 4. Specifically, the real root 

locus begins at 
1 1 0s i  and moves toward 

1 0s i  as K is increased. The other two roots that are a complex conjugate 

pair 
2,3 0.94 4.89s i   for 0K   retain their complex conjugate structure as K  . Moreover, they enter the RHP. 
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We knew that this would be the case from analysis of the first 

column of the Routh array, since, for sufficiently large K there are 

two sign changes in the first column. Furthermore, the zoomed plot 

of Figure 4 given in Figure 5 verifies the Routh array result  that all 

the roots of (3) will be in the LHP for1 19.848K  . 

 

Specifically, we see that the real root enters the LHP for 1K  , and 

the conjugate pair of roots enter the RHP for 19.9K  . 

 

 

 Figure 5 Zoomed plot of Figure 4. 

 

Now, let’s go a little deeper into the rabbit hole . Write (6) as: 

 

                                                                       ( ) 1 0 1 iKG s i e     . (7) 

 

Furthermore, write the OL transfer function (5) as: 
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To connect (8) to (7), consider the generic term s p . This is the difference between 

two vectors (i.e. numbers in the complex plane), as is shown at right. We can write 

this difference vector in polar form as: 
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 Figure 6 Plot of s p . 

From (9), we can write (8) as: 
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Finally, equating (7) and (10) gives: 
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From (11) we see that two conditions are required for s to be on the root locus: 
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(C1) The magnitude condition: 
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          and          (C2) The angle condition: 
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The condition (C1) is trivial, in the sense that for any s, regardless of whether or not it is on the root locus, we can satisfy 

this condition by setting 
3

1
kp

k

l


  . It is (C2) that determines the geometric structure of the root locus. 

 

In-Class 1: Use (C2) to prove that 2 2s i   is not on the root locus of Figure 4. 

 

In class we computed 
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In-Class 2: What would need to be added to ( )OLG s so that 2 2s i   is on the root locus? 

 

We could add zeros to ( )OLG s such that the angles between them and 2 2s i   add up to 340o. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


