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PREFACE

An understanding of flight stability and control played an important role in the
ultimate success of the earliest aircraft designs. In later years the design of auto-
matic controls ushered in the rapid development of commercial and military air-
craft. Today, both military and civilian aircraft rely heavily on automatic control
systems to provide artificial stabilization and autopilots to aid pilots in navigating
and landing their aircraft in adverse weather conditions. The goal of this book is
to present an integrated treatment of the basic elements of aircraft stability, flight
control, and autopilot design.

NEW TO THIS EDITION

In the second edition, I have attempted to improve the first six chapters from the
first edition. These chapters cover the topics of static stability, flight control,
aircraft dynamics and flying qualities. This is accomplished by including more
worked-out example problems, additional problems at the end of each chapter,
and new material to provide additional insight on the subject. The major change in
the text is the addition of an expanded section on automatic control theory and
its application to flight control system design.

CONTENTS

This book is intended as a textbook for a course in aircraft flight dynamics for
senior undergraduate or first year graduate students. The material presented in-
cludes static stability, aircraft equations of motion, dynamic stability, flying or
handling qualities, automatic control theory, and application of control theory to
the synthesis of automatic flight control systems. Chapter 1 reviews some basic
concepts of aerodynamics, properties of the atmosphere, several of the primary
flight instruments, and nomenclature. In Chapter 2 the concepts of airplane static
stability and control are presented. The design features that can be incorporated
into an aircraft design to provide static stability and sufficient control power are
discussed. The rigid body aircraft equations of motion are developed along with
techniques to model the aecrodynamic forces and moments acting on the airplane in
Chapter 3. The aerodynamic forces and moments are modeled using the concept
of aerodynamic stability derivatives. Methods for estimating the derivatives are
presented in Chapter 3 along with a detailed example calculation of the longitudinal
derivatives of a STOL transport. The dynamic characteristics of an airplane for free
and forced response are presented in Chapters 4 and 5. Chapter 4 discusses the
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longitudinal dynamics while Chapter 5 presents the lateral dynamics. In both
chapters the relationship between the rigid body motions and the pilot’s opinion of
the ease or difficulty of flying the airplane is explained. Handling or flying qualities
are those control and dynamic characteristics that govern how well a pilot can fly
a particular control task. Chapter 6 discusses the solution of the equations of
motion for either arbitrary control input or atmospheric disturbances. Chapters
7-10 include the major changes incorporated into the second edition of this book.
Chapter 7 provides a review of classical control concepts and discusses control
system synthesis and design. The root locus method is used to design controt
systems to meet given time and frequency domain performance specifications.
Classical control techniques are used to design automatic control systems for vari-
ous flight applications in Chapter 8. Automatic control systems are presented that
can be used to maintain an airplane’s bank angle, pitch orientation, altitude, and
speed. In addition a qualitative description of a fully automated landing system is
presented. In Chapter 9, the concepts of modern control theory and design tech-
niques are reviewed. By using state feedback design, it is theoretically possible for
the designer to locate the roots of the closed loop system so that any desired
performance can be achieved. The practical constraints of arbitrary root placement
are discussed along with the necessary requirements to successfully implement
state feedback control. Finally in Chapter 10 modern control design methods are
applied to the design of aircraft automatic flight control systems.

LEARNING TOOLS

To help in understanding the concepts presented in the text I have included a
number of worked-out example problems throughout the book, and at the end of
each chapter one will find a problem set. Some of the example problems and
selected problems at the end of later chapters require computer solutions. Commer-
cially available computer aided design software is used for selected example prob-
lems and assigned problems. Problems that require the use of a computer are
clearly identified in the problem sets. A major feature of the textbook is that the
material is introduced by way of simple exercises. For example, dynamic stability
is presented first by restricted single degree of freedom motions. This approach
permits the reader to gain some experience in the mathematical representation and
physical understanding of aircraft response before the more complicated multiple
degree of freedom motions are analyzed. A similar approach is used in developing
the control system designs. For example, a roll autopilot to maintain a wings level
attitude is modeled using the simplest mathematical formulation to represent the
aircraft and control system elements. Following this approach the students can be
introduced to the design process without undue mathematical complexity. Several
appendices have aiso been included to provide additional data on airplane aerody-
namic, mass, and geometric characteristics as well as review material of some of
the mathematical and analysis techniques used in the text.



Acknowledgements vii

ACKNOWLEDGEMENTS

I am indebted to all the students who used the early drafts of this book. Their many
suggestions and patience as the book evolved is greatly appreciated. I would like
to express my thanks for the many useful comments and suggestions provided
by colleagues who reviewed this text during the course of its development, espe-
cially to:

Donald T. Ward Texas A & M University

Andrew S. Arena, Jr. Oklahoma State University

C. H. Chuang Georgia Institute of Technology

Frederick H. Lutze Virginia Polytechnic Institute and State University
Roberto Celi University of Maryland

Finally, I would like to express my appreciation to Marilyn Walker for her
patience in typing the many versions of this manuscript.

Robert C. Nelson




CONTENTS

Preface

1 Introduction

11
1.2

1.3

1.4

1.5
1.6
1.7

1.8

Atmospheric Flight Mechanics

Basic Definitions

1.2.1 Fluid / 1.2.2 Pressure / 1.2.3 Temperature /
1.2.4 Density / 1.2.5 Viscosity / 1.2.6 The Mach Number
and the Speed of Sound

Aerostatics
1.3.1 Variation of Pressure in a Static Fluid

Development of Bernoulli’s Equation
1.4.1 Incompressible Bernoulli Equation / 1.4.2 Bernoulli’s
Equation for a Compressible Fluid

The Atmosphere
Aerodynamic Nomenclature

Aircraft Instruments

1.7.1 Air Data Systems / 1.7.2 Airspeed Indicator /
1.7.3 Altimeter / 1.7.4 Rate of Climb Indicator /
1.7.5 Machmeter / 1.7.6 Angle of Attack Indicators

Summary
Problems
References

2 Static Stability and Control

21
22

23

24

Historical Perspective

Introduction
2.2.1 Static Stability / 2.2.2 Dynamic Stability

Static Stability and Control

2.3.1 Definition of Longitudinal Static Stability /

2.3.2 Contribution of Aircraft Components / 2.3.3 Wing
Contribution / 2.3.4 Tail Contribution—Aft Tail /
2.3.5 Canard— Forward Tail Surface / 2.3.6 Fuselage
Contribution / 2.3.7 Power Effects / 2.3.8 Stick Fixed
Neutral Point

Longitudinal Control

2.4.1 Elevator Effectiveness / 2.4.2 Elevator Angle to
Trim / 2.4.3 Flight Measurement of Xnp / 2.4.4 Elevator
Hinge Moment

Xt

12
19
22

32
32
33

35
35
39

42

62

ix




x Contents

25

2.6

2.7
2.8
29
2.10

Stick Forces
2.5.1 Trim Tabs / 2.5.2 Stick Force Gradients

Definition of Directional Stability
2.6.1 Contribution of Aircraft Components

Directional Control
Roll Stability
Roll Control

Summary
Problems
References

Aircraft Equations of Motion

31
3.2
33
34
35
3.6

3.7

Introduction

Derivation of Rigid Body Equations of Motion
Orientation and Position of the Airplane
Gravitational and Thrust Forces
Small-Disturbance Theory

Aerodynamic Force and Moment Representation
3.6.1 Derivatives Due to the Change in Forward
Speed / 3.6.2 Derivatives Due to the Pitching
Velocity, q / 3.6.3 Derivatives Due to the Time Rate of
Change of the Angle of Attack / 3.6.4 Derivative Due
to the Rolling Rate, p / 3.6.5 Derivative Due to the
Yawing Rate, r

Summary

Problems
References

Longitudinal Motion (Stick Fixed)

4.1
4.2
43
44
4.5

4.6

4.7

Historical Perspective

Second-Order Differential Equations

Pure Pitching Motion

Stick Fixed Longitudinal Motion

4.4.1 State Variable Representation of the Equations
of Motion

Longitudinal Approximations

4.5.1 Short-Period Approximation

The Influence of Stability Derivatives on the
Longitudinal Modes of Motion

Flying Qualities

4.7.1 Pilot Opinion

70

73

77
78
81

84
85
95

96
96
97
101
103
104
108

127
128
130

131
131
133
139
147

152

162
164



Contents xi

4.8 Flight Simulatian 169
4.9 Summary 171
Problems 174
References 179
Lateral Motion (Stick Fixed) 181
5.1 Introduction 181
5.2  Pure Rolling Motion 182
5.2.1 Wing Rock / 5.2.2 Roll Control Reversal
5.3 Pure Yawing Motion 188
5.4 Lateral-Directional Equations of Motion 193

5.4.1 Spiral Approximation / 5.4.2 Roll
Approximation / 5.4.3 Dutch Roll Appoximation

5.5 Lateral Flying Qualities 203
5.6 Inertial Coupling 205
5.7 Summary 206
Problems 206
References 210

Aircraft Response to Control or Atmospheric Inputs 212

6.1 Introduction 212
6.2 Equations of Motion in a Nonuniform Atmosphere 215
6.3 Pure Vertical or Plunging Motion 218
6.4  Atmospheric Turbulence 225
6.5 Harmonic Analysis 227
6.5.1 Turbulence Models
6.6 Wind Shear 229
6.7 Summary 232
Problems 233
References 234

Automatic Control Theory—

The Classical Approach 235

7.1 Introduction 235

7.2 Routh’s Criterion 238

7.3 Root Locus Technique 243
7.3.1 Addition of Poles and Zeros

7.4 Frequency Domain Techniques 250

7.5 Time-Domain and Frequency-Domain Specifications 251
7.5.1 Gain and Phase Margin from Root Locus /
7.5.2 Higher-Order Systems




Xii

Contents

7.6
7.7

7.8
7.9

Steady-State Error

Control System Design
7.7.1 Compensation / 7.7.2 Forward-Path
Compensation / 7.7.3 Feedback-Path Compensation

PID Controller

Summary
Problems
References

Application of Classical Control Theory to Aircraft

Autopilot Design
8.1 Introduction
8.2  Aircraft Transfer Functions

83
8.4

8.5
8.6
8.7

8.2.1 Short-Period Dynamics / 8.2.2 Long Period or
Phugoid Dynamics / 8.2.3 Roll Dynamics / 8.2.4 Dutch
Roll Approximation

Control Surface Actuator

Displacement Autopilot

8.4.1 Pitch Displacement Autopilot / 8.4.2 Roll Attitude
Autopilot / 8.4.3 Altitude Hold Control System /

8.4.4 Velocity Hold Control System

Stability Augmentation
Instrument Landing

Summary
Problems
References

Modern Control Theory

9.1
9.2

9.3

94
9.5

9.6

Introduction

State-Space Modeling

9.2.1 State Transition Matrix / 9.2.2 Numerical Solution
of State Equations

Canonical Transformations

9.3.1 Real Distinct Eigenvalues / 9.3.2 Repeated
Eigenvalues / 9.3.3 Complex Eigenvalues
Controllability and Observability

State Feedback Design

9.5.1 Numerical Method for Determining Feedback
Gains / 9.5.2 Multiple Input-Output System /
9.5.3 Eigenvalue Placement

State Variable Reconstruction: The State Observer

258
262

271

274
275
280

281
281
283

288
292

312
314

318
319
322

323
323
324

335

344
347

355



10

9.7
9.8

Contents

Optimal State-Space Control System Design

Summary
Problems
References

Application of Modern Control Theory to Aircraft
Autopilot Design

10.1
10.2

Introduction

Stability Augmentation
10.2.1 Longitudinal Stability Augmentation /
10.2.2 Lateral Stability Augmentation

10.3 Autopilot Design

10.4 State Observer

10.5 Optimal Control

10.6 Summary
Problems
References

Appendices

A Atmospheric Tables (ICAO Standard Atmosphere)

B Geometric, Mass, and Aerodynamic Characteristics of
Selected Airplanes

C Mathematical Review of Laplace Transforms and
Matrix Algebra

D Review of Control System Analysis Techniques

Index

xiii

359

362
362
366

367
367
367

379
383
386

391
391
394

395
395

398

420
429

435



CHAPTER 1

Introduction

“For some years I have been afflicted with the belief that flight is possible
to man.”

Wilbur Wright, May 13, 1900

1.1
ATMOSPHERIC FLIGHT MECHANICS

Atmospheric flight mechanics is a broad heading that encompasses three major
disciplines; namely, performance, flight dynamics, and aeroelasticity. In the past
each of these subjects was treated independently of the others. However, because
of the structural flexibility of modern airplanes, the interplay among the disciplines
no longer can be ignored. For example, if the flight loads cause significant structural
deformation of the aircraft, one can expect changes in the airplane’s aerodynamic
and stability characteristics that will influence its performance and dynamic
behavior.

Airplane performance deals with the determination of performance character-
istics such as range, endurance, rate of climb, and takeoff and landing distance as
well as flight path optimization. To evaluate these performance characteristics, one
normally treats the airplane as a point mass acted on by gravity, lift, drag, and
thrust. The accuracy of the performance calculations depends on how accurately
the lift, drag, and thrust can be determined.

Flight dynamics is concerned with the motion of an airplane due to internally
or externally generated disturbances. We particularly are interested in the vehicle’s
stability and control capabilities. To describe adequately the rigid-body motion of
an airplane one needs to consider the complete equations of motion with six
degrees of freedom. Again, this will require accurate estimates of the aerodynamic
forces and moments acting on the airplane.

The final subject included under the heading of atmospheric flight mechanics
is aeroelasticity. Aeroelasticity deals with both static and dynamic aeroelastic
phenomena. Basically, aeroelasticity is concerned with phenomena associated with
interactions between inertial, elastic, and aerodynamic forces. Problems that arise
for a flexible aircraft include control reversal, wing divergence, and control surface
flutter, to name just a few.
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Negative longitudinal
static stabllity
Forward swept wing

Digitat fiight
control system

Advanced Tecnologies Ie Fiti N
incorporated in the X-29A

FIGURE 1.1
Advanced technologies incorporated in the X-29A aircraft.

This book is divided into three parts: The first part deals with the properties of
the atmosphere, static stability and control concepts, development of aircraft equa-
tions of motion, and aerodynamic modeling of the airplane; the second part exam-
ines aircraft motions due to control inputs or atmospheric disturbances; the third
part is devoted to aircraft autopilots. Although no specific chapters are devoted
entirely to performance or aeroelasticity, an effort is made to show the reader, at
least in a qualitative way, how performance specifications and aeroelastic phenom-
ena influence aircraft stability and control characteristics.

The interplay among the three disciplines that make up atmospheric flight
mechanics is best illustrated by the experimental high-performance airplane shown
in Figure 1.1. The X-29A aircraft incorporates the latest advanced technologies in
controls, structures, and aerodynamics. These technologies will provide substantial
performance improvements over more conventional fighter designs. Such a design
could not be developed without paying close attention to the interplay among
performance, aeroelasticity, stability, and control. In fact, the evolution of this
radical design was developed using trade-off studies between the various disciplines
to justify the expected performance improvements.

The forces and moments acting on an airplane depend on the properties of the
atmosphere through which it is flying. In the following sections we will review some
basic concepts of fluid mechanics that will help us appreciate the atmospheric
properties essential to our understanding of airplane flight mechanics. In addition
we will discuss some of the important aircraft instruments that provide flight
information to the pilot.
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1.2
BASIC DEFINITIONS

The aerodynamic forces and moments generated on an airplane are due to its
geometric shape, attitude to the flow, airspeed, and the properties of the ambient
air mass through which it is flying. Air is a fluid and as such possesses certain fluid
properties. The properties we are interested in are the pressure, temperature,
density, viscosity, and speed of sound of air at the flight altitude.

1.2.1 Fluid

A fluid can be thought of as any substance that flows. To have such a property, the
fluid must deform continuously when acted on by a shearing force. A shear force
is a force tangent to the surface of the fluid element. No shear stresses are present
in the fluid when it is at rest. A fluid can transmit forces normal to any chosen
direction. The normal force and the normal stress are the pressure force and
pressure, respectively.

Both liquids and gases can be considered fluids. Liquids under most conditions
do not change their weight per unit of volume appreciably and can be considered
incompressible for most engineering applications. Gases, on the other hand, change
their weight or mass per unit of volume appreciably under the influences of pressure
or temperature and therefore must be considered compressible.

1.2.2 Pressure

Pressure is the normal force per unit area acting on the fluid. The average pressure
is calculated by dividing the normal force to the surface by the surface area:

F
P=> (1.1)

The static pressure in the atmosphere is nothing more than the weight per unit
of area of the air above the elevation being considered. The ratio of the pressure P
at altitude to sea-level standard pressure P, is given the symbol é:

P
8~ITO (1.2)

The relationship between pressure, density p, and temperature T is given by the
equation of state

P = pRT (1.3)

where R is a constant, the magnitude depending on the gas being considered.
For air, R has a value 287 J/(kg°K) or 1718 ft*/(s*°R). Atmospheric air follows the
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equation of state provided that the temperature is not too high and that air can be
treated as a continuum.

1.2.3 Temperature

In aeronautics the temperature of air is an extremely important parameter in that
it affects the properties of air such as density and viscosity. Temperature is an
abstract concept but can be thought of as a measure of the motion of molecular
particles within a substance. The concept of temperature also serves as a means of
determining the direction in which heat energy will flow when two objects of
different temperatures come into contact. Heat energy will flow from the higher
temperature object to that at lower temperature.

As we will show later the temperature of the atmosphere varies significantly
with altitude. The ratio of the ambient temperature at altitude, 7, to a sea-level
standard value, T, is denoted by the symbol 6:

0=— (1.4)

where the temperatures are measured using the absolute Kelvin or Rankine scales.

1.2.4 Density

The density of a substance is defined as the mass per unit of volume:

Mass

= — 1.
Unit of volume (1.5)

P
From the equation of state, it can be seen that the density of a gas is directly
proportional to the pressure and inversely proportional to the absolute tempera-
ture. The ratio of ambient air density p to standard sea-level air density p, occurs
in many aeronautical formulas and is given the designation o:

o = p/p (1.6)

1.2.5 Viscosity

Viscosity can be thought of as the internal friction of a fluid. Both liquids and gases
possess viscosity, with liquids being much more viscous than gases. As an aid in
visualizing the concept of viscosity, consider the following simple experiment.
Consider the motion of the fluid between two parallel plates separated by the
distance h. If one plate is held fixed while the other plate is being pulled with a
constant velocity u, then the velocity distribution of the fluid between the plates will
be linear as shown in Figure 1.2.

To produce the constant velocity motion of the upper plate, a tangential force
must be applied to the plate. The magnitude of the force must be equal to the
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Fixed plate

FIGURE 1.2
Shear stress between two plates.

friction forces in the fluid. It has been established from experiments that the force
per unit of area of the plate is proportional to the velocity of the moving plate and
inversely proportional to the distance between the plates. Expressed mathemati-
cally we have

u
T“Z (1.7)

where 7 is the force per unit area, which is called the shear stress.

A more general form of Equation (1.7) can be written by replacing u/h with
the derivative du/dy. The proportionality factor is denoted by u, the coefficient of
absolute viscosity, which is obtained experimentally.

T=p— (1.8)

Equation (1.8) is known as Newton’s law of friction.

For gases, the absolute viscosity depends only on the temperature, with in-
creasing temperature causing an increase in viscosity. To estimate the change in
viscosity with the temperature, several empirical formulations commonly are used.
The simplest formula is Rayleigh’s, which is

3/4
H Tl)
L QY s 1.9)
Mo (To (

where the temperatures are on the absolute scale and the subscript O denotes the
reference condition.

An alternate expression for calculating the variation of absolute viscosity with
temperature was developed by Sutherland. The empirical formula developed by
Sutherland is valid provided the pressure is greater than 0.1 atmosphere and is

B (5)3/2 L + 5 (1.10)
Ho [ T, + S, )

where S, is a constant, When the temperatures are expressed in the Rankine scale,
S, = 198°R; when the temperatures are expressed in the Kelvin scale, §, = 110°K.

The ratio of the absolute viscosity to the density of the fluid is a parameter that
appears frequently and has been identified with the symbol »; it is called the
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kinematic viscosity:
v == (1.11)
P
An important dimensionless quantity, known as the Reynolds number, is defined as
v _ VI
1 v

R, = (1.12)
where [ is a characteristic length and V is the fluid velocity.

The Reynolds number can be thought of as the ratio of the inertial to viscous
forces of the fluid.

1.2.6 The Mach Number and the Speed of Sound

The ratio of an airplane’s speed V to the local speed of sound a is an extremely
important parameter, called the Mach number after the Austrian physicist Ernst
Mach. The mathematical definition of Mach number is

M= 4 (1.13)
a

As an airplane moves through the air, it creates pressure disturbances that propa-
gate away from the airplane in all directions with the speed of sound. If the airplane
is flying at a Mach number less than 1, the pressure disturbances travel faster
than the airplane and influence the air ahead of the airplane. An example of this
phenomenon is the upwash field created in front of a wing. However, for flight at
Mach numbers greater than 1 the pressure disturbances move more slowly than
the airplane and, therefore, the flow ahead of the airplane has no warning of the
oncoming aircraft.

The aerodynamic characteristics of an airplane depend on the flow regime
around the airplane. As the flight Mach number is increased, the flow around the
airplane can be completely subsonic, a mixture of subsonic and supersonic flow, or
completely supersonic. The flight Mach number is used to classify the various flow
regimes. An approximate classification of the flow regimes follows:

Incompressible subsonic flow 0<M<O05
Compressible subsonic flow 05 <M<08
Transonic flow 08<M<1.2
Supersonic flow 1L2<M<S5
Hypersonic flow 5<M

To have accurate aecrodynamic predictions at M > 0.5 compressibility effects must
be included.

The local speed of sound must be known to determine the Mach number. The
speed of sound can be shown to be related to the absolute ambient temperature by
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the following expression:
a = (yRT)'? (L.14)

where 7y is the ratio of specific heats and R is the gas constant. The ambient
temperature will be shown in a later section to be a function of altitude.

1.3
AEROSTATICS

Aerostatics deals with the state of a gas at rest. It follows from the definition given
for a fluid that all forces acting on the fluid must be normal to any cross-section
within the fluid. Unlike a solid, a fluid at rest cannot support a shearing force. A
consequence of this is that the pressure in a fluid at rest is independent of direction.
That is to say that at any point the pressure is the same in all directions. This
fundamental concept owes its origin to Pascal, a French scientist (1623—1662).

1.3.1 Variation of Pressure in a Static Fluid

Consider the small vertical column of fluid shown in Figure 1.3. Because the fluid
is at rest, the forces in both the vertical and horizontal directions must sum to 0.
The forces in the vertical direction are due to the pressure forces and the weight of
the fluid column. The force balance in the vertical direction is given by

PA = (P + dP)A + pgA dh (1.15)
or dP = —pg dh (1.16)

P+dP FIGURE 1.3
Element of fluid at rest.
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Equation (1.16) tells us how the pressure varies with elevation above some refer-
ence level in a fluid. As the elevation is increased, the pressure will decrease.
Therefore, the pressure in a static fluid is equal to the weight of the column of fluid
above the point of interest.

One of the simplest means of measuring pressure is by a fluid manometer.
Figure 1.4 shows two types of manometers. The first manometer consists of a
U-shaped tube containing a liquid. When pressures of different magnitudes are
applied across the manometer the fluid will rise on the side of the lower pressure
and fall on the side of the higher pressure. By writing a force balance for each side,
one can show that

P A + pgxA = P,A + pg(x + hA (1.17)

which yields a relationship for the pressure difference in terms of the change in
height of the liquid column:

P, — P, = pgh (1.18)

The second sketch shows a simple mercury barometer. The barometer can be
thought of as a modified U-tube manometer. One leg of the tube is closed off and
evacuated. The pressure at the top of this leg is 0 and atmospheric pressure acts on
the open leg. The atmospheric pressure therefore is equal to the height of the
mercury column; that is,

Pam = pgh (1.19)

In practice the atmospheric pressure is commonly expressed as so many inches or
millimeters of mercury. Remember, however, that neither inches nor millimeters of
mercury are units of pressure.

P, P, FIGURE 14
Sketch of U-tube manometer
and barometer.

U-tube manometer Barometer
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1.4
DEVELOPMENT OF BERNOULLI’S EQUATION

Bernoulli’s equation establishes the relationship between pressure, elevation, and
velocity of the flow along a stream tube. For this analysis, the fluid is assumed to
be a perfect fluid; that is, we will ignore viscous effects. Consider the element of
fluid in the stream tube shown in Figure 1.5. The forces acting on the differential
element of fluid are due to pressure and gravitational forces. The pressure force
acting in the direction of the motion is given by

P
Fprcssure = PdA ~ (P + (33_5‘ dS) dA (1.20)
or = —dP dA (1.21)

The gravitational force can be expressed as

Fgravi(ational = -8 dm Sin a (122)
dz

= —gdm— 1.23

g dm - (1.23)

Applying Newton’s second law yields

dz dv
- — — = — 1.
dPdA — gdm dm s (1.24)

The differential mass dm can be expressed in terms of the mass density of the fluid
element times its respective volume; that is,

dm = p dA ds (1.25)

Inserting the expression for the differential mass, the acceleration of the fluid can

FIGURE 1.5
Forces acting on an element of flow
in a stream tube.

- Stream tube
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be expressed as

v _ 1dP_ d

— = - 1.26
dt p ds 8 4s ( )
The acceleration can be expressed as
1% d

dr at ds dr

The first term on the right-hand side, dV/at, denotes the change in velocity as a
function of time for the entire flow field. The second term denotes the acceleration
due to a change in location. If the flow field is steady, the term 98V/87 = 0 and
Equation (1.27) reduce to

aV ds 1 dP dz
—— = ——— = g 1.28
ds dt p ds gds ( )

The changes of pressure as a function of time cannot accelerate a fluid particle. This
is because the same pressure would be acting at every instant on all sides of the fluid
particles. Therefore, the partial differential can be replaced by the total derivative
in Equation (1.28):

v _ 1dP_ dz

ds p ds £ (1.29)

Integrating Equation (1.29) along a streamline yields

2 2 2
dpP
deVz—f——gfdz (1.30)
1 P 1

which is known as Bernoulli’s equation. Bernoulli’s equation establishes the rela-
tionship between pressure, elevation, and velocity along a stream tube.
1.4.1 Incompressible Bernoulli Equation

If the fluid is considered to be incompressible, Equation (1.29) readily can be
integrated to yield the incompressible Bernoulli equation:

1 1
P, + EPV;Z + pgz, = P, + EpVﬁ + pgz; (13D

The differences in elevation usually can be ignored when dealing with the flow of
gases such as air. An important application of Bernoulli’s equation is the determi-
nation of the so-called stagnation pressure of a moving body or a body exposed to
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a flow. The stagnation point is defined as that point on the body at which the flow
comes to rest. At that point the pressure is

1
Py = P. + 5pV2 (1.32)

where P.. and V., are the static pressure and velocity far away from the body; that
is, the pressures and velocities that would exist if the body were not present. In the
case of a moving body, V., is equal to the velocity of the body itself and P, is the
static pressure of the medium through which the body is moving.

1.4.2 Bernoulli’s Equation for a Compressible Fluid

At higher speeds (on the order of 100 m/s), the assumption that the fluid density of
gases is constant becomes invalid. As speed is increased, the air undergoes a
compression and, therefore, the density cannot be treated as a constant. If the fliow
can be assumed to be isentropic, the relationship between pressure and density can
be expressed as

P=cp” (1.33)

where v is the ratio of specific heats for the gas. For air, y is approximately 1.4.
Substituting Equation (1.33) into Equation (1.30) and performing the indi-
cated integrations yields the compressible form of Bernoulli’s equation:

P 1
7—3——{ ; + EVZ + gz = constant (1.34)

As noted earlier, the elevation term usually is quite small for most aeronautical
applications and therefore can be ignored. The stagnation pressure can be found by
letting V = 0, in Equation (1.34):

y Pl v R

— = (1.35
y-1lp 2 Yy~ lp )
If we rearrange Equation (1.35), we obtain
— P,/P
y -1 Ly PP (1.36)

2 vyPlp PoP

Equation (1.36) can be solved for the velocity by substituting the following expres-
sions,

a* = yRT = yP/p (1.37)

Py Po 4
and LB (1.38)
P p
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into Equation (1.36) and rearranging to yield a relationship for the velocity and the
Mach number as follows.

2 (y=1/y 172
T e

-D/y 1/2
-1 (140

Equations (1.39) and (1.40) can be used to find the velocity and Mach number
provided the flow regime is below M = 1.

1.5
THE ATMOSPHERE

The performance characteristics of an airplane depend on the properties of the
atmosphere through which it flies. Because the atmosphere is continuously chang-
ing with time, it is impossible to determine airplane performance parameters pre-
cisely without first defining the state of the atmosphere.

The earth’s atmosphere is a gaseous envelope surrounding the planet. The gas
that we call air actually is a composition of numerous gases. The composition of
dry air at sea level is shown in Table 1.1. The relative percentages of the con-
stituents remains essentially the same up to an altitude of 90 km or 300,000 ft
owing primarily to atmospheric mixing caused by winds and turbulence. At alti-
tudes above 90 km the gases begin to settle or separate. The variability of water
vapor in the atmosphere must be taken into account by the performance analyst.
Water vapor can constitute up to 4 percent by volume of atmospheric air. When the
relative humidity is high, the air density is lower than that for dry air for the same
conditions of pressure and temperature. Under these conditions the density may be
reduced by as much as 3 percent. A change in air density will cause a change in the
aerodynamic forces acting on the airplane and therefore influence its performance
capabilities. Furthermore, changes in air density created by water vapor will affect
engine performance, which again influences the performance of the airplane.

TABLE 1.1
Composition of atmospheric air

Density Percentage by Percentage by
kg/m? slugs/ft* volume weight
Air 1.2250 2.3769 X 107° 100 100
Nitrogen 78.03 75.48
Oxygen 20.99 23.18
Argon 0.94 1.29

The remaining small portion of the composition of air is made up of neon, helium,
krypton, xenon, CO, and water vapor.
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The atmosphere can be thought of as composed of various layers, with each
layer of the atmosphere having its own distinct characteristics. For this discussion
we will divide the atmosphere into four regions. In ascending order the layers are
the troposphere, stratosphere, ionosphere, and exosphere. The four layers are illus-
trated in Figure 1.6. The troposphere and stratosphere are extremely important
to aerospace engineers since most aircraft fly in these regions. The troposphere
extends from the Earth’s surface to an altitude of approximately 613 miles or
10—20 km. The air masses in the troposphere are in constant motion and the region
is characterized by unsteady or gusting winds and turbulence. The influence of
turbulence and wind shear on aircraft structural integrity and flight behavior con-
tinues to be an important area of research for the aeronautical community. The
structural loads imposed on an aircraft during an encounter with turbulent air can
reduce the structural life of the airframe or in an encounter with severe turbulence
can cause structural damage to the airframe.

Wind shear is an important atmospheric phenomenon that can be hazardous to
aircraft during takeoff or landing. Wind shear is the variation of the wind vector in
both magnitude and direction. In vertical wind shear, the wind speed and direction

Rarefied gasses FIGURE 1.6
fringe of the Layers of earth’s atmosphere.
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change with altitude. An airplane landing in such a wind shear may be difficult to
control; this can cause deviations from the intended touchdown point. Wind shears
are created by the movement of air masses relative to one another or to the earth’s
surface. Thunderstorms, frontal systems, and the earth’s boundary layer all pro-
duce wind shear profiles that at times are severe enough to be hazardous to aircraft
flying at a low altitude.

The next layer above the troposhere is called the stratosphere. The stratosphere
extends up to over 30 miles, or 50 km, above the Earth’s surface. Unlike the tropo-
sphere, the stratosphere is a relatively tranquil region, free of gusts and turbulence,
but it is characterized by high, steady winds. Wind speeds of the order of 37 m/s or
120 ft/s have been measured in the stratosphere.

The ionosphere extends from the upper edge of the stratosphere to an altitude of
up to 300 miles or 500 km. (The name is derived from the word ion, which describes
a particle that has either a positive or negative electric charge.) This is the region
where the air molecules undergo dissociation and many electrical phenomena occur.
The aurora borealis is a visible electrical display that occurs in the ionosphere.

The last layer of the atmsophere is called the exosphere. The exosphere is the
outermost region of the atmosphere and is made up of rarefied gas. In effect this is
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FIGURE 1.7

Temperature profile in the standard atmosphere.
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TABLE 1.2
Properties of air at sea level in the standard atmosphere

English units SI units

Gas constant, R 1718 ft.Ib/(slug - °R) 287 m?/(°K- s?)
Pressure, P 2116.2 b/ft? 1.012 X 10% N/m?

29.92 in Hg 760 mm Hg
Density, p 2.377 X 107? slug/ft® 1.225 kg/m?
Temperature 518.69°R 288.16°K
Absolute viscosity, w 3.737 X 1077 1b - s/ft? 1.789 X 1073 N - s/m?
Kinematic viscosity, v 1.572 X 107 ft¥s 1.460 X 107° m¥s
Speed of sound, a 1116.4 ft/s 340.3 m/s

a transition zone between the earth’s atmosphere and interplanetary space. For
many applications we can consider air resistance to cease in the exosphere.

As stated previously, the properties of the atmosphere change with time and
location on the Earth. To compare the flight performance characteristics of air-
planes and flight instruments, a standard atmosphere was needed. The modern
standard atmosphere was first developed in the 1920s, independently in the United
States and Europe. The National Advisory Committee for Aeronautics (NACA)
generated the American Standard Atmosphere. The European standard was devel-
oped by the International Commission for Aerial Navigation (ICAN). The two
standard atmospheres were essentially the same except for some slight differences.
These differences were resolved by an international committee and an interna-
tional standard atmosphere was adopted by the International Civil Aviation Orga-
nization (ICAO) in 1952.

The standard atmosphere assumes a unique temperature profile that was deter-
mined by an extensive observation program. The temperature profile consists of
regions of linear variations of temperature with altitude and regions of constant
temperature (isothermal regions). Figure 1.7 shows the temperature profile
through the standard atmosphere. The standard sea-level properties of air are listed
in Table 1.2.

The properties of the atmosphere can be expressed analytically as a function
of altitude. However, before proceeding with the development of the analytical
model of the atmosphere, we must define what we mean by altitude. For the present
we will be concerned with three different definitions of altitude: absolute, geomet-
ric, and geopotential. Figure 1.8 shows the relationship between absolute and
geometric altitude. Absolute altitude is the distance from the center of the Earth to

Ro - Radius of the earth FIGURE 1.8
Definition of geometric and

. . 1 i .
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‘ R h,~ Absolute altitude
° distance from the center of
R, — the earth to the point in
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the point in question, whereas the geometric altitude is the height of the point above
sea level. The absolute and geometric altitudes are related to each other in the
following manner:

h, = hs + Ry (1.41)

where 4, A, and R, are the absolute altitude, geometric altitude, and radius of the
earth, respectively.

Historically, measurements of atmospheric properties have been based on the
assumption that the acceleration due to gravity is constant. This assumption leads
to a fictitious altitude called the geopotential altitude. The relationship between the
geometric and geopotential altitudes can be determined from an examination of the
hydrostatic equation (Equation (1.16)). Rewriting the hydrostatic equation,

dP = —pg dh (1.42)

we see that the change in pressure is a function of the fluid density, and if we
employ the acceleration due to gravity at sea level, then h is the geopotential
altitude. Therefore, we have

dP = —pg, dh (1.43)
when £ is the geopotential height and
dP = —pg dhg (1.44)

when h; is the geometric height.
Equations (1.43) and (1.44) can be used to establish the relationship between
the geometric and geopotential altitude. On comparing these equations we see that

dh = £ dn, (1.45)
8o
Further it can be shown that
_ R, ¥
&= & <R0 n h(;> (1.46)
which when substituted into Equation (1.45) yields
R} dhg
dh = —— (1.47)
(Ry + hg)?

Equation (1.47) can be integrated to give an expression relating the two altitudes:

__ R
h= ghe (1.48)
R
or hg = p (1.49)

R, — h
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In practice, the difference between the geometric and geopotential altitudes is quite
small for altitudes below 15.2 km or 50,000 ft. However, for the higher altitudes
the difference must be taken into account for accurate performance calculations.

Starting with the relationship for the change in pressure with altitude and the
equations of state

dP = —pg, dh (1.50)
and P = pRT (1.51)
we can obtain the following expression by dividing (1.50) by (1.51):

dP _ _ g dh

= -—-=— 1.52
P RT ( )
If the temperature varies with altitude in a linear manner, Equation (1.52) yields
P h
dpP dh
f S . C—— (1.53)
, P R ) T + Mh— h)
1 1
which on integration gives
P gO Tl + A(h - hl)
—_— T e — 1 ————————————————————e. .
= TR T, (1.54)

where P,, T\, and h, are the pressure, temperature, and altitude at the start of the
linear region and A is the rate of temperature change with altitude, which is called
the lapse rate. Equation (1.54) can be rewritten in a more convenient form as

P T _80/(’“)
F == (F) (1.55)
1 1

Equation (1.55) can be used to calculate the pressure at various altitudes in any one
of the linear temperature profile regions, provided the appropriate constants P, T},
h,, and A are used.

The density variation can be easily determined as follows:

P _ T
P, e T,

~[1+go/(RM)]
P T)
—=|= (1.57)
P (Tl

In the isothermal regions the temperature remains constant as the altitude
varies. Starting again with Equation (1.52) we obtain

(1.56)

and therefore

! 8o
—_=—2 (-} 1.
In P RT, (h ) (1.58)
or — = g % h)/(RT) (1.59)
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TABLE 1.3
Properties of the atmosphere at the isothermal gradient boundaries

Geopotential Geometric

altitude, altitude,

H, km Z, km T,°K P, N/m? p, kg/m?® dT/dH, °K/km
0 0 288.15 1.01325 X 10° 1.225 -6.5
11 11.019 216.65 2.2636 X 10* 3.639 X 107! 0
20 20.063 216.65 5474 %X 103 8.803 X 1072 1
32 32.162 228.65 8.6805 X 102 1.332 X 1072 —-2.8
47 47.350 270.65 1.1095 X 102 1.427 x 1073 0
52 52.429 270.65 5.9002 x 10! 7.594 x 107 -2
61 61.591 252.65 1.8208 x 10! 2.511 X 107* —4
79 79.994 180.65 1.03757 2.001 X 103 0
88.74 90.0 180.65 0.16435 3.170 X 1073

where P,, T\, and h, are the values of pressure, temperature, and altitude at the start
of the isothermal region. The density variation in the isothermal regions can be
obtained as

f. — e—go(h—h,)/(RT,) (1.60)
1

Equations (1.55), (1.57), (1.59), and (1.60) can be used to predict accurately the
pressure and density variation in the standard atmosphere up to approximately
57 miles, or 91 km. Table 1.3 gives the values of temperature, pressure, and density
at the boundaries between the various temperature segments. The properties of the
standard atmosphere as a function of altitude are presented in tabular form in
Appendix A.

EXAMPLE PROBLEM 1.1. The temperature from sea level to 30,000 ft is found to
decrease in a linear manner. The temperature and pressure at sea level are measured
to be 40°F and 2050 Ib/ft?, respectively. If the temperature at 30,000 ft is —60°F, find
the pressure and density at 20,000 ft.

Solution. The temperature can be represented by the linear equation

T=T + Ah
where T, = 499.6°R
T-T,
and A= T = ~0.00333° R/ft

The temperature at 20,000 ft can be obtained as
T = 499.6 — (0.00333° R/ft)h

When A2 = 20,000 ft, T = 432.9°R. The pressure can be calculated from Equa-
tion (1.54); that is,

P [T\*™ T\ /™ 432.9°R\® ,
==z P =P = 050 /i) (o= ) = 915 Ib/fe
1 I i .
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The density can be found from either Equation (1.3) or (1.56). Using the equation of

State,
P = pRT _ P
p p=
- 915 Ib/f = 0.00123 slug/ft’
P =718 /(s - R))(@32.9°R) sve
1.6

AERODYNAMIC NOMENCLATURE

To describe the motion of an airplane it is necessary to define a suitable coordinate
system for the formulation of the equations of motion. For most problems dealing
with aircraft motion, two coordinate systems are used. One coordinate system is
fixed to the Earth and may be considered for the purpose of aircraft motion analysis
to be an inertial coordinate system. The other coordinate system is fixed to the
airplane and is referred to as a body coordinate system. Figure 1.9 shows the two
right-handed coordinate systems.

The forces acting on an airplane in flight consist of aerodynamic, thrust, and
gravitational forces. These forces can be resolved along an axis system fixed to the
airplane’s center of gravity, as illustrated in Figure 1.10. The force components are
denoted X, Y, and Z; T, T,, and T; and W,, W,, and W, for the aerodynamic, thrust,
and gravitational force components along the x, y, and z axes, respectively. The

Body fixed frame
translates and rotates
with the aircraft.

Xy

X

Y
Fixed frame
Z

FIGURE 1.9
Body axis coordinate system.
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Roll Pitch Yaw
Axis Axis Axis
Xy Yo Zy
Angular rates p q r
Velocity components u v w
Aerodynamic force components X Y V4
Aerodynamic moment components L M N
Moment of inertia | I |
about each axis X ¥ z
Products of inertia |, |, Ly

FIGURE 1.10

Definition of forces, moments, and velocity components in a

body fixed coordinate

aerodynamic forces are defined in terms of dimensionless coefficients, the flight

dynamic pressure , and a reference area S as follows:

X =C.0S Axial force
Y =C,08 Side force
Z=C, 08 Normal force

In a similar manner, the moments on the airplane can be divided into moments
created by the aerodynamic load distribution and the thrust force not acting
through the center of gravity. The components of the aerodynamic moment also
are expressed in terms of dimensionless coefficients, flight dynamic pressure, refer-
ence area, and a characteristic length as follows:

L = C QS Rolling moment (1.64)
M = C, QS Pitching moment (1.65)
N = C,0Sl Yawing moment (1.66)
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For airplanes, the reference area S is taken as the wing platform area and the
characteristic length / is taken as the wing span for the rolling and yawing moment
and the mean chord for the pitching moment. For rockets and missiles, the refer-
ence area is usually taken as the maximum cross-sectional area, and the character-
istic length is taken as the maximum diameter.

The aerodynamic coefficients C,, C,, C,, C;, C,, and C, primarily are a func-
tion of the Mach number, Reynolds number, angle of attack, and sideslip angle;
they are secondary functions of the time rate of change of angle of attack and
sideslip, and the angular velocity of the airplane.

The aerodynamic force and moment acting on the airplane and its angular and
translational velocity are illustrated in Figure 1.10. The x and z axes are in the
plane of symmetry, with the x axis pointing along the fuselage and the positive y
axis along the right wing. The resultant force and moment, as well as the airplane’s
velocity, can be resolved along these axes.

The angle of attack and sideslip can be defined in terms of the velocity compo-
nents as illustrated in Figure 1.11. The equations for a and 8 follow:

a=tan"' 2 (1.67)
u

and B =sin"' = (1.68)
|4

where V=(u?+ 02+ w) (1.69)

If the angle of attack and sideslip are small, that is, < 15°, then Equations (1.67)

FIGURE 1.11
Definition of angle of attack
and sideslip.

V; is the project of V
Z, into the x, z, plane.
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and (1.68) can be approximated by

o = (1.70)

==

and B :g (1.71)

where « and @ are in radians.

1.7
AIRCRAFT INSTRUMENTS

The earliest successful airplanes were generally flown without the aid of aircraft
instruments.* The pilots of these early vehicles were preoccupied primarily with
maneuvering and controlling their sometimes temperamental aircraft. However, as
new designs were developed, the performance, stability, and control steadily im-
proved to the point where the pilot needed more information about the airplane’s
flight conditions to fly the airplane safely. One major change in aircraft design that
led to improved performance was the evolution of the open-air cockpit. Prior to
this development, pilots flew their airplanes in either a crouched or inclined posi-
tion, exposed to the oncoming airstream. In addition to providing the pilot shelter
from the airstream, the cockpit also provided a convenient place to locate aircraft
instruments. The early open-cockpit pilots were hesitant to fly from a closed
cockpit because this eliminated their ability to judge sideslip (or skid) by the wind
blowing on one side of their face. They also used the sound of the slipstream to
provide an indication of the airspeed.

A chronological development of aircraft instruments is not readily available;
however, one can safely guess that some of the earliest instruments to appear on the
cockpit instrument panel were a magnetic compass for navigation, airspeed and
altitude indicators for flight information, and engine instruments such as rpm and
fuel gauges. The flight decks of modern airplanes are equipped with a multitude of
instruments that provide the flight crew with information they need to fly their
aircraft. The instruments can be categorized according to their primary use as
flight, navigation, power plant, environmental, and electrical systems instruments.

Several of the instruments that compose the flight instrument group will be
discussed in the following sections. The instruments include the airspeed indicator,
altitneter, rate of climb indicator, and the Mach meter. These four instruments,
along with angle of attack and sideslip indicators, are extremely important for flight
test measurement of performance and stability data.

*The Wright brothers used several instruments on their historic flight. They had a tachometer to
measure engine rpm, an anemometer to measure airspeed, and a stopwatch.



1.7 Aircraft Instruments 23

1.7.1 Air Data Systems

The Pitot static system of an airplane is used to measure the total pressure created
by the forward motion of the airplane and the static pressure of the ambient
atmosphere. The difference between total and static pressures is used to measure
airspeed and the Mach number, and the static pressure is used to measure altitude
and rate of climb. The Pilot static system is illustrated in Figure 1.12. The Pilot
static probe normally consists of two concentric tubes. The inner tube is used to
determine the total pressure, and the outer tube is used to determine the static
pressure of the surrounding air.

1.7.2 Airspeed Indicator

The pressures measured by the Pitot static probe can be used to determine
the airspeed of the airplane. For low flight speeds, when compressibility effects
can be safely ignored, we can use the incompressible form of Bernoulli’s equa-
tion to show that the difference between the total and the static pressure is

Static pressure (outer tube) FIGURE 1.12
\ Static pressure holes Pitot static system.
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[ Total pressure (inner tube)
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the dynamic pressure:

1
P,=P +§pV3° (1.72)
1 2
SPVi=P = P (1.73)
p, — P)\"”
or vV, = (b—;——)> (1.74)

The airspeed indicator in the cockpit consists of a differential pressure gauge that
measures the dynamic pressure and deflects an indicator hand proportionally to the
pressure difference. As indicated by Equation (1.74), the airspeed is a function of
both the measured pressure difference and the air density p. As was shown earlier,
the air density is a function of altitude and atmospheric conditions. To obtain the
true airspeed, the airspeed indicator would be required to measure the change in
both pressure and air density. This is not feasible for a simple instrument and
therefore the scale on the airspeed indicator is calibrated using standard sea-level
air. The speed measured by the indicator is called the indicated airspeed (IAS).

The speed measured by an airspeed indicator can be used to determine the true
flight speed, provided that the indicated airspeed is corrected for instrument error,
position error, compressibility effects, and density corrections for altitude varia-
tions. Instrument error includes those errors inherent to the instrument itself; for
example, pressure losses or mechanical inaccuracies in the system. Position error
has to do with the location of the Pitot static probe on the airplane. Ideally, the
probe should be located so that it is in the undisturbed freestream; in general this
is not possible and so the probe is affected by flow distortion due to the fuselage or
wing. The total pressure measured by a Pitot static probe is relatively insensitive to
flow inclination. Unfortunately, this is not the case for the static measurement and
care must be used to position the probe to minimize the error in the static measure-
ment. If one knows the instrument and position errors, one can correct the indi-
cated airspeed to give what is referred to as the calibrated airspeed (CAS).

At high speeds, the Pitot static probe must be corrected for compressibility
effects. This can be demonstrated by examining the compressible form of the
Bernoulli equation:

V2 P P
Yy ¥y r__ ¥ b (1.75)
2 y—1lp vy-—1p

Equation (1.75) can be expressed in terms of the Mach number as follows:

y— 1 y/y=1

Recall that the airspeed indicator measures the difference between the total and
static pressure. Equation (1.76) can be rewritten as

_ Y/ =1
Q.=P,—P= [<1+72 1M2> —1] (1.77)
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where Q. is the compressible equivalent to the dynamic pressure. Figure 1.13
shows the percentage error in dynamic pressure if compressibility is ignored.

The equivalent airspeed (EAS) can be thought of as the flight speed in the
standard sea-level air mass that produces the same dynamic pressure as the actual
flight speed. To obtain the actual, or true, airspeed (TAS), the equivalent airspeed
must be corrected for density variations. Using the fact that the dynamic pressures
are the same, one can develop a relationship between the true and equivalent
airspeeds as follows:

1 1
Epo Vias = EPV%AS (1.78)
v,
Vias = \—j_'f (1.79)

where o = p/p,.
The definitions for the various airspeed designations are summarized in
Table 1.4.

TABLE 14
Airspeed designations

Airspeed* Definition

Vias Airspeed indicated by the airspeed instrument. The indicated airspeed
Indicated airspeed is affected by altitude, compressibility, instrument, and position error.
Veas Indicated airspeed corrected for instrument and position errors.

Calibrated airspeed

Veas Calibrated airspeed corrected for compressibility.
Equivalent airspeed

Vias Equivalent airspeed corrected for density altitude.
True airspeed

*When the prefix K is used in the subscript, the airspeed is in knots.
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1.7.3 Altimeter

An altimeter is a device to measure the altitude of an airplane. The control of an
airplane’s altitude is very important for safe operation. Pilots use an altimeter to
maintain adequate vertical spacing between their aircraft and other airplanes oper-
ating in the same area and to establish sufficient distance between the airplane and
the ground.

Earlier in this chapter we briefly discussed the mercury barometer. A barome-
ter can be used to measure the atmospheric pressure. As we have shown, the static
pressure in the atmosphere varies with altitude, so that if we use a device similar
to a barometer we can measure the static pressure outside the airplane, and then
relate that pressure to a corresponding altitude in the standard atmosphere. This is
the basic idea behind a pressure altimeter.

The mercury barometer of course would be impractical for application in
aircraft, because it is both fragile and sensitive to the airplane’s motion. To avoid
this difficulty, the pressure altimeter uses the same principle as an aneroid* barom-
eter. This type of barometer measures the pressure by magnifying small deflections
of an elastic element that deforms as pressure acts on it.

The altimeter is a sensitive pressure transducer that measures the ambient
static pressure and displays an altitude value on the instrument dial. The alti-
meter is calibrated using the standard atmosphere and the altitude indicated by
the instrument is referred to as the pressure altitude. The pressure altitude is
the altitude in the standard atmosphere corresponding to the measured pressure.
The pressure altitude and actual or geometric altitude will be the same only when
the atmosphere through which the airplane is flying is identical to the standard
atmosphere.

In addition to pressure altitude two other altitudes are important for perfor-
mance analysis: the density and temperature altitudes. The density altitude is
the altitude in the standard atmosphere corresponding to the ambient density.
In general, the ambient density is not measured but rather calculated from the
pressure altitude given by the altimeter and the ambient temperature measured
by a temperature probe. The temperature altitude, as you might guess, is the
altitude in the standard atmosphere corresponding to the measured ambient
temperature.

As noted earlier the atmosphere is continuously changing; therefore, to com-
pare performance data for an airplane from one test to another or to compare
different airplanes the data must be referred to a common atmospheric reference.
The density altitude is used for airplane performance data comparisons.

An altimeter is an extremely sophisticated instrument, as illustrated by the
drawing in Figure 1.14. This particular altimeter uses two aneroid capsules to
increase the sensitivity of the instrument. The deflections of the capsules are
magnified and represented by the movement of the pointer with respect to a scale
on the surface plate of the meter and a counter. This altimeter is equipped with a

* Aneroid is derived from the Greek word aneros, which means *“‘not wet.”
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FIGURE 1.14
Cutaway drawing of an altimeter.

barometric pressure-setting mechanism. The adjusting mechanism allows the pilot
manually to correct the altimeter for variations in sea-level barometric pressure.
With such adjustments, the altimeter will indicate an altitude that closely ap-
proaches the true altitude above sea level.

1.7.4 Rate of Climb Indicator

One of the earliest instruments used to measure rate of climb was called a stato-
scope. This instrument was used by balloonists to detect variation from a desired
altitude. The instrument consisted of a closed atmospheric chamber connected by
a tube containing a small quantity of liquid to an outer chamber vented to the
atmosphere. As the altitude changed, air would flow from one chamber to the other
to equalize the pressure. Air passing through the liquid would create bubbles and
the direction of the flow of bubbles indicated whether the balloon was ascending or
descending. A crude indication of the rate of climb was obtained by observing the
frequency of the bubbles passing through the liquid.

Although the statoscope provided the balloonist a means of detecting departure
from a constant altitude, it was difficult to use as a rate of climb indicator. A new
instrument, called the balloon variometer, was developed for rate of climb mea-
surements. The variometer was similar to the statoscope; however, the flow into the
chamber took place through a capillary leak. The pressure difference across the
leak was measured with a sensitive liquid manometer that was calibrated to indi-
cate the rate of climb.
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FIGURE 1.15
Sketch of the basic components of a rate of climb indicator.

Present-day rate of climb indicators are similar to the variometer. An example
of a leak type rate of climb indicator is shown in Figure 1.15. This instrument
consists of an insulated chamber, a diaphragm, a calibrated leak, and an appropri-
ate mechanical linkage to measure the deflection of the diaphragm. The static
pressure is applied to the interior of the diaphragm and also allowed to leak into the
chamber by way of a capillary or orifice opening. The diaphragm measures the
differential pressure across the leak and the deflection of the diaphragm is transmit-
ted to the indicator dial by a mechanical linkage, as illustrated in the sketch in
Figure 1.15.

1.7.5 Machmeter

The Pitot static tube can be used to determine the Mach number of an airplane from
the measured stagnation and static pressure. If the Mach number is less than 1,
Equation (1.40) can be used to find the Mach number of the airplane:

P -1 Y-
5= <1 + YTMZ) (1.80)

However, when the Mach number is greater than unity, a bow wave forms ahead
of the Pitot probe, as illustrated in Figure 1.16. The bow wave is a curved detached
shock wave. In the immediate vicinity of the Pitot orifice, the shock wave can be
approximated as a normal shock wave. Using the normal shock relationships, the
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Bow shock

FIGURE 1.16
Detached shock wave ahead of a Pitot static probe.

pressure ratio across the shock can be written as

2- (- ()
7 (y_lMl T (1.81)

where M, is the Mach number ahead of the shock wave. The relationship between
the Mach number M, ahead of the normal shock and the Mach number M, behind
the shock is given by Equation (1.82):

Mz = 20 = DME+
oMl -3y - 1)

(1.82)

After passing through the shock wave, the air is slowed adiabatically to zero
velocity at the total pressure orifice of the Pitot probe. The pressure ratio behind
the shock can be expressed as

P _ yY=b
2= (1 + 12 1M§) (1.83)
2

On combining the previous equations, the ratio of stagnation pressure to static
pressure in terms of the flight Mach number can be written:

[ ()
Pl—[<y+1M' y+1
_ oo, 2 v/(y=1)
<[ Gt ]
2 YMi =3y = 1)

This expression is known as the Rayleigh Pitot tube formula, named after Lord
Rayleigh, who first developed this equation in 1910. If we assume that the ratio y

(1.84)
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of specific heats for air is 1.4, the expression can be rewritten as

P, TM? -1 (Mf +5 ):lls
s Rl I + 02— 1.

The preceding equations can be used to design a Mach meter.

The use of Rayleigh’s formula is invalid for every high Mach numbers or
altitudes. When the Mach number is high, appreciable heat will be exchanged,
which violates the assumption of adiabatic flow used in the development of the
equation. At very high altitude, air cannot be considered as a continuous medium
and again the analysis breaks down.

1.7.6 Angle of Attack Indicators

The measurement of angle of attack is important for cruise control and stall
warning. Several devices can be used to measure the angle of attack of an airplane,
two of which are the vane and pressure-sensor type indicator. The pivot vane sensor
is a mass-balanced wind vane that is free to align itself with the oncoming flow. The
vane type angle of attack sensor has been used extensively in airplane flight test
programs. For flight test applications the sensor usually is mounted on a nose boom
or a boom mounted to the wing tips along with a Pitot static probe, as illustrated
in Figure 1.17. Note that a second vane system is mounted on the boom to measure
the sideslip angle.

The angle measured by the vane is influenced by the distortion of the flow field
created by the airplane. Actually, the sensor measures only the local angle of
attack. The difference between the measured and actual angles of attack is called
the position error. Position error can be minimized by mounting the sensor on the
fuselage, where the flow distortion is small. The deflection of the vane is recorded
by means of a potentiometer.

A null-seeking pressure sensor also can be used to measure the angle of attack.
Figure 1.18 is a schematic of a null-seeking pressure sensor. The sensor consists of
the following components: a rotatable tube containing two orifices spaced at equal
angles to the tube axis, a pressure transducer to detect the difference in pressure
between the two orifices, a mechanism for rotating the probe until the pressure
differential is 0, and a device for measuring the rotation or angle of attack. The
device shown in Figure 1.18 consists of a rotable probe that protrudes through the

Five-hole probe for flow FIGURE 1.17

orientation measurments  Flight test instrumentation,

Pitot static probe, angle of
Angle of attack vane attack and sideslip vanes,

== [ | — — f — 3 five-hole probe mounted on
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FIGURE 1.18
Null-sensing pressure probe for measuring angle of attack.

fuselage and an air chamber mounted inside the fuselage. The pressures from the
two slits are vented to air chambers by a swivel paddle. If a pressure difference
exists at the two slots, the swivel paddle will rotate. The paddle is connected by way
of linkages so that, as the paddle moves, the pressure tube is rotated until the
pressures are equalized. The angular position of the probe is recorded by a poten-
tiometer.

EXAMPLE PROBLEM 12. An aircraft altimeter calibrated to the standard atmo-
sphere reads 10,000 ft. The airspeed indicator has been calibrated for both instrument
and position errors and reads a velocity of 120 knots. If the outside air temperature is
20°F, determine the true airspeed.

Solution. The altimeter is a pressure gauge calibrated to the standard atmosphere. If
the altimeter reads 10,000 ft, the static pressure it senses must correspond to the static
pressure at 10,000 ft in the standard atmosphere. Using the standard atmospheric table
in the Appendix, the static pressure at 10,000 ft is given as

P = 1455.6 Ib/ft?
The ambient density can be calculated using the equation of state:
P

P:E

B 1455.6 Ib/fe2
P = 1716 £2/(s* - °R))(479.7°R)

p = 0.001768 slug/ft>
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A low-speed airspeed indicator corrected for instrument and position error reads the
equivalent airspeed. The true speed and equivalent airspeed are related by

VEAS

Vias = Vo
where ¢ is the ratio of the density at altitude to the standard sea-level value of density:
o = p/p, = (0.001768/0.002739) = 0.7432
Now, solving for the true airspeed,

Vkeas 120 knots

Vo V071432
139 knots

VKTA N

Il

1.8
SUMMARY

In this chapter we examined the properties of air and how those properties vary
with altitude. For the comparison of flight test data and calibrating aircraft instru-
ments, a standard atmosphere is a necessity: The 1962 U.S. Standard Atmosphere
provides the needed reference for the aerospace community. The standard atmo-
sphere was shown to be made up of gradient and isothermal regions.

Finally, we discussed the basic concepts behind several basic flight instruments
that play an important role in flight test measurements of aircraft performance,
stability and control. In principle these instruments seem to be quite simple; they
in fact, are, extremely complicated mechanical devices. Although we have dis-
cussed several mechanical instruments, most of the information presented to the
flight crew on the newest aircraft designs comes from multifunctional electronic
displays. Color cathode ray tubes are used to display air data such as attitude, speed,
and altitude. Additional displays include navigation, weather, and engine perfor-
mance information, to name just a few items. The improvements offered by this
new technology can be used to reduce the workload of the flight crew and improve
the flight safety of the next generation of airplane designs.

PROBLEMS

1.1. An altimeter set for sea-level standard pressure indicates an altitude of 20,000 ft. If the
outside ambient temperature is —5°F, find the air density and the density altitude.

1.2. An airplane is flying at an altitude of 5000 m as indicated by the altimeter and the
outside air temperature is —20°C. If the airplane is flying at a true airspeed of 300 m/s,
determine the indicated airspeed.
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A high-altitude, remotely piloted communications platform is flying at a pressure
altitude of 60,000 ft and an indicated airspeed of 160 ft/s. The outside ambient
temperature is —75°F. Estimate the Reynolds number of the wing based on a mean
chord of 3.5 ft.

An airplane is flying at a pressure altitude of 10,000 ft and the airspeed indicator
reads 100 knots. If there is no instrument error and the position error is given by
Figure P1.4, find the true airspeed of the airplane.

10 FIGURE P14
Veas = Vias + AV Position error versus
indicated airspeed.

o'l'l’l‘l\l‘l'l

50 100 150 200 250 300 350

1 Vias Knots \

-10 -

AV Knots position error

1.5. Under what conditions are following relationships valid?
Veas = Veas = Vmas
Veas = Veas # Vias
Veas # Veas = Vias
1.6. A small right circular cylinder is used to measure the angle of attack of an airplane by
measuring the difference in pressure at two port locations that are located at
6 = = 20°. Assuming that the flow on the forward face of the cylinder can be
accurately modeled as an inviscid flow, the velocity along the cylinder surface can be
expressed as
Vo = 2V, sin 6
If, while flying at 200 ft/s under sea-level standard conditions, the pressure difference
is 32.5 1b/ft?, what is the angle of the airplane?
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CHAPTER 2

Static Stability and Control

“Isn’t it astonishing that all these secrets have been preserved for so many
years just so that we could discover them!”

Orville Wright, June 7, 1903

2.1
HISTORICAL PERSPECTIVE

By the start of the 20th century, the aeronautical community had solved many of
the technical problems necessary for achieving powered flight of a heavier-than-air
aircraft. One problem still beyond the grasp of these early investigators was a lack
of understanding of the relationship between stability and control as well as the
influence of the pilot on the pilot-machine system. Most of the ideas regarding
stability and control came from experiments with uncontrolled hand-launched
gliders. Through such experiments, it was quickly discovered that for a successful
flight the glider had to be inherently stable. Earlier aviation pioneers such as Albert
Zahm in the United States, Alphonse Penaud in France, and Frederick Lanchester
in England contributed to the notion of stability. Zahm, however, was the first to
correctly outline the requirements for static stability in a paper he presented in
1893. In his paper, he analyzed the conditions necessary for obtaining a stable
equilibrium for an airplane descending at a constant speed. Figure 2.1 shows a
sketch of a glider from Zahm’s paper. Zahm concluded that the center of gravity
had to be in front of the aerodynamic force and the vehicle would require what he
referred to as “longitudinal dihedral” to have a stable equilibrium point. In the
terminology of today, he showed that, if the center of gravity was ahead of the wing
aerodynamic center, then one would need a reflexed airfoil to be stable at a positive
angle of attack.

In the 20 years prior to the Wright brothers’ successful flight, many individuals
in the United States and Europe were working with gliders and unpiloted powered
models. These investigators were constantly trying to improve their vehicles, with
the ultimate goal of achieving powered flight of a airplane under human control.
Three men who would leave lasting impressions on the Wright brothers were Otto
Lilienthal of Germany and Octave Chanute and Samuel Pierpont Langley of the
United States.

35
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Aerodynamic Force
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FIGURE 2.1

Zahm'’s description of longitudinal stability.

Lilienthal made a significant contribution to acronautics by his work with
model and human-carrying gliders. His experiments included the determination of
the properties of curved or cambered wings. He carefully recorded the details of
over 2000 glider flights. The information in his journal includes data on materials,
construction techniques, handling characteristics of his gliders, and aerodynamics.
His successful flights and recorded data inspired and aided many other aviation
pioneers. Lilienthal’s glider designs were statically stable but had very little control
capability. For control, Lilienthal would shift his weight to maintain equilibrium
flight, much as hang-glider pilots do today. The lack of suitable control proved to
be a fatal flaw for Lilienthal. In 1896, he lost control of his glider; the glider stalled
and plunged to earth from an altitude of 50 ft. Lilienthal died a day later from the
injuries incurred in the accident.

In the United States, Octave Chanute became interested in gliding flight in
the mid 1890s. Initially, he built gliders patterned after Lilienthal’s designs. After
experimenting with modified versions of Lilienthal’s gliders, he developed his own
designs. His gliders incorporated biplane and multiplane wings, controls to adjust
the wings to maintain equilibrium, and a vertical tail for steering. These design
changes represented substantial improvements over Lilienthal’s monoplane glid-
ers. Many of Chanute’s innovations would be incorporated in the Wright brothers’
designs. In addition to corresponding with the Wright brothers, Chanute visited
their camp at Kitty Hawk to lend his experience and advice to their efforts.

Another individual who helped the Wright brothers was Samuel Pierpont
Langley, secretary of the Smithsonian Institution. The Wright brothers knew of
Langley’s work and wrote to the Smithsonian asking for the available aeronautical
literature. The Smithsonian informed the Wright brothers of the activities of many
of the leading aviation pioneers and this information, no doubt, was very helpful
to them.

Around 1890 Langley became interested in problems of flight. Initially his
work consisted of coliecting and examining all the available aerodynamic data.
From the study of these data and his own experiments he concluded that heavier-
than-air powered flight was possible. Langley then turned his attention to designing
and perfecting unpiloted powered models. On May 6, 1896, his powered model
flew for 13 minutes and covered a distance of three-quarters of a mile. Langley’s
success with powered models pioneered the practicality of mechanical flight.
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After his successful model flights, Langley was engaged by the War Depart-
ment to develop a human-carrying airplane. Congress appropriated $50,000 for
the project. Langley and his engineering assistant, Charles Manley, started work
on their own design in 1899. For the next four years, they were busy designing,
fabricating, and testing the full-size airplane that was to be launched by a catapult
fixed to the top of a houseboat. The first trial was conducted on September 7, 1903,
in the middle of the Potomac River near Tidewater, Virginia. The first attempt
ended in failure as the airplane pitched down into the river at the end of the launch
rails. A second attempt was made on December 8, 1903; this time, the airplane
pitched up and fell back into the river. In both trials, the launching system pre-
vented the possibility of a successful flight. For Langley, it was a bitter disappoint-
ment and the criticism he received from the press deeply troubled him. He was one
of the pioneering geniuses of early aviation, however, and it is a shame that he went
to his grave still smarting from the ridicule. Some 20 years later his airplane was
modified, a new engine was installed, and the airplane flew successfully.

The time had come for someone to design a powered airplane capable of
carrying someone aloft. As we all know, the Wright brothers made their historic
first flight on a powered airplane at Kitty Hawk, North Carolina, on December 17,
1903. Orville Wright made the initial flight, which lasted only 12 seconds and
covered approximately 125 feet. Taking turns operating the aircraft, Orville and
Wilbur made three more flights that day. The final flight lasted 59 seconds and
covered a distance of 852 feet while flying into a 20 mph headwind. The airplane
tended to fly in a porpoising fashion, with each flight ending abruptly as the
vehicle’s landing skids struck tae ground. The Wright brothers found their powered
airplane to be much more responsive than their earlier gliders and, as a result, had
difficulty controlling their airplane.

Figure 2.2 shows two photographs of the Kitty Hawk Flyer. The first pho-
tograph shows Orville Wright making the historical initial flight and the second
shows the airplane after the fourth and last flight of the day. Notice the damaged
horizontal rudder (the term used by the Wright brothers). Today we use the term
canard to describe a forward control surface. The world canard comes to us from
the French word that means “duck.” The French used the term canard to describe
an early French airplane that had its horizontal tail located far forward of the wing.
They thought this airplane looked like a duck with its neck stretched out in flight.

From this very primitive beginning, we have witnessed a remarkable revolution
in aircraft development. In less than a century, airplanes have evolved into an
essential part of our national defense and commercial transportation system. The
success of the Wright brothers can be attributed to their step-by-step experimental
approach. After reviewing the experimental data of their contemporaries, the
Wright brothers were convinced that additional information was necessary before
a successful airplane could be designed. They embarked on an experimental pro-
gram that included wind-tunnel and flight-test experiments. The Wright brothers
designed and constructed a small wind tunnel and made thousands of model tests
to determine the aerodynamic characteristics of curved airfoils. They also con-
ducted thousands of glider experiments in developing their airplane. Through their
study of the works of others and their own experimental investigations, the Wright
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FIGURE 2.2

Photographs of the Wright brothers’ airplane, December 17, 1903, Kitty Hawk, North
Carolina.



2.2 Introduction 39

brothers were convinced that the major obstacle to achieving powered flight was
the lack of sufficient control. Therefore, much of their work was directed toward
improving the control capabilities of their gliders. They felt strongly that powerful
controls were essential for the pilot to maintain equilibrium and prevent accidents
such as the ones that caused the deaths of Lilienthal and other glider enthusiasts.

This approach represented a radical break with the design philosophy of the
day. The gliders and airplanes designed by Lilenthal, Chanute, Langley, and other
aviation pioneers were designed to be inherently stable. In these designs, the pilot’s
only function was to steer the vehicle. Although such vehicles were statically stable,
they lacked maneuverability and were susceptible to upset by atmospheric distur-
bances. The Wright brothers’ airplane was statically unstable but quite maneuver-
able. The lack of stability made their work as pilots very difficult. However,
through their glider experiments they were able to teach themselves to fly their
unstable airplane.

The Wright brothers succeeded where others failed because of their dedicated
scientific and engineering efforts. Their accomplishments were the foundation on
which others could build. Some of the major accomplishments follow:

1. They designed and built a wind-tunnel and balance system to conduct aerody-
namic tests. With their tunnel they developed a systematic airfoil aerodynamic
database.

2. They developed a complete flight control system with adequate control capa-
bility.

3. They designed a lightweight engine and an efficient propeller.

4. Finally, they designed an airplane with a sufficient strength-to-weight ratio,
capable of sustaining powered flight.

These early pioneers provided much of the understanding we have today regarding
static stability, maneuverability, and control. However, it is not clear whether any
of these men truly comprehended the relationship among these topics.

2.2
INTRODUCTION

How well an airplane flies and how easily it can be controlled are subjects studied
in aircraft stability and control. By stability we mean the tendency of the airplane
to return to its equilibrium position after it has been disturbed. The disturbance may
be generated by the pilot’s actions or atmospheric phenomena. The atmospheric
disturbances can be wind gusts, wind gradients, or turbulent air. An airplane must
have sufficient stability that the pilot does not become fatigued by constantly
having to control the airplane owing to external disturbances. Although airplanes
with little or no inherent aerodynamic stability can be flown, they are unsafe to fly
unless they are provided artificial stability by an electromechanical device called
a stability augmentation system.

Two conditions are necessary for an airplane to fly its mission successfully. The
airplane must be able to achieve equilibrium flight and it must have the capability
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to maneuver for a wide range of flight velocities and altitudes. To achieve equi-
librium or perform maneuvers, the airplane must be equipped with aerodynamic
and propulsive controls. The design and performance of conirol systems is an
integral part of airplane stability and control.

The stability and control characteristics of an airplane are referred to as the
vehicle’s handling or flying qualities. It is important to the pilot that the airplane
possesses satisfactory handling qualities. Airplanes with poor handling qualities
will be difficult to fly and could be dangerous. Pilots form their opinions of an
airplane on the basis of its handling characteristics. An airplane will be considered
of poor design if it is difficult to handle regardless of how outstanding the airplane’s
performance might be. In the study of airplane stability and control, we are
interested in what makes an airplane stable, how to design the control systems, and
what conditions are necessary for good handling. In the following sections we will
discuss each of these topics from the point of view of how they influence the design
of the airplane.

2.2.1 Static Stability

Stability is a property of an equilibrium state. To discuss stability we must first
define what is meant by equilibrium. If an airplane is to remain in steady uniform
flight, the resultant force as well as the resultant moment about the center of gravity
must both be equal to 0. An airplane satisfying this requirement is said to be in a
state of equilibrium or flying at a trim condition. On the other hand, if the forces

FIGURE 2.3
Sketches illustrating various conditions of static
stability.
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{c} Neutral stability
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and moments do not sum to 0, the airplane will be subjected to translational and
rotational accelerations.

The subject of airplane stability is generally divided into static and dynamic
stability. Static stability is the initial tendency of the vehicle to return to its equi-
librium state after a disturbance. An example of the various types of static stability
is illustrated in Figure 2.3. If the ball were to be displaced from the bottom of the
curved surface (Figure 2.3(a)), by virtue of the gravitational attraction, the ball
would roll back to the bottom (i.e., the force and moment would tend to restore the
ball to its equilibrium point). Such a situation would be referred to as a stable
equilibrium point. On the other hand, if we were able to balance a ball on the
curved surface shown in Figure 2.3(b), then any displacement from the equilibrium
point would cause the ball to roll off the surface. In this case, the equilibrium point
would be classified as unstable. In the last example, shown in Figure 2.3(c), the ball
is placed on a flat surface. Now, if the wall were to be displaced from its initial
equilibrium point to another position, the ball would remain at the new position.
This would be classified as a neutrally stable equilibrium point and represents the
limiting (or boundary) between static stability and static instability. The important
point in this simple example is that, if we are to have a stable equilibrium point, the
vehicle must develop a restoring force or moment to bring it back to the equilibrium
condition.

2.2.2 Dynamic Stability

In the study of dynamic stability we are concerned with the time history of the
motion of the vehicle after it is disturbed from its equilibrium point. Figure 2.4
shows several airplane motions that could occur if the airplane were disturbed from
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its equilibrium conditions. Note that the vehicle can be statically stable but dynam-
ically unstable. Static stability, therefore, does not guarantee dynamic stability.
However, for the vehicle to be dynamically stable it must be statically stable.

The reduction of the disturbance with time indicates that there is resistance
to the motion and, therefore, energy is being dissipated. The dissipation of energy
is called positive damping. If energy is being added to the system, then we have
a negative damping. Positive damping for an airplane is provided by forces and
moments that arise owing to the airplane’s motion. In positive damping, these
forces and moments will oppose the motion of the airplane and cause the distur-
bance to damp out with time. An airplane that has negative aerodynamic damping
will be dynamically unstable. To fly such an airplane, artificial damping must be
designed into the vehicle. The artificial damping is provided by a stability augmen-
tation system (SAS). Basically, a stability angmentation system is an electrome-
chanical device that senses the undesirable motion and moves the appropriate
controls to damp out the motion. This usually is accomplished with small control
movements and, therefore, the pilot’s control actions are not influenced by the
system.

Of particular interest to the pilot and designer is the degree of dynamic stabil-
ity. Dynamic stability usually is specified by the time it takes a disturbance to
be damped to half of its initial amplitude or, in the case of an unstable motion, the
time it takes for the initial amplitude of the disturbance to double. In the case of
an oscillatory motion, the frequency and period of the motion are extremely im-
portant.

So far, we have been discussing the response of an airplane to external distur-
bances while the controls are held fixed. When we add the pilot to the system,
additional complications can arise. For example, an airplane that is dynamically
stable to external disturbances with the controls fixed can become unstable by the
pilot’s control actions. If the pilot attempts to correct for a disturbance and that
control input is out of phase with the oscillatory motion of the airplane, the control
actions would increase the motion rather than correct it. This type of pilot-vehicle
response is called pilot-induced oscillation (PIO). Many factors contribute to the
PIO tendency of an airplane. A few of the major contributions are insufficient aero-
dynamic damping, insufficient control system damping, and pilot reaction time.

2.3
STATIC STABILITY AND CONTROL

2.3.1 Definition of Longitudinal Static Stability

In the first example we showed that to have static stability we need to develop a
restoring moment on the ball when it is displaced from its equilibrium point. The
same requirement exists for an airplane. Let us consider the two airplanes and their
respective pitching moment curves shown in Figure 2.5. The pitching moment
curves have been assumed to be linear until the wing is close to stalling.
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FIGURE 2.5
Pitching moment coefficient versus angle of attack.

@Figure 2.5, both airplanes are flying at the trim point denoted by B; that is,
G, = 0. Suppose the airplanes suddenly encounter an upward gust such that the
angle of attack is increased to point C. At the angle of attack denoted by C, airplane
1 would develop a negative (nose-down) pitching moment that would tend to rotate
the airplane back toward its equilibrium point. However, for the same disturbance,
airplane 2 would develop a positive (nose-up) pitching moment that would tend to
rotate the aircraft away from the equilibrium point. If we were to encounter a
disturbance that reduced the angle of attack, say, to point A, we would find that
airplane 1 would develop a nose-up moment that would rotate the aircraft
back toward the equilibrium point. On the other hand, airplane 2 would develop a
nose-down moment that would rotate the aircraft away from the equilibrium point.
On the basis of this simple analysis, we can conclude that to have static longitudinal
stability the aircraft pitching moment curve must have a negative slope. That is,

dC,

< .
<0 (2.1)

through the equilibrium point.

Another point that we must make is illustrated in Figure 2.6. Here we see two
pitching moment curves, both of which satisfy the condition for static stability.
However, only curve 1 can be trimmed at a positive angle of attack. Therefore, in
addition to having static stability, we also must have a positive intercept, that is,
C,. > 0 to trim at positive angles of attack. Although we developed the criterion
for static stability from the C,, versus « curve, we just as easily could have accom-
plished the result by working with a C,, versus C, curve. In this case, the require-
ment for static stability would be as follows:

dc,

— < 2.
ac, 0 (2.2)
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Crn FIGURE 2.6
Flow field around an airplane
created by the wing.

The two conditions are related by the following expression:

¢ _ 4G, _dC,dC,

" da  dC, da (2.3)

which shows that the derivatives differ only by the slope of the lift curve.

2.3.2 Contribution of Aircraft Components

In discussing the requirements for static stability, we so far have considered only
the total airplane pitching moment curve. However, it is of interest (particularly to
airplane designers) to know the contribution of the wing, fuselage, tail, propulsion
system, and the like, to the pitching moment and static stability characteristics of
the airplane. In the following sections, each of the components will be considered
separately. We will start by breaking down the airplane into its basic components,
such as the wing, fuselage, horizontal tail, and propulsion unit. Detailed methods
for estimating the aerodynamic stability coefficients can be found in the United
States Air Force Stability and Control Datcom [2.7]. The Datcom, short for data
compendium, is a collection of methods for estimating the basic stability and
control coefficients for flight regimes of subsonic, transonic, supersonic, and hy-
personic speeds. Methods are presented in a systematic body build-up fashion, for
example, wing alone, body alone, wing/body and wing/body/tail techniques. The
methods range from techniques based on simple expressions developed from theory
to correlations obtained from experimental data. In the following sections, as well
as in later chapters, we shall develop simple methods for computing the aerody-
namic stability and control coefficients. Our emphasis will be for the most part on
methods that can be derived from simple theoretical considerations. These meth-
ods in general are accurate for preliminary design purposes and show the relation-
ship between the stability coefficients and the geometric and aerodynamic charac-
teristics of the airplane. Furthermore, the methods generally are valid only for the
subsonic flight regime. A complete discussion of how to extend these methods to
higher-speed flight regimes is beyond the scope of this book and the reader is
referred to [2.7] for the high-speed methods.
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FIGURE 2.7
Wing contribution to the pitching moment.

2.3.3 Wing Contribution

The contribution of the wing to an airplane’s static stability can be examined with
the aid of Figure 2.7. In this sketch we have replaced the wing by its mean aero-
dynamic chord ¢. The distances from the wing leading edge to the aerodynamic
center and the center of gravity are denoted x,. and x.,, respectively. The vertical
displacement of the center of gravity is denoted by z,. The angle the wing chord
line makes with the fuselage reference line is denoted as i,.. This is the angle at
which the wing is mounted onto the fuselage.

If we sum the moments about the center of gravity, the following equation is
obtained:

>, Moments = M,

My = L, cos(a, — i,)[xq = xu] + D, sin(a, = i)[xe = Xucl 2.4)
+Lw Sin(aw - iw)[zcg] - Dw COS(aw - iw)[zcg] + Macw ‘
Dividing by 3pV2S¢ yields
c, =C, (@ - xta) cos(e, — i,) + Cp (x—ﬁg - @) sin(fer,, — 1,,)
8 "\ € c "\ ¢ c
(2.5)

) (zig)

Zeg) . .
+CLW(—£$— sin{er,, — i) — Cp, =

cos(er, — i,) + C,
Equation (2.5) can be simplified by assuming that the angle of attack is small. With
this assumption the following approximations can be made:

cos(a, — i,) = 1, sin(fer,, — i) = @, — i, C. > Cp

If we further assume that the vertical contribution is negligible, then Equation (2.5)
reduces to

C.. =Cu +C (x:& - xt) (2.6)
Y\ C C
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X ac
or C,, =Cn, +(C, +Cp, aw)(?g %) (2.7)
where C, = C,, + C,_a,. Applying the condition for static stability yields
Cuy = Cuy + Co (f_—g - ’%) (2.8)
w ac, oW\ 7 T
C.. =C (@ - %) (2.9)
w M\ C c

For a wing-alone design to be statically stable, Equation (2.9) tells us that the
aerodynamic center must lie aft of the center of gravity to make C,, < 0. Since we
also want to be able to trim the aircraft at a positive angle of attack the pitching
moment coefficient at zero angle of attack, C,, , must be greater than 0. A positive
pitching moment about the aerodynamic center can be achieved by using a nega-
tive-cambered airfoil section or an airfoil section that has a reflexed trailing
edge. For many airplanes, the center of gravity position is located slightly aft of
the aerodynamic center (see data in Appendix B). Also, the wing is normally
constructed of airfoil profiles having a positive camber. Therefore, the wing contri-
bution to static longitudinal stability is destabilizing for most conventional air-
planes.

Trailing Vortex

Upwash Downwash
Bound Vortex
_ = R . Downwash
Region
Upwash Downwash
Trailing Vortex Upwash
Region
I
Upwash %

\

Downwash
Region

—

FIGURE 2.8
Flow field around an airplane created by the wing.
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2.3.4 Tail Contribution—Aft Tail

The horizontal tail surface can be located either forward or aft of the wing. When
the surface is located forward of the wing, the surface is called a canard. Both
surfaces are influenced by the flow field created by the wing. The canard surface is
affected by the upwash flow from the wing, whereas the aft tail is subjected to the
downwash flow. Figure 2.8 is a sketch of the flow field surrounding a lifting wing.
The wing flow field is due primarily to the bound and trailing vortices. The magni-
tude of the upwash or downwash depends on the location of the tail surface with
respect to the wing.

The contribution that a tail surface located aft of the wing makes to the
airplane’s lift and pitching moment can be developed with the aid of Figure 2.9. In
this sketch, the tail surface has been replaced by its mean aerodynamic chord. The
angle of attack at the tail can be expressed as

a=«, — i, — €+ (2.10)

where & and i, are the downwash and tail incidence angles, respectively. If we
assume small angles and neglect the drag contribution of the tail, the total lift of
the wing and tail can be expressed as

L=L,6+L, 2.11)
S
or ¢, =(C + nECL’ (2.12)
)
EPV, 0,
=== 2.
where n v T 0. (2.13)

The ratio of the dynamic pressures, called the tail efficiency, can have values in the
range 0.8—1.2. The magnitude of 7 depends on the location of the tail surface. If

e

FIGURE 2.9
Aft tail contribution to the pitching moment.
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the tail is located in the wake region of the wing or fuselage, 7 will be less than unity
because Q, < (Q,, due to the momentum loss in the wake. On the other hand, if the
tail is located in a region where Q, > (,,, then 1 will be greater than unity. Such
a situation could exist if the tail were located in either the slip stream of the
propeller or in the exhaust wake of a jet engine.

The pitching moment due to the tail can be obtained by summing the moments
about the center of gravity:

M, = _lt[Lt cos(agg, — €) + D, sin(agr, — 8)]

2.14
_ch,[Dr cos(apr,, — &) — L, sin(apg, — &)] + Muc‘ ( )

Usually only the first term of this equation is retained; the other terms generally are
small in comparison to the first term. If we again use the small-angle assumption
and that C, > Cp, then Equation (2.14) reduces to

l o)
M, = ~LL = ~1,C, pViS, (2.15)
M, 1S,
C, = ——t = — .
m T IViSE sz 1t (2.16)
or C,. = ~VunC,, (2.17)

where V,, = .S,/(S7) is called the horizontal tail volume ratio.
From Figure 2.9, the angle of attack of the tail is seen to be

o =a, — i, — &+ I (2.18)
The coefficient C; can be written as
C,=C a=0C (o —i,—&+1i) (2.19)

where C,_ is the slope of the tail lift curve. The downwash angle & can be expres-
sed as

g
— a, 2.20
a & (2.20)
where g, is the downwash at zero angle of attack.

The downwash behind a wing with an elliptic lift distribution can be derived
from finite-wing theory and shown to be related to the wing lift coefficient and
aspect ratio:

e = g +

_ 2, 2.21
£ TAR,, (2.21)

where the downwash angle is in radians. The rate of change of downwash angle
with angle of attack is determined by taking the derivative of Equation (2.21):

de 2CLu

o R (2.22)

where C,_ is per radian. The preceding expressions do not take into account the
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position of the tailplane relative to the wing; that is, its vertical and longitudinal
spacing. More accurate methods for estimating the downwash at the tailplane can
be found in [2.7]. An experimental technique for determining the downwash using
wind-tunnel force and moment measurements will be presented by way of a prob-
lem assignment at the end of this chapter.

Rewriting the tail contribution to the pitching moment yields

C”'cg = _VHnCL, (2.23)

C, =nVyC, (gy + i, — i) — nVuC, a(l - d_e) (2.24)
R % % da

Comparing Equation (2.24) with the linear expression for the pitching moment
given as

Cmcg =C, + C, 0 (2.25)
yields expressions for the intercept and slope:
C”‘() = nVH CLa (80 + i, — lt) (226)
de
C, = —mqVyC. |1 — — 2.27
o NVu La< da) ( )

Recall that earlier we showed that the wing contribution to C,,  was negative for an
airfoil having positive camber. The tail contribution to C,, can be used to ensure
that C,, for the complete airplane is positive. This can be accomplished by adjust-
ing the tail incidence angle i,. Note that we would want to mount the tail plane at
a negative angle of incidence to the fuselage reference line to increase C,, due to
the tail.

The tail contribution to the static stability of the airplane (C., < 0) can be
controlled by proper selection of V,, and C,_. The contribution of C . will become
more negative by increasing the tail moment arm /, or tail surface area S, and by
increasing C, . The tail lift curve slope C, can be increased most easily by
increasing the aspect ratio of the tail planform 'The designer can adjust any one of
these parameters to achieve the desired slope. As noted here, a tail surface located
aft of the wing can be used to ensure that the airplane has a positive C,, and a
negative C,,_

EXAMPLE PROBLEM 2.1. The wing-fuselage pitching moment characteristics of a
high-wing, single-engine, general aviation airplane follow, along with pertinent geo-
metric data:

Cp,,, = —0.05 — 0.0035a
where « is the fuselage reference line angle of attack in degrees and wf means wing-
fuselage
S, = 178 fi x/c = 0.1
b, = 359 ft AR, =173
¢, =5.0ft Cyp,., = 0.07/deg i, =20° C..., =026
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Estimate the horizontal tail area and tail incidence angle, i,, so that the complete
airplane has the following pitching moment characteristics (illustrated in Figure 2.10):

C = 0.15 — 0.025a

Mgy
where « is in degrees and wft is the wing-fuselage-horizontal tail contribution.
Assume the following with regard to the horizontal tail:

L =1475ft 7n=1
AR, = 485 C,., = 0.073/deg

Solution. The contribution of the horizontal tail to C,,, and C,,, can be calculated by
subtracting the wing-fuselage contribution from the wing-fuselage-horizontal tail con-
tribution, respectively:

C

mg,

=C

MOwst

0.15 — (—0.05) = 0.20
Cn. =Cn ~-C

¢ it Maye

—0.025 — (—0.0035) = — 0.0215/deg

- C

Mown

i

The horizontal tail area is found by determining the horizontal tail volume ratio
required to satisfy the required static stability that needs to be created by the tail.
Recall the C,, was developed earlier and is rewritten here:

de

Cy. = —nv,,CLa<1 - —)
7 t da

0.3

0.2 - \
Nen

0.1

Cm,, 00 \
) .\"\—Aq
] C
-0.1 Nv—\emm
~02 - \

-0.3 : . .
-10 0 10 20
Alpbha deg

FIGURE 2.10
Pitching moment characteristic for airplane in Example Problem 2.1.
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Solving this equation for the volume ratio yields

Crna,

de
"CLaI(l az)

The only quantity we do not know in this equation is the rate of change of the
downwash angle with respect to the angle of attack, de/da. However, this can be
estimated from the wing characteristics as follows:

Vg = —

d_8 _ ZCLaw
da  7AR,

Using the wing-fuselage C,_ , as an approximation to C;_ we can obtain an estimate
of de/da:

de _ 2(0.07/deg)(57.3 deg/rad)
da w(7.3)

de
da

=0.35

Substituting de/de and the other quantities into the expression for V; yields

_ (—0.0215/deg)
(1.0)(0.073/deg)(1 ~ 0.35)

= 0.453

VH=

The horizontal tail volume ratio is expressed as

LS,
Vy=—
Hsc
and solving for the horizontal tail area yields

_(0.453)(178 (5 f1)
B (14.75 fr)

= 27.3 ft?

S

This is the tail area needed to provide the required tail contribution to C,, . Next we can
determine the tail incidence angle, i,, from the requirement for C,,,ol. The equation for
C,,, due to the horizontal tail was shown to be

Cro, = VunCyp,, (i + & — i)

The tail incidence angle, i,, can be obtained by rearranging the preceding equation:

C
i, = —( v _iw_30>
VunC,,,

The only quantity that we do not know in this equation is g;; that is, the downwash
angle at the tail when the wing is at zero angle of attack. This can be estimated using
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the following expression:

206,
€ = 7AR,
2[0.26]
= ———= = (0.022 d
2[73] 0 6 ra
or g = 1.3°

Substituting &, and the other quantities into the expression for j, yields

Lo 0.20 o
" [(0-453)(1-0)(0.073/deg) 2.0 1-3]

= —2.7 deg.

The horizontal tail is mounted to the fuselage at a negative 2.7°.

In summary we have shown that the level of static stability can be controlled by
the designer by proper selection of the horizontal tail volume ratio. In practice the only
parameter making up the volume ratio that can be varied by the stability and control
designer is the horizontal tail surface area. The other parameters, such as the tail
moment arm, wing area, and mean wing chord, are determined by the fuselage and
wing requirements, which are related to the internal volume and performance speci-
fications of the airplane, respectively.

The horizontal tail incidence angle, i, is determined by trim angle of attack or lift
coefficient. For a given level of static stability, that is, slope of the pitching moment
curve, the trim angle depends on the moment coefficient at zero angle of attack, C,,.
The tail incidence angle, i,, can be adjusted to yield whatever C,,, is needed to achieve
the desired trim condition.

2.3.5 Canard—Forward Tail Surface

A canard is a tail surface located ahead of the wing. The canard surface has several
attractive features. The canard, if properly positioned, can be relatively free from
wing or propulsive flow interference. Canard control is more attractive for trim-
ming the large nose-down moment produced by high-lift devices. To counteract the
nose-down pitching moment, the canard must produce lift that will add to the lift
being produced by the wing. An aft tail must produce a down load to counteract the
pitching moment and thus reduce the airplane’s overall lift force. The major
disadvantage of the canard is that it produces a destabilizing contribution to the
aircraft’s static stability. However, this is not a severe limitation. By proper loca-
tion of the center of gravity, one can ensure the airplane is statically stable.

2.3.6 Fuselage Contribution
The primary function of the fuselage is to provide room for the flight crew and

payload such as passengers and cargo. The optimum shape for the internal volume
at minimum drag is a body for which the length is larger than the width or height.
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For most fuselage shapes used in airplane designs, the width and height are on the
same order of magnitude and for many designs a circular cross-section is used.

The aerodynamic characteristics of long, slender bodies were studied by Max
Munk [2.8] in the earlier 1920s. Munk was interested in the pitching moment
characteristics of airship hulls. In his analysis, he neglected viscosity and treated the
flow around the body as an ideal fluid. Using momentum and energy relationships,
he showed that the rate of change of the pitching moment with angle of attack (per
radian) for a body of revolution is proportional to the body volume and dynamic
pressure:

dM
— = fn(volume —pV2> (2.28)
da
Muithopp [2.9] extended this analysis to account for the induced flow along the
fuselage due to the wings for bodies of arbitrary cross-section. A summary of
Multhopp’s method for C,,, and C,, due to the fuselage is presented as follows:

C,, =22 k‘ff wHay, + i) d (2.29)
™ " 36.55¢ ) " T W '
which can be approximated as
k — kS
_ Kk 1
Cry, = 36557 - 2 wiay, + i) Ax (2.30)

where k, — k; = the correction factor for the body fineness ratio
S = the wing reference area

¢ = the wing mean aerodynamic chord

w, = the average width of the fuselage sections

a, = the wing zero-lift angle relative to the fuselage reference line

i, = the incidence of the fuselage camber line relative to the fuselage
reference line at the center of each fuselage increment. The
incidence angle is defined as negative for nose droop and aft
upsweep.

Ax = the length of the fuselage increments

Figure 2.11 illustrates how the fuselage can be divided into segments for the
calculation of C,, and also defines the body width w, for various body cross-
sectional shapes. The correction factor (k, — k) is given in Figure 2.12.

The local angle of attack along the fuselage is greatly affected by the flow field
created by the wing, as was illustrated in Figure 2.8. The portion of the fuselage
ahead of the wing is in the wing upwash; the aft portion is in the wing downwash
flow. The change in pitching moment with angle of attack is given by

1 ¥ , 0€ .
= — - 31
Cnoy = 36557 fo Wi aq 4 (deg™) (231)
which can be approximated by
=l

Teees 2 W

C"'"f 36.55¢ 5Sc x=0

(2.32)




54 CHAPTER 2: Static Stability and Control

Fuselage is divided
into increments

\

[ ——IAxiL
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Fuselage
Fuselage /
Reference
Line ‘ i)
b - = [ SN G U - sy ] BN AN
iy (=)
ZFuselage camber line
FIGURE 2.11

Procedure for calculating C,, due to the fuselage.

1.0 FIGURE 2.12
0.9 -1 ky — ky versus l;/d.
ky-k; 0.8 .

0.7

]
0.6 — - :

0 10 20

lf/d max

where § = the wing reference area and ¢ = the wing mean aerodynamic chord.

The fuselage again can be divided into segments and the local angle of attack
of each section, which is composed of the geometric angle of attack of the section
plus the local induced angle due to the wing upwash or downwash for each segment,
can be estimated. The change in local flow angle with angle of attack, de,/d«,
varies along the fuselage and can be estimated from Figure 2.13. For locations
ahead of the wing, the upwash field creates large local angles of attack; therefore,
de,/da > 1. On the other hand, a station behind the wing is in the downwash
region of the wing vortex system and the local angle of attack is reduced. For the
region behind the wing, de,/d« is assumed to vary linearly from 0 to (1 — de/da)
at the tail. The region between the wing’s leading edge and trailing edge is assumed
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4 FIGURE 2.13
] Variation of local flow angle along the
ey vs % fuselage.
3 4 da
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Segment 1-4 Segment 6-11 FIGURE 2.14
Procedure for calculating
ﬁ is obtained from ﬂ = _)& [ _E] C,,,n due to the fuselage.
da I L o

« figure 2-13a
o
3

vy, (E 5
N

—ax Fx

Segment 5

Section between the wing
assumed to be uneffected
by the wing wake

—ai is obtained from
« figure 2-13b

to be unaffected by the wing’s flow field, de,/da = 0. Figure 2.14 is a sketch
showing the application of Equation (2.32).

2.3.7 Power Effects

The propulsion unit can have a significant effect on both the longitudinal trim and
static stability of the airplane. If the thrust line is offset from the center of gravity,
the propulsive force will create a pitching moment that must be counteracted by the
aerodynamic control surface.

The static stability of the airplane also is influenced by the propulsion system.
For a propeller driven airplane the propeller will develop a normal force in its plane
of rotation when the propeller is at an angle of attack. The propeller’s normal force
will create a pitching moment about the center of gravity, producing a propulsion
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contribution to C,, . Although one can derive a simple expression for C,,, due to the
propeller, the actual contribution of the propulsion system to the static stability is
much more difficult to estimate. This is due to the indirect effects that the propul-
sion system has on the airplanes characteristics. For example, the propeller slip-
stream can have an effect on the tail efficiency 1 and the downwash field. Because
of these complicated interactions the propulsive effects on airplane stability are
commonly estimated from powered wind-tunnel models.

A normal force will be created on the inlet of a jet engine when it is at an angle
of attack. As in the case of the propeller powered airplane, the normal force will
produce a contribution to C,, .

2.3.8 Stick Fixed Neutral Point

The total pitching moment for the airplane can now be obtained by summing the
wing, fuselage, and tail contributions:

Cp, = Cpy + Cpt (2.33)
where Coy=C,, +Cp +VuC, (89 + i, — i) (2.34)
n f 1
. d
c, =G, ("T - %) + G, — MVuC, (1 - i) (2.35)
@ o, C C "/ a, da

Notice that the expression for C,, depends upon the center of gravity position as
well as the aerodynamic characteristics of the airplane. The center of gravity of an
airplane varies during the course of its operation; therefore, it is important to know
if there are any limits to the center of gravity travel. To ensure that the airplane
possesses static longitudinal stability, we would like to know at what point
C,, = 0. Setting C,,_equal to 0 and solving for the center of gravity position yields

C C
Xnp Xac M, Lo, ds)
SNP o Tae + V= (1 — = 2.
¢ c G, K ", < da (2:36)

In obtaining equation 2.36, we have ignored the influence of center of gravity
movement on V. We call this location the stick fixed neutral point. If the airplane’s

Cm cg aft of Xeg > XNp FIGURE 2.15

neutral point The influence of center of gravity
() position on longitudinal static

cg at the neutral point stability.
Xcg = XNp
0

cg forward @

(-) of neutral point

Xcg < Xnp
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center of gravity ever reaches this point, the airplane will be neutrally stable.
Movement of the center of gravity beyond the neutral point causes the airplane to
be statically unstable. The influence of center of gravity position on static stability
is shown in Figure 2.15.

EXAMPLE PROBLEM 2.2. Given the general aviation airplane shown in Figure 2.16,
determine the contribution of the wing, tail, and fuselage to the C,, versus « curve. Also
determine the stick fixed neutral point. For this problem, assume standard sea-level
atmospheric conditions.

Solution. The lift curve slopes for the two-dimensional sections making up the wing
and tail must be corrected for a finite aspect ratio. This is accomplished using the

formula

G
C, = — "l
"1+ C,/@AR)

where C,_is given as per radian.
Substituting the two-dimensional lift curve slope and the appropriate aspect ratio

yields
C.
CL = —
>~ 1+ C,/@AR,)
_ (0.097/deg)(57.3 deg/rad)
1 + (0.097/deg){57.3 deg/rad)/((6.06))
= 4.3 rad™!
Flight condition
W= 27501b
V = 176 ft/sec
Xoq = 0.295C

Wing airfoil characteristics

CmBC = —0.1 16

C; = 0.097/deg

a;L = -5°

Xae = 0.25C

No Twist

iw=1.0°
Reference geometry
S = 184 ft? Sy = 43 ft?
b =33.4ft =161t

FIGURE 2.16
General aviation airplane.
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In a similar manner the lift curve slope for the tail can be found:

C,,, = 391 rad™'
The wing contribution to C,,, and C,, is found from Equations (2.8) and (2.9):
Cp =Cp +C (22 x‘“)
mg, T M, Lo, c c
xcg Xac
and C,. =GC. |l=——-—
» “\ ¢ c

The lift coefficient at zero angle of attack is obtained by multiplying the absolute value
of the zero lift angle of attack by the lift curve slope:

CL()W = CLC,W | ay |
(4.3 rad™")(5 deg)/(57.3 deg/rad)
= 0.375

Substituting the approximate information into the equations for Cr,, and G, yields

'xcg Xac
qm““m*“&?*?)

|

I

—0.116 + (0.375)(0.295 — 0.250)
—0.099

xcg Xac
=G\ 7T

= (4.3 rad™")(0.295 — 0.250)
= 0.1935 rad™!

t

For this particular airplane, the wing contribution to C,,, is destabilizing.
The tail contribution to the intercept and slope can be estimated from Equa-
tions (2.26) and (2.27):

Coy, = MVu CL,,,(SO iy —d)

d
Cp., = —anCLa(l - —€>
i t da

The tail volume ratio Vy is given by

_ LS,
Vi =z
16 f1)(43 ft?
or Vy = (16 f)¢ ) = 0.66

(184 (5T
The downwash term is estimated using the expression

20,
TAR
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where ¢ is the downwash angle in radians,
2CLw0
" @AR

2(0.375)
=2020) 04 rad = 2.3°
7(6.06) rad = 2.3

€o

and = = Tl

where C,__is in radians,

Substituting the preceding information into the formulas for the intercept and

slope yields
Cry, = MV Cp (80 + i, — i)

0.66)(3.91 rad™")[2.3° + 1.0° — (—1.0°)]/57.3 deg/rad

0.194

i

d
and C,., = —nVHCLa<1 - —8)
g d da

1l

—(0.66)(3.91 rad™)(1 — 0.45)
—1.42 rad™!

Il

In this example, the ratio 7 of tail to wing dynamic pressure was assumed to be unity.

The fuselage contribution to C,,, and C,,_ can be estimated from Equations (2.30)
and (2.32), respectively. To use these equations, we must divide the fuselage into
segments, as indicated in Figure 2.17. The summation in Equation (2.30) easily can be
estimated from the geometry and is found by summing the individual contributions as
illustrated by the table in Figure 2.17.

Ig

> wiay, + i) Ax = —1665

x=0

The body fineness ratio is estimated from the geometrical data given in Figure 2.16:

i
= 6.2
dmax

and the correction factor k, — k, is found from Figure 2.12, k, — k; = 0.86. Substitut-
ing these values into Equation (2.30) yields

Cpo, = —0.037

moy




60 CHAPTER 2: Static Stability and Control

Station Ax ft w; ft ag,+ it wi? [a0w+ it] Ax
1 3.0 3.6 -5.0 -194
2 3.0 4.6 -5.0 -317
3 3.0 4.6 -5.0 -317
4 3.0 4.6 -5.0 -317
5 3.0 4.1 -5.0 -252
6 3.0 3.1 -5.0 -144
7 3.0 23 -5.0 -79
8 3.0 1.5 -5.0 -34
9 3.0 0.8 -56.0 -10

i = 0 at every station Sum = -1664

FIGURE 2.17
Sketch of segmented fuselage for calculating C,, for the example problem.

In a similar manner C,,, can be estimated. A table is included in Figure 2.17 that
shows the estimate of the summation. C,,, was estimated to be

C, =0.12rad™!

May
The individual contributions and the total pitching moment curve are shown in Fig-
ure 2.18.
The stick fixed neutral point can be estimated from Equation (2.36):

=

C C d
NP Xac Mar Lay £
e _ T MYy, - =
c ¢ c. M. (1 da)
? = 0.25 — (0.12/4.3) + 0.66(3.91/4.3)(1 — 0.45)
XNp

= 0.55

N


shermanp
Highlight


Station

8
9

c=65ft

FIGURE 2.17
Continued.

Ax ft

1.5

1.5

1.5

1.5

2.9

2.9

2.9

2.9
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wi ft

3.0
3.4
3.8
4.2
3.8
3.1
2.3
1.5
0.8

h=13f
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5.25

45

3.7

1.5

1.45

4.35

7.25

10.15

13.05

¥ »

1.2

1.3

1.4

3.2

0.06

0.18

0.31

0.43

0.55

2 % Ax
16.2
225
30.3
84.7

25
5.0
4.8
2.8
1.0

Sum = 85.1
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0.2 _ FIGURE 2.18
Tail Component contributions to pitching
moment for example problem.
0.1 4
Airplane
Cmgy -0
-0.1 4
Fuselage
Wing
02 4111

0 2 4 6 8 10 12
a ~ deg

24
LONGITUDINAL CONTROL

Control of an airplane can be achieved by providing an incremental lift force on
one or more of the airplane’s lifting surfaces. The incremental lift force can be
produced by deflecting the entire lifting surface or by deflecting a flap incorporated
in the lifting surface. Because the control flaps or movable lifting surfaces are
located at some distance from the center of gravity, the incremental lift force
creates a moment about the airplane’s center of gravity. Figure 2.19 shows the
three primary aecrodynamic controls. Pitch control can be achieved by changing the
lift on either a forward or aft control surface. If a flap is used, the flapped portion
of the tail surface is called an elevator. Yaw control is achieved by deflecting a flap
on the vertical tail called the rudder, and roll control can be achieved by deflecting
small flaps located outboard toward the wing tips in a differential manner. These
flaps are called ailerons. A roll moment can also be produced by deflecting a wing
spoiler. As the name implies a spoiler disrupts the lift. This is accomplished by
deflecting a section of the upper wing surface so that the flow separates behind the

(+)

O
i/

FIGURE 2.19
Primary aerodynamic controls.
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spoiler, which causes a reduction in the lifting force. To achieve a roll moment, only
one spoiler need be deflected.

In this section we shall be concerned with longitudinal control. Control of the
pitch attitude of an airplane can be achieved by deflecting all or a portion of either
a forward or aft tail surface. Factors affecting the design of a control surface are
control effectiveness, hinge moments, and aerodynamic and mass balancing. Con-
trol effectiveness is a measure of how effective the control deflection is in producing
the desired control moment. As we shall show shortly, control effectiveness is a
function of the size of the flap and tail volume ratio. Hinge moments also are
important because they are the aerodynamic moments that must be overcome to
rotate the control surface. The hinge moment governs the magnitude of force
required of the pilot to move the control surface. Therefore, great care must be used
in designing a control surface so that the control forces are within acceptable limits
for the pilots. Finally, aerodynamic and mass balancing deal with techniques to
vary the hinge moments so that the control stick forces stay within an acceptable
range.

2.4.1 Elevator Effectiveness

We need some form of longitudinal control to fly at various trim conditions. As
shown earlier, the pitch attitude can be controlled by either an aft tail or forward
tail (canard). We shall examine how an elevator on an aft tail provides the required
control moments. Although we restrict our discussion to an elevator on an aft tail,
the same arguments could be made with regard to a canard surface. Figure 2.20
shows the influence of the elevator on the pitching moment curve. Notice that the
elevator does not change the slope of the pitching moment curves but only shifts
them so that different trim angles can be achieved.

When the elevator is deflected, it changes the lift and pitching moment of the
airplane. The change in lift for the airplane can be expressed as follows:

dc
AC, = C, 8  where C, = d_SL (2.37)
C = CLua + CL,S 8, (2.38)
Cn FIGURE 2.20
. The influence of the elevator on
Slopes remain
the same when the C,, versus a curve.
control surface
is deflected.

(+)

\ Coor a

7
3]
-)

5.=0
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On the other hand, the change in pitching moment acting on the airplane can be
written as
dC,
dé,
The stability derivative C,, is called the elevator control power. The larger the
value of C,,_, the more effective the control is in creating the control moment.
Adding AC,, to the pitching moment equation yields
C,=6C,+ C,a+ (20 (2.40)

AC, = C,, 8. where Cn, = (2.39)

The derivatives C;, and C,, can be related to the aerodynamic and geometric
characteristics of the horizonfal tail in the following manner. The change in lift of
the airplane due to deflecting the elevator is equal to the change in lift force acting
on the tail:

AL = AL, (241)
AC S AC, = S dCL'a 2.42
L=35m CL,—Endsee (2.42)

where dC, /d8, is the elevator effectiveness. The elevator effectiveness is propor-
tional to the size of the flap being used as an elevator and can be estimated from
the equation

dc,, _ dC,, da, _ 23
45,  da, 05, < ta” (2:43)

The parameter 7 can be determined from Figure 2.21.

C,. = S, 9 2.44
AT (2.44)
The increment in airplane pitching moment is
C.
AC, = =Vym AC, = —Vym dSI 0, (2.45)
087 FIGURE 2.21
0.6 Flap effectiveness parameter.
7 0.4 A
0.2 H
00T T 71T T

00 0.1 02 03 04 05 06 07

Control surface area/lifting surface area



2.4 Longitudinal Control 65

Cy

_VHn dae

or Cm:;, = ‘= —Vum CLGI'T (2.46)
The designer can control the magnitude of the elevator control effectiveness by
proper selection of the volume ratio and flap size.

2.4.2 Elevator Angle to Trim

Now let us consider the trim requirements. An airplane is said to be trimmed if the
forces and moments acting on the airplane are in equilibrium. Setting the pitching
moment equation equal to O (the definition of trim) we can solve for the elevator
angle required to trim the airplane:

C.=0=GC, +C,a+ C,,,s‘ d, (2.47)
or 5, = —Cmt Couin (2.48)
C"'ﬁ
The lift coefficient to trim is e
C... = CL0in + CLSL, Sccim (2.49)
‘We can use this equation to obtain the trim angle of attack:
CLm - CL5 Birim
Qirim = C.. : (2.50)

If we substitute this equation back into Equation (2.48) we get the following
equation for the elevator angle to trim:

Cp,C, + C Cu,.
Cn, C.. — C,.C,

The elevator angle to trim can also be obtained directly from the pitching moment
curves shown in Figure 2.20.

Ourim = (2.51)

EXAMPLE PROBLEM 23. The longitudinal control surface provides a moment that
can be used to balance or trim the airplane at different operating angles of attack or lift
coefficient. The size of the control surface depends on the magnitude of the pitching
moment that needs to be balanced by the control. In general, the largest trim moments
occur when an airplane is in the landing configuration (wing flaps and landing gear
deployed) and the center of gravity is at its forwardmost location. This can be explained
in the following manner. In the landing configuration we fly the airplane at a high angle
of attack or lift coefficient so that the airplane’s approach speed can be kept as low as
possible. Therefore the airplane must be trimmed at a high lift coefficient. Deployment
of the wing flaps and landing gear create a nose-down pitching moment increment that
must be added to the clean configuration pitching moment curve. The additional
nose-down or negative pitching moment increment due to the flaps and landing gear
shifts the pitching moment curve. As the center of gravity moves forward the slope of
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the pitching moment curve becomes more negative (the airplane is more stable). This
results in a large trim moment at high lift coefficients. The largest pitching moment that
must be balanced by the elevator therefore occurs when the flaps and gear are deployed
and the center of gravity is at its most forward position.

Assume that the pitching moment curve for the landing configuration for the air-
plane analyzed in Example Problem 2.2 at its forwardmost center of gravity position is
as follows:

Chn, = —0.20 — 0.035
where a is in degrees. Estimate the size of the elevator to trim the airplane at the landing
angle of attack of 10°. Assume that the elevator angle is constrained to +20° and —25°.

Solution. The increment in moment created by the control surface, AC,,,, is both a
function of the elevator control power, C,, , and the elevator deflection angle 6,.
AC,, = C,, &,

For a 10° approach angle of attack, the pitching moment acting on the airplane can be
estimated as follows:

AC,,, = —0.20 — 0.035 (10°) = —0.55

This moment must be balanced by an equal and opposite moment created by deflecting
the elevator. The change in moment coefficient created by the elevator was shown to be

AC,, = C,,, O,

where C,, is referred to as the elevator control power. The elevator control power is
a function of the horizontal tail volume ratio, V;;, and the flap effectiveness factor, 7:

C,

ms,

= =VynrC,,,

The horizontal tail volume ratio, Vj, is set by the static longitudinal stability require-
ments; therefore, the designer can change only the flap effectiveness parameter, 7, to
achieve the appropriate control effectiveness C,, . The flap effectiveness factor is a
function of the area of the control flap to the total area of the lift surface on which it
is attached. By proper selection of the elevator area the necessary control power can be
achieved.

For a positive moment, the control deflection angle must be negative; that is,
trailing edge of the elevator is up:

ACH) = c) 52—)

Mirin ms,
AC,, 0.55
= == ——— = —(.022/d
or Cs, 5, o5 /deg
Solving for the flap effectiveness parameter, 7,
= - Cmée
VHnCLa,

Using the values of Vy, 0, and C, from Example Problem 2.2 we can estimate 7:

_ (~0.022/deg)(57.3 deg/rad)
(0.66)(1.0)(3.9/rad)

= 049
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Knowing T we can use Figure 2.21 to estimate the area of the elevator to the area of the
horizontal tail:

S./S; = 0.30
The elevator area required to balance the largest trim moment is
S, = 0.30S,
0.3)(43 1)
13 ft?

Il

Se

This represents the minimum elevator area needed to balance the airplane. In practice
the designer probably would increase this area to provide a margin of safety.

This example also points out the importance of proper weight and balance for an
airplane. If the airplane is improperly loaded, so that the center of gravity moves
forward of the manufacturers specification, the pilot may be unable to trim the airplane
at the desired approach C;. The pilot would be forced to trim the airplane at a lower
lift coefficient, which means a higher landing speed.

2.4.3 Flight Measurement of Xyp

The equation developed for estimating the elevator angle to trim the airplane can
be used to determine the stick fixed neutral point from flight test data. Suppose we
conducted a flight test experiment in which we measured the elevator angle of trim
at various air speeds for different positions of the center of gravity. If we did this,
we could develop curves as shown in Figure 2.22.

Now, differentiating Equation (2.51) with respect to C, __ yields

i C,
d trim - _ a (252)
dCL Cm,s CLa - C’"u CL&
Note that when C,, = 0 (i.e., the center of gravity is at the neutral point)
Equation (2.53) equals 0. Therefore, if we measure the slopes of the curves in

trim

FIGURE 2.22
O VETSUS Cp

€irim

8Trim 0\0\0\

Xes _0.30
c

X, 9 -
%: 0.10 T 0.20
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Neutral Point FIGURE 2.23
d‘sTrim =0
+) dc, 4\
daTrim
d Ltrim /’A
,/’ XCQ
) /, 5

Figure 2.22 and plot them as a function of center of gravity location, we can
estimate the stick fixed neutral point as illustrated in Figure 2.23 by extrapolating
to find the center of gravity position that makes d&,im/dCLm equal to 0.

2.4.4 Elevator Hinge Moment

It is important to know the moment acting at the hinge line of the elevator (or other
type of control surface). The hinge moment, of course, is the moment the pilot must
overcome by exerting a force on the control stick. Therefore to design the control
system properly we must know the hinge moment characteristics. The hinge mo-
ment is defined as shown in Figure 2.24. If we assume that the hinge moment can
be expressed as the addition of the effects of angle of attck, elevator deflection
angle, and tab angle taken separately, then we can express the hinge moment
coefficient in the following manner:

G, =6GC,+C o+ C,,8 + G35 (2.53)
where C, is the residual moment and
_dc, _d6, . _dg
G, = i G, = 3. S (2.54)

The hinge moment parameters just defined are very difficult to predict analytically
with great precision. Wind-tunnel tests usually are required to provide the control
system designer with the information needed to design the control system properly.

FIGURE 2.24

1
=Cp, 5pV?S,C
he 2PV D¢ e Definition of hinge moments.

Area aft of the hinge line
Chord measured from hinge
line to trailing edge of the flap
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When the elevator is set free, that is, the control stick is released, the stability
and control characteristics of the airplane are affected. For simplicity, we shall
assume that both §, and C,, are equal to 0. Then, for the case when the elevator is
allowed to be free,

C,=0= C,,u’a, + C,,st 6, (2.55)
Solving for 8, yields
G,
(8)rece = —Eh—“’a, (2.56)

Usually, the coefficients C, and C,, are negative. If this indeed is the case, then

Equatlon (2.56) tells us that the elevator will float upwards as the angle of attack
is increased. The lift coefficient for a tail with a free elevator is given by

C, = Co0+ C, 3, (2.57)
o
€= G = Gt (2.58)
which simplifies to
C., G
C, =G a,(l - Chs) ci e, (2.59)
where cL =C, <1 _ G C""’) =C, f (2.60)
« " W\" T ¢, G, o

The slope of the tail lift curve is modified by the term in the parentheses. The factor
£ can be greater or less than unity, depending on the sign of the hinge parameters
C,, and C,, . Now, if we were to develop the equations for the total pitching moment
for the free elevator case, we would obtain an equation similar to Equations (2.34)
and (2.35). The only difference would be that the term C, would be replaced by

C; L, . Substituting C; L, into Equations (2.34) and (2.35) y1elds

C""o = C"‘ow + Cmof + CLa nVH(SO + lw ‘:) (261)
2
C.. =C (’% - @) +cC, —C; nv,,<1 - —8) (2.62)
« w\ C C % @ Jda

where the prime indicates elevator-free values. To determine the influence of a free
elevator on the static longitudinal stability, we again examine the condition in
which C,, = 0. Setting C,,_equal to 0 in Equation (2.62) and solving for x/¢ yields
the stick-free neutral pomt

(2.63)
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The difference between the stick fixed neutral point and the stick-free neutral point
can be expressed as follows:

’ CL
e I _ (1 — W, “’(1 - d—e) (2.64)
c c CLaw da
The factor f determines whether the stick-free neutral point lies forward or aft of
the stick fixed neutral point.
Static margin is a term that appears frequently in the literature. The static
margin is simply the distance between the neutral point and the actual center of
gravity position

. . . Xnp xcg

Stick fixed static margin = z 7 (2.65)
- . . xl,\iP xcg

Stick-free static margin = - (2.66)

For most aircraft designs, it is desirable to have a stick fixed static margin of
approximately 5 percent of the mean chord. The stick fixed or stick-free static
neutral points represent an aft limit on the center of gravity travel for the airplane.

25
STICK FORCES

To deflect a control surface the pilot must move the control stick or rudder pedals.
The forces exerted by the pilot to move the control surface is called the stick force
or pedal force, depending which control is being used. The stick force is propor-
tional to the hinge moment acting on the control surface:

F = fn(H,) (2.67)

Figure 2.25 is a skeich of a simple mechanical system used for deflecting the
elevator. The work of displacing the control stick is equal to the work in moving the
control surface to the desired deflection angle. From Figure 2.25 we can write the
expression for the work performed at the stick and elevator:

Fl, 8, = H, 9, (2.68)

or F = % H 2.69
1o e (2.69)

or F = GH, (2.70)

where G = 8,/(l, 8,) called the gearing ratio, is a measure of the mechanical
advantage provided by the control system.

Substituting the expression for the hinge moment defined earlier into the stick
force equation yields

1
F = GG, 5pV’S, (2.71)
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FIGURE 2.25
Relationship between stick force and hinge moment.

From this expression we see that the magnitude of the stick force increases with the
size of the airplane and the square of the airplane’s speed. Similar expressions can
be obtained for the rudder pedal force and aileron stick force.

The control system is designed to convert the stick and pedal movements into
control surface deflections. Although this may seem to be a relativey easy task, it
in fact is quite complicated. The control system must be designed so that the control
forces are within acceptable limits. On the other hand, the control forces required
in normal maneuvers must not be too small; otherwise, it might be possible to
overstress the airplane. Proper control system design will provide stick force mag-
nitudes that give the pilot a feel for the commanded maneuver. The magnitude of
the stick force provides the pilot with an indication of the severity of the motion
that will result from the stick movement.

The convention for longitudinal control is that a pull force should always rotate
the nose upward, which causes the airplane to slow down. A push force will have
the opposite effect; that is, the nose will rotate downward and the airplane will
speed up. The control system designer must also be sure that the airplane does not
experience control reversals due to aerodynamic or aeroelastic phenomena.

2.5.1 Trim Tabs

In addition to making sure that the stick and rudder pedal forces required to
maneuver or trim the airplane are within acceptabe limits, it is important that some
means be provided to zero out the stick force at the trimmed flight speed. If such
a provision is not made, the pilot will become fatigued by trying to maintain the
necessary stick force. The stick force at trim can be made zero by incorporating a
tab on either the elevator or the rudder. The tab is a small flap located at the trailing
edge of the control surface. The trim tab can be used to zero out the hinge moment
and thereby eliminate the stick or pedal forces. Figure 2.26 illustrates the concept
of a trim tab. Although the trim tab has a great influence over the hinge moment,
it has only a slight effect on the lift produced by the control surface.
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FIGURE 2.26
Trim tabs.
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A A
8.(+)
8(-)/
o

2.5.2 Stick Force Gradients

Another important parameter in the design of a control system is the stick force
gradient. Figure 2.27 shows the variation of the stick force with speed. The stick
force gradient is a measure of the change in stick force needed to change the speed
of the airplane. To provide the airplane with speed stability, the stick force gradient
must be negative; that is,

dF

— < .
av 0 (2.72)

Stick force
Stick gradient
force

ar
dv

Velocity
Trim \

FIGURE 2.27 )
Stick force versus velocity.
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The need for a negative stick-force gradient can be appreciated by examining the
trim point in Figure 2.27. If the airplane slows down, a positive stick force occurs
that rotates the nose of the airplane downward, which causes the airplane to
increase its speed back toward the trim velocity. If the airplane exceeds the trim
velocity, a negative (pull) stick force causes the airplane’s nose to pitch up, which
causes the airplane to slow down. The negative stick force gradient provides the
pilot and airplane with speed stability. The larger the gradient, the more resistant
the airplane will be to disturbances in the flight speed. If an airplane did not have
speed stability the pilot would have to continuously monitor and control the air-
plane’s speed. This would be highly undesirable from the pilot’s point of view.

2.6
DEFINITION OF DIRECTIONAL STABILITY

Directional, or weathercock, stability is concerned with the static stability of the
airplane about the z axis. Just as in the case of longitudinal static stability, it is
desirable that the airplane should tend to return to an equilibrium condition when
subjected to some form of yawing disturbance. Figure 2.28 shows the yawing

Airplane 1
{stable)

B()

Airplane 2
(unstable)

FIGURE 2.28
Static directional stability.
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moment coefficient versus sideslip angle 8 for two airplane configurations. To have
static directional stability, the airplane must develop a yawing moment that will
restore the airplane to its equilibrium state. Assume that both airplanes are dis-
turbed from their equilibrium condition, so that the airplanes are flying with a
positive sideslip angle 8. Airplane 1 will develop a restoring moment that will tend
to rotate the airplane back to its equilibrium condition; that is, a zero sideslip angle.
Airplane 2 will develop a yawing moment that will tend to increase the sideslip
angle. Examining these curves, we see that to have static directional stability the
slope of the yawing moment curve must be positive (C,,ﬂ > 0). Note that an airplane

possessing static directional stability will always point into the relative wind, hence
the name weathercock stability.

2.6.1 Contribution of Aircraft Components

The contribution of the wing to directional stability usually is quite small in
comparison to the fuselage, provided the angle of attack is not large. The fuselage
and engine nacelles, in general, create a destabilizing contribution to directional
stability. The wing fuselage contribution can be calculated from the following
empirical expression taken from [2.7]:

= —k, kg Sply (per deg) (2.73)

Cn By - SW b

where k, = an empirical wing-body interference factor that is a function of the
fuselage geometry
kg, = an empirical correction factor that is a function of the fuselage
Reynolds number
Sy = the projected side area of the fuselage
I, = the length of the fuselage

I

The empirical factors k, and kg, are determined from Figures 2.29 and 2.30
respectively.

Since the wing-fuselage contribution to directional stability is destabilizing, the
vertical tail must be properly sized to ensure that the airplane has directional
stability. The mechanism by which the vertical tail produces directional stability is
shown in Figure 2.31. If we consider the vertical tail surface in Figure 2.31, we see
that when the airplane is flying at a positive sideslip angle the vertical tail produces
a side force (lift force in the xy plane) that tends to rotate the airplane about its
center of gravity. The moment produced is a restoring moment. The side force
acting on the vertical tail can be expressed as

Y, = —CLuiav Qu Sv (274)

where the subscript v refers to properties of the vertical tail. The angle of attack a,
that the vertical tail plane will experience can be written as

a, =B +o (2.75)
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¢, = Body side area
J ws = Maximum bodywidth
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Wing body interference factor.
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FIGURE 2.31
Vertical tail contribution to
directional stability.

™

o -Sidewash
due to wing vortices

where o is the sidewash angle. The sidewash angle is analogous to the downwash
angle £ for the horizontal tail plane. The sidewash is caused by the flow field
distortion due to the wings and fuselage. The moment produced by the vertical tail
can be written as a function of the side force acting on it:

Nv = ln YL = ll? CLa (B + O-)Qx; S!: (276)
or in coefficient form
N, LS. Q.
-t - tTr =t + 2'7
= oo~ 5 o G B+ ) 277
= ‘/IJT’(; CLa,(B + 0’) (278)

where V, = [ S,/(Sb) is the vertical tail volume ratio and 0, = Q,/Q,, is the ratio
of the dynamic pressure at the vertical tail to the dynamic pressure at the wing.

The contribution of the vertical tail to directional stability now can be obtained
by taking the derivative of Equation (2.78) with respect to 3:

do
C"al = V.7, CLL.[<1 + @) (2.79)
A simple algebraic equation for estimating the combined sidewash and tail effici-
ency factor 7, is presented in [2.7] and reproduced here:

do S./S
11+ —=]=0724 +3.06 —————
7h< ) 0 06 1 + cos A

w
+04—=+0. , .
a8 0.4 4 0.009 AR, (2.80)
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where S = the wing area
S, = the vertical tail area, including the submerged area to the fuselage
centerline
the distance, parallel to the z axis, from wing root quarter chord
point to fuselage centerline
d = the maximum fuselage depth
AR, = the aspect ratio of the wing
A4 = sweep of wing quarter chord.

}

i

Zw

2.7
DIRECTIONAL CONTROL

Directional control is achieved by a control surface, called a rudder, located on the
vertical tail, as shown in Figure 2.32. The rudder is a hinged flap that forms the aft
portion of the vertical tail. By rotating the flap, the lift force (side force) on the fixed
vertical surface can be varied to create a yawing moment about the center of
gravity. The size of the rudder is determined by the directional control require-
ments. The rudder control power must be sufficient to accomplish the requirements
listed in Table 2.1.

The yawing moment produced by the rudder depends on the change in lift on
the vertical tail due to the deflection of the rudder times its distance from the center
of gravity. For a positive rudder deflection, a positive side force is created on the
vertical tail. A positive side force will produce a negative yawing moment:

N=-17, (2.81)
where the side force is given by
Yc = CLU Qv Sl:
Rewriting this equation in terms of a yawing moment coefficient yields
N Q. LS, dC,
== = 2.82
G Q. Sb Q. Sb ds, 7 ( )
Rudder
g& (=)
5, [ (+)
FIGURE 2.32

Directional control by means of the rudder.
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TABLE 2.1
Requirements for directional control

Rudder
requirements Implication for rudder design
Adverse yaw When an airplane is banked to execute a turning maneuver the ailerons

may create a yawing moment that opposes the turn (i.e., adverse yaw). The
rudder must be able to overcome the adverse yaw so that a coordinated
turn can be achieved. The critical condition for adverse yaw occurs when
the airplane is flying slow (i.e., high C;.)

Crosswind landings To maintain alignment with the runway during a crosswind landing
requires the pilot to fly the airplane at a sideslip angle. The rudder must be
powerful enough to permit the pilot to trim the airplane for the specified
crosswinds. For transport airplanes, landing may be carried out for
crosswinds up to 15.5 m/s or 51 ft/s.

Asymmetric power The critical asymmetric power condition occurs for a multiengine airplane

condition when one engine fails at low flight speeds. The rudder must be able to
overcome the yawing moment produced by the asymmetric thrust
arrangement.

Spin recovery The primary control for spin recovery in many airplanes is a powerful

rudder. The rudder must be powerful enough to oppose the spin rotation.

C VdCL"a 2.83
or n 7’0 0_557 r ( )

The rudder control effectiveness is the rate of change of yawing moment with
rudder deflection angle:

dc,
G =Gy = —nVigs™ 5 (2.84)
dac,,
or G, = —nV, d_5, (2.85)
dCL dC‘L da
where —t=—"—=C, T (2.86)

dé, da, do, #

and the factor 7 can be estimated from Figure 2.21.

2.8
ROLL STABILITY

An airplane possesses static roll stability if a restoring moment is developed when
it is disturbed from a wings-level attitude. The restoring rolling moment can be
shown to be a function of the sideslip angle B as illustrated in Figure 2.33. The
requirement for stability is that C,, < 0. The roll moment created on an airplane
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6’ Wings level
Roll upset
Airplane begins
to sideslip8 > 0

Roll moment created by sideslip rolls
airplane to larger roll angle

oo
Wings level
@/ Roll upset
% B>0

Roll moment created by sideslip rolls
airplane back toward wings level attitude

FIGURE 2.33
Static roll stability.

when it starts to sideslip depends on the wing dihedral, wing sweep, position of the
wing on the fuselage, and the vertical tail. Each of these contributions will be
discussed qualitatively in the following paragraphs.

The major contributor to C,B is the wing dihedral angle I. The dihedral angle
is defined as the spanwise inclination of the wing with respect to the horizontal. If
the wing tip is higher than the root section, then the dihedral angle is positive; if
the wing tip is lower than the root section, then the dihedral angle is negative. A
negative dihedral angle is commonly called anhedral.

When an airplane is disturbed from a wings-level attitude, it will begin to
sideslip as shown in Figure 2.34. Once the airplane starts to sideslip a component
of the relative wind is directed toward the side of the airplane. The leading wing
experiences an increased angle of attack and consequently an increase in lift. The
trailing wing experiences the opposite effect. The net result is a rolling moment that
tries to bring the wing back to a wings-level attitude. This restoring moment is often
referred to as the dihedral effect.

The additional lift created on the downward-moving wing is created by the
change in angle of attack produced by the sideslipping motion. If we resolve the
sideward velocity component into components along and normal to the wing span
the local change in angle of attack can be estimated as

Ao = 2 (2.87)
Uu

where v, = VsinT (2.88)
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Wing contribution
r
AN

Change in lift due to dihedral effect

I'-Dihedral angle

/\451-\ Wing section 1 Wing section 2
r
\/ AL Vr
u v, Aa,
n Aa, u
Vr
AL

v, Normal component of side velocity

n
Aa, = v V  Velocity due to sideslip
B~ % butv, ~ VI’ u  Foreward velocity
oo Ay = BI" and Aa, = -l V, Resultant velocity

Fuselage contributions

High wing
Stabilizing roll
g moment created
by flow around

-
\ fuselage
/'J =~ Decreased lift

Relative flow
around the fuselage \3;_—: -

//f/
ZZ
-

- /
Increased lift

Increased lift Low wing
Destabilizing roll

Decreased lift
moment created
/ by flow around
et fuselage
]
-

FIGURE 2.34
Wing and fuselage contribution to the dihedral

By approximating the sideslip angle as

g==2 (2.89)
Uu

and assuming that I" is a small angle, the change of attack can be written as

Aa = BT (2.90)
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The angle of attack on the upward-moving wing will be decreased by the
same amount. Methods for estimating the wing contribution to Cl;a can again be
found in [2.7].

Wing sweep also contributes to the dihedral effect. In a sweptback wing, the
windward wing has an effective decrease in sweep angle and the trailing wing
experiences an effective increase in sweep angle. For a given angle of attack, a
decrease in sweepback angle will result in a higher lift coefficient. Therefore, the
windward wing (with a less effective sweep) will experience more lift than the
trailing wing. It can be concluded that sweepback adds to the dihedral effect. On
the other hand, sweep forward will decrease the effective dihedral effect.

The fuselage contribution to dihedral effect is illustrated in Figure 2.34. The
sideward flow turns in the vicinity of the fuselage and creates a local change in wing
angle of attack at the inboard wing stations. For a low wing position, the fuselage
contributes a negative dihedral effect; the high wing produces a positive dihedral
effect. To maintain the same C,, a low-wing aircraft will require a considerably
greater wing dihedral angle than a high-wing configuration.

The horizontal tail also can contribute to the dihedral effect in a manner similar
to the wing. However, owing to the size of the horizontal tail with respect to the
wing, its contribution is usually small. The contribution to dihedral effect from the
vertical tail is produced by the side force on the tail due to sideslip. The side force
on the vertical tail produces both a yawing moment and a rolling moment. The
rolling moment occurs because the center of pressure for the vertical tail is located
above the aircraft’s center of gravity. The rolling moment produced by the vertical
tail tends to bring the aircraft back to a wings-level attitude.

29
ROLL CONTROL

Roll control is achieved by the differential deflection of small flaps called ailerons
which are located outboard on the wings, or by the use of spoilers. Figure 2.35 is
a sketch showing both types of roll control devices. The basic principle behind these
devices is to modify the spanwise lift distribution so that a moment is created about
the x axis. An estimate of the roll control power for an aileron can be obtained by
a simple strip integration method as illustrated in Figure 2.36 and the equations
that follow. The incremental change in roll moment due to a change in aileron angle
can be expressed as

AL = (A Lift)y (2.91)

which can be written in coefficient form as

AL C,Qcy dy
LR} 2.92
AC, 0Sh OSb (2:92)
_Coydy (2.93)

Sb
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Roll moment FIGURE 2.35
Aileron and spoilers for roll
7, control.
/ Decreased lift
Aileron control
Increase lift \ &,
Roll moment
Decreased lift
SSpoiIer
Spoiler control
Spoiler neutral
position
FIGURE 2.36

Strip theory approximation
of roll control effectiveness.

The section lift coefficient C, on the stations containing the aileron can be written

as da

C=0C, @, 8, = C, 18, (2.94)
which is similar to the technique used to estimate the control effectiveness of
an elevator and rudder. Substituting Equation (2.93) into Equation (2.94) and
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integrating over the region containing the aileron yields

2CLa T 6(1 Y2
C, = wa—f cy dy (2.95)

Y1
where C; and 7 have been corrected for three-dimensional flow and the factor of

2 has been introduced to account for the other aileron. The control power C, 1;, can
be obtained by taking the derivative with respect to 4,:

2C,, 7

C, = cyd 2.96

s, Sb fy Yy dy ( )
1

EXAMPLE PROBLEM 24. For the NAVION airplane described in Appendix B, esti-

mate the roll control power, C,, . Assume that the wing and aileron geometry are as

shown in Figure 2.37.

Solution. Equation (2.96) can be used to estimate the roll control power, Cis,-

2CLawT 2
Co = | oydy

Sb
¥1
b/2=16.7f. A =054 ¢, =7.2ft
c,=39ft y,= 1111t v, = 16 ft.
S=184f2 C_ =444/rad. c/c=0.18ft
Aw
ct
cr
—t
Y4
Y2
b/2
FIGURE 2.37

Approximate wing geometry of the NAVION airplane.
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For a tapered wing the chord can be expressed as a function of y by the following

relationship:
N
c = C — 1y

Substituting the relationship for the chord back into the expression for C, yields

o o X C & - ).—1) q
WS TSy ) 52 I

¥

2C,,, 7C | y? A= 1l
of Cu, Sh [2 ( b/2 )3 )

This equation can be used to estimate C;, using the data in Figure 2.37 and estimating
7 from Figure 2.21. Because the chord ratio is the same as the area ratio used in
Figure 2.21, we can use ¢ /c = 0.18 to estimate the flap effectiveness parameter, 7.

2(4.3/rad)(0.36)(7.2 fo)
T (184 £2)(33.4 ft)

0.155/rad

(90.4 f* — 49 1)

The control derivative C, is a measure of the power of the aileron control; it represents
the change in moment per unit of aileron deflection. The larger C,, , the more effective
the control is at producing a roll moment.

2.10
SUMMARY

The requirements for static stability were developed for longitudinal, lateral direc-
tional, and rolling motions. It is easy to see why a pilot would require the airplane
that he or she is flying to possess some degree of static stability. Without static
stability the pilot would have to continuously control the airplane to maintain a
desired flight path, which would be quite fatiguing. The degree of static stability
desired by the pilot has been determined through flying quality studies and will be
discussed in a later chapter. The important point at this time is to recognize that the
airplane must be made statically stable, either through inherent aerodynamic char-
acteristics or by artificial means through the use of an automatic control system.

The inherent static stability tendencies of the airplane were shown to be a
function of its geometric and aerodynamic properties. The designer can control the
degree of longitudinal and lateral directional stability by proper sizing of the
horizontal and vertical tail surfaces, whereas roll stability was shown to be a
consequence of dihedral effect, which is controlled by the wing’s placement or
dihedral angle.

In addition to static stability, the pilot wants sufficient control to keep the
airplane in equilibrium (i.e., trim) and to maneuver. Aircraft response to control
input and control force requirements are important flying quality characteristics
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determined by the control surface size. The stick force and stick force gradient are
important parameters that influence how the pilot feels about the flying character-
istics of the airplane. Stick forces must provide the pilot a feel for the maneuver
initiated. In addition, we show that the stick force gradient provides the airplane
with speed stability. If the longitudinal stick force gradient is negative at the trim
flight speed, then the airplane will resist disturbances in speed and fly at a constant
speed.

Finally, the relationship between static stability and control was examined. An
airplane that is very stable statically will not be very maneuverable; if the airplane
has very little static stability, it will be very maneuverable. The degree of maneu-
verability or static stability is determined by the designer on the basis of the
airplane’s mission requirements.

PROBLEMS

2.1. If the slope of the C,, versus C, curve is —0.15 and the pitching moment at zero lift
is equal to 0.08, determine the trim lift coefficient. If the center of gravity of the
airplane is located at X,/ = 0.3, determine the stick fixed neutral point.

2.2. For the data shown in Figure P2.2, determine the following:
(@) The stick fixed neutral point.
(b) If we wish to fly the airplane at a velocity of 125 ft/s at sea level, what would be
the trim lift coefficient and what would be the elevator angle for trim?

0.15 - W = 2,750 Ib
S = 180 f12

0.10 - cg=0.25¢

0.05 -
Cre 0.0 2

. . R 0.8 . 8§ =-15°
e
-0.05 7 \\ §,=-10°
-0.10 8= &
5 =0°

-0.15 - 8,=5°

FIGURE P2.2

2.3. Analyze the canard-wing combination shown in Figure P2.3. The canard and wing
are geometrically similar and are made from the same airfoil section.

AR. = AR, S, =028, ¢. = 0.45¢c,

(@) Develop an expression for the moment coefficient about the center of gravity. You
may simplify the problem by neglecting the upwash (downwash) effects between
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the lifting surfaces and the drag contribution to the moment. Also assume small
angle approximations.
(b) Find the neutral point for this airplane.

FIGURE P2.3

2.4. The C,, versus, « curve for a large jet transport can be seen in Figure P2.4. Use the
figure and the following information to answer questions (a) to (c).

C, = 0.03 + 0.08« (deg.)
—15° =< §, = 20°
(a) Estimate the stick fixed neutral point.
(b) Estimate the control power Cons,-
(c) Find the forward center of gravity limit. Hint:
dC,., X  Xnp

dc, c c

0.5

0.4

0.3

DT P P STl e

-0.3

Ll

0.4

05 T4 L, T
0 2 4 6 8 10 12 14 16 18 20
a {deg)

FIGURE P24
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2.5. Using the data for the business jet aircraft included in Appendix B, determine the
following longitudinal stability information at subsonic speeds:
(a) Wing contribution to the pitching moment
(b) Tail contribution to the pitching moment
(¢) Fuselage contribution to the pitching moment
(d) Total pitching moment
(e) Plot the various contributions
(f) Estimate the stick fixed neutral point

2,6. An airplane has the following pitching moment characteristics at the center of gravity

position:
X /T =03
dc,
Cry = oy + —dE"‘L%cL + Cpy, &,
dC,,,
where C,, = 0.05 = —0.1 C,. = —0.01/deg
dc, s

9Cry _ [ﬁ] _ @]
ac, |z c

If the airplane is loaded so that the center of gravity position moves to x.,/¢ = 0.10,
can the airplane be trimmed during landing, C;, = 1.0? Assume that C,,, and C,,, are
unaffected by the center of gravity travel and that §, , = *+20°.
2.7. The pitching moment characteristics of a general aviation airplane with the landing
gear and flaps in their retracted position are given in Figure P2.7.

0.4

0.2
0.0
o
[5]
£
(8]
-0.2 —
| \‘\D\(L 58 o
0.4 \6\
b5 = 4°
Xog = 0-25¢ ) e
S = 150 fi2 c=5ft
-0.6 T . . .
0.0 0.4 0.8 1.2 1.6
CL
FIGURE P2.7

Pitching moment characteristics of a general aviation airplane.
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(a) Where is the stick fixed neutral point located?

(b) If the airplane weighs 2500 Ibs and is flying at 150 ft/s at sea level, p = 0.002378
slug/ft®, what is the elevator angle required for trim?

(c) Discuss what happens to the pitching moment curve when the landing gear is
deployed? How does the deflection of the high lift flaps affect the stability of the
airplane?

2.8. Estimate the fuselage and engine nacelle contribution to C,,, using the method dis-
cussed in section 2.3 for the STOL transport shown in Figure P2.8. The airplane has

Lo vl enyl 1 1 J

FIGURE P2.8
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been divided into 12 sections as indicated in Figure P2.8. The section length, width,
and distance from the wing leading or trailing edge to the midpoint of each section is
given in the table below. The engine nacelles have been approximated by one section
as indicated on the figure.

Fuselage

Station Axft  w;ft x ft
1 44 44 20.2
2 25 6.9 17.0
3 5.0 8.8 13.9
4 5.0 9.5 7.6
5 5.0 10.1 25
6 6.3 10.1 25
7 6.3 10.1 8.8
8 6.3 10.1 15.1
9 6.3 8.2 214
10 6.3 7.6 271
1t 5.0 5.1 334
12 5.0 25 39.7

Assume that ¢ = 12.6 ft (the fuselage region between the wing leading and trailing
edge), [, = 34 ft (the distance from the wing trailing edge to the quarter chord of the
horizontal tail), and de/da at the tail is 0.34.

The downwash angle at zero angle of attack and the rate of change of downwash with
angle of attack can be determined experimentally by several techniques. The down-
wash angle can be measured directly by using a five- or seven-hole pressure probe to
determine the flow direction at the position of the tail surface or indirectly from
pitching moment data measured from wind-tunnel models. This latter technique will
be demonstrated by way of this problem. Suppose that a wind-tunnel test were
conducted to measure the pitching moment as a function of the angle of attack for
various tail incidence settings as well as for the case when the tail surface is removed.
Figure P2.9 plots such information. Notice that the tail-off data intersect the

015 s Bodywing o
0.10 [
0'05 R Y R T,
me
0.00 i T R TN I = -3°
~. ip=-2°
—0.05 it .......... it—_1°
. “TBody:wing-tall | T~ =0
-0.10 : T + — T r T — it =1°
0 2 4 6 8 10
«,, ~ deg

FIGURE P2.9
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2.10.

2.11.

2.12.

complete configuration data at several points. At the points of intersection, the
contribution of the tail surface to the pitching moment curve must be 0. For this to be
the case, the lift on the tail surface is 0, which implies that the tail angle of attack is
0 at these points. From the definition of the tail angle of attack,

o=a, I, — &+
we obtain e=a, — I, ti

at the interception points. Using the data of Figure P2.9 determine the downwash
angle versus the angle of attack of the wing. From this information estimate g, and
de/da.

The airplane in Example Problem 2.2 has the following hinge moment characteristics:
C,... = 0.09/deg C,, = —0.003/deg Cy, = —0.005/deg Vy =04

Cp,, = 0.08/deg G, = 0.0 S./S, = 0.35 defda = 0.4

o

What would be the stick-free neutral point location?

As an airplane nears the ground its aerodynamic characteristics are changed by the
presence of the ground plane. This change is called ground effect. A simple model for
determining the influence of the ground on the lift drag and pitching moment can be
obtained by representing the airplane by a horseshoe vortex system with an image as
shown in Figure P2.11. Using this sketch, shown qualitatively, explain the changes
that one might expect; that is, whether the forces and moment increase or decrease.

Bound Traii
vortex railing
/vortices
/r/\{ //
/// /g
z yal //
2 AY
/// ////
)
P 7
= _C; ______ _<:__
. Image
h = Height above } b \\ vortex sg/stem
the ground
b = Span of

bound vortex
FIGURE P2.11

If the control characteristics of the elevator used in Example Problem 2.2 are as
follows, determine the forwardmost limit on the center of gravity travel so that the
airplane can be controlled during landing; that is, at C;_ . Neglect ground effects on
the airplane’s aerodynamic characteristics:

Cpns, = —1.03/rad 6, = {_
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2.13. Size the vertical tail for the airplane configuration shown in Figure P2.13 so that its
weathercock stability has a value of C,, = +0.1 rad™". Clearly state your assump-
tions. Assume V = 150 m/s at sea level.

S$=213m?2 b=10.4m 2, =04 m d=16m

L=137m X, =8.0m w;=16m st= 15.4 m2

h=16m  h=16m h,=1.07m

]

w

-

FIGURE P2.13

2.14. Figure P2.14 is a sketch of a wing planform for a business aviation airplane.
(a) Use strip theory to determine the roll control power.
() Comment on the accuracy of the strip theory integration technique.

275 m

¢/c =0.25 L

3.4m !

48m |

52m

FIGURE P2.14
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2.15. Suppose the wing planform in Problem 2.14 is incorporated into a low-wing aircraft
design. Find the wing dihedral angle necessary to produce a dihedral effect of
C,= -01 rad™!. Neglect the fuselage interference on the wing dihedral contri-
bution.

2.16. For the twin engine airplane shown in Figure P2.16, determine the rudder size to
control the airplane if one engine needs to be shut down. Use the flight information
shown in the figure and

Wing: S = 980 ft? b=93ft

Vertical tail: S, =330f AR, =43 ,=37ft =m, =10
Rudder: 8= *15°

Propulsion: T = 14,000 b each yr = 16 ft

Flight condition: V = 250 fi/s p = 0.002378 slug/ft’

e

FIGURE P2.16

2.17. The elevator for a business jet aircraft is shown in Figure P2.17. Estimate the eleva-
tor’s control power C,,, using the geometric information that follows:

S =1232f2 AR = 4.0

c=70ft I, =216 ft
b= 147ft  C, = 0.1/deg(2D)
S, = 54 f¢*
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I § Aircraft
|

0.18——
(0.58)

0.25 (0.75) 224
(7.35)

FIGURE P2.17

2.18. Develop an expression for the wing dihedral effect C,, for a wing planform that uses
dihedral only for the outboard portion of the wing (see Figure P2.18). Clearly state
all of your assumptions.

Y4 1

o2 .

FIGURE P2.18

2.19. The trailing vortex wake left behind by an airplane can be a safety hazard to following
aircraft as illustrated in Figure P2.19. The most likely place to encounter the wake of
another aircraft is in the vicinity of the airport during takeoff or landing. To minimize
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Upwash

/
<
Imposed
roll

Downwash

e
<

Loss of altitude
rate of climb

~
>y

Structural
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FIGURE P2.19

the possibility of a wake encounter the FAA has developed a separation criteria
between aircraft of different sizes. If an elliptic wing loading is assumed, the strength
of the trailing wake can be shown to be related to the size and speed of the generating

aircraft.
L=W=pVIdb

where L = lift

W = weight

p = air density

V = velocity of the airplane

I' = vortex strength

b' = effective span of vortices.

The effective span of the wing tip vortices for an elliptic load distribution can be
shown to be

ko
b ==b
4

where b is the wingspan of the generating aircraft. Solving for the circulation (i.e.,
vortex strength) yields
4
pVb'
The tangential velocity field at some point downstream created by one of the vortices
is given by
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From the simple analysis presented here it is clear that the vortex strength is
proportional to the weight of the generating aircraft and inversely proportional to its
speed. Therefore large heavy transports flying at approach or takeoff speeds will
create the strongest wakes and the greatest hazard to following aircraft.

Wake vortices decay slowly in calm atmospheric conditions. Because the wake
vortices decay very slowly in a calm atmosphere we will neglect vortex decay in this
problem. Develop an expression for estimating the roll moment induced on an air-
plane wing when the wing is centered in the vortex core of another aircraft’s trailing
vortex wake.

Using the expression developed in Problem 2.19, estimate the roll moment induced by
the wake of a large jet transport on several smaller aircraft. Use the data in Appen-
dix B. Use the information for the 747 for the generating aircraft and evaluate the roll
moment induced on the Convair 880, STOL transport, business jet, and the NAVION.
Compare the induced roll moment to the maximum roll moment that could be
developed by full aileron deflection. Assume the aileron maximum deflection is =25°
for each aircraft.
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CHAPTER 3

Aircraft Equations of Motion

Success four flights Thursday morning all against 21 mile wind—started from
level with engine power alone average speed through air 30 miles—longest
57 seconds inform press home Christmas

Telegram message sent by Orville Wright, December 17, 1903

31
INTRODUCTION

In Chapter 2, the requirements for static stability were examined. It was shown that
static stability is a tendency of the aircraft to return to its equilibrium position. In
addition to static stability, the aircraft also must be dynamically stable. An airplane
can be considered to be dynamically stable if after being disturbed from its equi-
librium flight condition the ensuing motion diminishes with time. Of particular
interest to the pilot and designer is the degree of dynamic stability. The required
degree of dynamic stability usually is specified by the time it takes the motion to
damp to half of its initial amplitude or in the case of an unstable motion the time
it takes for the initial amplitude or disturbance to double. Also of interest is the
frequency or period of the oscillation.

An understanding of the dynamic characteristics of an airplane is important in
assessing its handling or flying qualities as well as for designing autopilots. The
flying qualities of an airplane are dependent on pilot opinion; that is, the pilot’s
likes or dislikes with regard to the various vechile motions. It is possible to design
an airplane that has excellent performance but is considered unsatisfactory by the
pilot. Since the early 1960s, considerable research has been directed toward quan-
tifying pilot opinion in terms of aircraft motion characteristics, such as frequency
and damping ratio of the aircraft’s various modes of motion. Therefore, it is
important to understand the dynamic characteristics of an airplane and the rela-
tionship of the motion to the vehicle’s aerodynamic characteristics and pilot
opinion.

Before developing the equations of motion, it is important to review the axis
system specified earlier. Figure 3.1 shows the body axis system fixed to the aircraft
and the inertial axis system that is fixed to the Earth.

96
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. ’
Fixed frame Xy

Y1
Z4

FIGURE 3.1
Body and inertial axis systems.

32
DERIVATION OF RIGID BODY EQUATIONS OF MOTION

The rigid body equations of motion are obtained from Newton’s second law, which
states that the summation of all external forces acting on a body is equal to the time
rate of change of the momentum of the body; and the summation of the external
moments acting on the body is equal to the time rate of change of the moment of
momentum (angular momentum). The time rates of change of linear and angular
momentum are referred to an absolute or inertial reference frame. For many
problems in airplane dynamics, an axis system fixed to the Earth can be used as an
inertial reference frame. Newton’s second law can be expressed in the following
vector equations:

EF=%mw 3.1

d
2M=5H (3.2)

The vector equations can be rewritten in scalar form and then consist of three
force equations and three moment equations. The force equations can be expressed
as follows:

d d
F, = & (mu) F,= a (mv) F. = — (mw) (3.3)
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where F,, F,, F,and u, v, w are the components of the force and velocity along the
x, ¥, and z axes, respectively. The force components are composed of contributions
due to the aerodynamic, propulsive, and gravitational forces acting on the airplane.
The moment equations can be expressed in a similar manner:

d d d

L=—H, M=—H, N=—H, 34

dt de - de ~ G4
where L, M, N and H,, H,, H, are the components of the moment and moment of
momentum along the x, y, and z axes, respectively.

Consider the airplane shown in Figure 3.2. If we let 0m be an element of mass
of the airplane, v be the velocity of the elemental mass relative to an absolute or
inertial frame, and 8F be the resulting force acting on the elemental mass, then
Newton’s second law yields

dv
OF = ém — 35
ar (3.5)
and the total external force acting on the airplane is found by summing all the
elements of the airplane:

> 6F =F (3.6)
The velocity of the differential mass ém is

=v, +— .
V=Vt — (3.7

where v, is the velocity of the center of mass of the airplane and dr/dt is the velocity
of the element relative to the center of mass. Substituting this expression for the

Zp

FIGURE 3.2
An element of mass on an airplane.
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velocity into Newton’s second law yields

28F=F=22(vc+dr) om (3.8)

dt dr
If we assume that the mass of the vehicle is constant, Equation (3.8) can be
rewritten as

d
F=m V‘+:t§‘,96m (3.9)
dv
or F = + 3 2 r m (3.10)

Because r is measured from the center of mass, the summation 2 r dm is equal to
0. The force equation then becomes
dv,

F = .
m (3.11)

which relates the external force on the airplane to the motion of the vehicle’s center
of mass.

In a similar manner, we can develop the moment equation referred to a moving
center of mass. For the differential element of mass, 6m, the moment equation can
be written as

M = &7 6H = — (r X v) ém (3.12)

The velocity of the mass element can be expressed in terms of the velocity of the
center of mass and the relative velocity of the mass element to the center of mass:

v=vc+%£t.=vc+w><r (3.13)

where w is the angular velocity of the vehicle and r is the position of the mass
element measured from the center of mass. The total moment of momentum can
be written as

H=26H=2@Xv)dm+D[rx(@Xxnr]ém (3.14)

The velocity v, is a constant with respect to the summation and can be taken outside
the summation sign:

H=2r6m><vc+2[r><(m><r)]8m (3.15)

The first term in Equation (3.15) is O because the term 2 r 6m = 0, as explained
previously. If we express the angular velocity and position vector as

Il

o=pitgqgjtrk (3.16)

xi + yj + zk (3.17)

It

and r
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then after expanding Equation (3.15), H can be written as
H = (pi+ gi+rk) X (x + y> + 2% om

— D (xi + yi+ zK)(px + qy + r2) 6m (3.18)

The scalar components of H are

HXZpE(yZ+zz)5m—q2xy8m—r2x28m
H, P D xydm+ gD (x2+z)8m —r >, yz ém (3.19)
HZZ—pEszm—quz5m+rz(x2+y2)6m

The summations in these equations are the mass moment and products of inertia
of the airplane and are defined as follows:

Ix=fff(y2+zz)8m Ixy=J’ffxy5m
I, = fff (x* + 7% ém I, = JJJ’ xz 8m (3.20)
Iz=jjj(x2+y2)6m lvz=jjjy28m

The terms 1., I,, and I, are the mass moments of inertia of the body about the x, y,
and z axes, respectively. The terms with the mixed indexes are called the products
of inertia. Both the moments and products of inertia depend on the shape of the
body and the manner in which its mass is distributed. The larger the moments of
inertia, the greater will be the resistance to rotation. The scaler equations for the
moment of momentum follow:

H . =pl —ql,6 —rl,
H, = —pl,+ql, —rl, (3.21)
H,= —pl, —ql, + rl,

1f the reference frame is not rotating, then as the airplane rotates the moments and
products of inertia will vary with time. To avoid this difficulty we will fix the axis
systzm to the aircraft (body axis system). Now we must determine the derivatives
of the vectors v and H referred to the rotating body frame of reference.

It can be shown that the derivative of an arbitrary vector A referred to a
rotating body frame having an angular velocity @ can be represented by the
following vector identity:

dA
dr

_dA

= + X .
b o XA (3.22)

B

where the subscripts 7 and B refer to the inertial and body fixed frames of reference.
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Applying this identity to the equations derived earlier yields

F=m—| + mlmw Xv) (3.23)
a |,
dH
=2 fexH (3.24)
dr |,

The scalar equations are
=m(u + gw — rv) F,=m{ + ru — pw) F, = mw + po — qu)
L=H, + qH, — rH, M =H,+ rH, — pH, N =H, + pH, — qH,
(3.25)
The components of the force and moment acting on the airplane are composed of
aerodynamic, gravitational, and propulsive contributions.
By proper positioning of the body axis system, one can make the products of
inertia I,, = I, = 0. To do this we are assuming that the xz plane is a plane of

symmetry of the airplane. With this assumption, the moment equations can be
written as

I
I

L=Ip-1I.r+gqr(l,— 1) - I.,pq
M=1q+rrp(I - L)+ L(p*—r) (3.26)
N=—-L.p+ L+ pgl, — 1) + L.gr

33
ORIENTATION AND POSITION OF THE AIRPLANE

The equations of motion have been derived for an axis system fixed to the airplane.
Unfortunately, the position and orientation of the airplane cannot be described
relative to the moving body axis frame. The orientation and position of the airplane
can be defined in terms of a fixed frame of reference as shown in Figure 3.3. At
time ¢ = 0, the two reference frames coincide.

The orientation of the airplane can be described by three consecutive rotations,
whose order is important. The angular rotations are called the Euler angles. The
orientation of the body frame with respect to the fixed frame can be determined in
the following manner. Imagine the airplane to be positioned so that the body axis
system is parallel to the fixed frame and then apply the following rotations:

1. Rotate the x;, y;, z; frame about Oz, through the yaw angle i to the frame to
Xy, y 15 <1+

2. Rotate the x,, y,, z; frame about Oy, through the pitch angle @ bringing the
frame to x,, y,, 2.

3. Rotate the x,, y,, z, frame about Ox, through the roll angle ® to bring the frame
to X3, y3, 23, the actual orientation of the body frame relative to the fixed frame.

Remember that the order of rotation is extremely important.

Having defined the Euler angles, one can determine the flight velocities compo-
nents relative to the fixed reference frame. To accomplish this, let the velocity
components along the x, y;, z; frame be dx/dz, dy/dz, dz/dt and similarly let the
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Xp, Xg FIGURE 3.3
Relationship between body and
inertial axes systems.

Xy =X3=Xp

X2y X3 = Xp,

Y Y2

D Y. Y2

Y3 =Yp

z, 2, ¢ First Rotation  z,z,/ Second Rotation 73~ 7% @ z, Third Rotation

subscripts 1 and 2 denote the components along x,, y;, z, and x,, y,, z,, respectively.
Examining Figure 3.3, we can show that

fl

d .
= u, cos Y — v, sin ¢ Y- u, sin ¢ + v, cos ¢ w, (3.27)

bt
dr dr
Before proceeding further, let us use the shorthand notation S, = sin , C, =
cos ¥, Sy = sin 6, and so forth. In a manner similar to Equation (3.27), u,, v,, and
w, can be expressed in terms of u,, v,, and w,:

ax
dr

Uy = u, Cy + W, S, U, = 0, w, = —u, Sy + w, Cy (3.28)
and U, = u v, = vCq — WSy w, = 08¢ + wCq (3.29)

where u, v, and w are the velocity components along the body axes x,, y,, 2.
If we back-substitute the preceding equations, we can determine the absolute
velocity in terms of the Euler angles and velocity components in the body frame:

_@
dt Cng, SQ)SQC,,, - C®S¢ Cq,Sg C'l’ + S‘I>S¢

d

Fyt =|CeSy S656Sy + CoCy CsSy Sy — S6C, {10 (3.30)
dz =S SsCy Cy Cy

- w

l_dt_
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Integration of these equations yields the airplane’s position relative to the fixed
frame of reference.

The relationship between the angular velocities in the body frame (p, g, and r)
and the Euler rates (i, 6, and ®) also can be determined from Figure 3.3:

p 1 0 =S, |[®
q|=[0 Co CiSoll 6 (3.31)
r 0 _Sq> Cg Cq;. (p

Equation (3.31) can be solved for the Euler rates in terms of the body angular
velocities: :

b 1 Setan® Cyptan6][p
6l=10 Coe —Se q (3.32)
r 0 Spsec® Cysec|| r

By integrating these equations, one can determine the Euler angles ¢, 6, and ®.

34
GRAVITATIONAL AND THRUST FORCES

The gravitational force acting on the airplane acts through the center of gravity of
the airplane. Because the body axis system is fixed to the center of gravity, the
gravitational force will not produce any moments. It will contribute to the external
force acting on the airplane, however, and have components along the respective
body axes. Figure 3.4 shows that the gravitational force components acting along
the body axis are a function of the airplane’s orientation in space. The gravitational

Xp FIGURE 34
Components of gravitational
force acting along the body axis.

mg cosé

Zy
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FIGURE 3.5
Force and moments due to
propulsion system.

MT = TZT

Ny = (T;-Tolyr

force components along the x, y, and z axes can be easily shown to be
(F)graviy = —mg sin 6
(F)graviy = mg cos @ sin P (3.33)
(F)graviy = mg cos 6 cos O

The thrust force due to the propulsion system can have components that act along
each of the body axis directions. In addition, the propulsive forces also can create
moments if the thrust does not act through the center of gravity. Figure 3.5 shows
some examples of moments created by the propulsive system.

The propulsive forces and moments acting along the body axis system are
denoted as follows:

(Fx)propulsive = XT (Fy)pmpulsive = YT (Fz)propulsive = ZT (334)
and (L)pmpulsivc = LT (M)propulsive = MT (N)pmpu]sive = NT (335)

Table 3.1 gives a summary of the rigid body equations of motion.

35
SMALL-DISTURBANCE THEORY

The equations developed in the previous section can be linearized using the small-
disturbance theory. In applying the small-disturbance theory we assume that the
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TABLE 3.1
Summary of kinematic and dynamic equations

X — mgSe = m(u + gw — rv)
Y + mgCySe = m(s + ru — pw) Force equations
Z + mgCyCqy = m(Ww + pv — qu)

L=1Lp~Li+qll ~ 1)~ Lpq

M=1L4+rql - 1)+ 1(p*—-r?) Moment equations
N = _Ilei + lzr + pq(ly - Ix) + Ixzqr

p=®— S, Body angular velocities
q = 0Co + YCySo in terms of Euler angles
r = yCyCp — 0Se and Euler rates

'é = gqCq — rSo Euler rates in terms of
D =p+ gSeTy + rCeTy Euler angles and body
¥ = (gSe + rCy)sec 6 angular velocities

Velocity of aircraft in the fixed frame in terms of Euler angles and
body velocity components

d

7’: CoCy 5050Cy — CoSy CySoCy + o5, | [[u
dx| =

LT oS 5SSy + CaCy CoSaSy— SoCy [0
dz

< - 56Co CsCo w

motion of the airplane consists of small deviations about a steady flight condition.
Obviously, this theory cannot be applied to problems in which large-amplitude
motions are to be expected (e.g., spinning or stalled flight). However, in many cases
the small-disturbance theory yields sufficient accuracy for practical engineering
purposes.

All the variables in the equations of motion are replaced by a reference value
plus a perturbation or disturbance:

U= uy+ Au v =uv, + Av w=w, + Aw
p=pot Ap q=qo+ Agq r=r,+Ar
X =X, + AX Y=Y, +AY Z=2Z,+AZ (3.36)

M=M,+AM N=N,+AN L=L,+AL
8 =8, + AS

For convenience, the reference flight condition is assumed to be symmetric and the
propulsive forces are assumed to remain constant. This implies that

Vo=pPo=q=r =0 =% = (3.37)

Furthermore, if we initially align the x axis so that it is along the direction of the
airplane’s velocity vector, then w, = 0.
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Now, if we introduce the small-disturbance notation into the equations of
motion, we can simplify these equations. As an example, consider the X force
equation:

X — mgsin 6 = m(u + gw — ro) (3.38)
Substituting the smali-disturbance variables into this equation yields

X, + AX — mg sin(6, + A8)

d (3.39)
= m [;1—[ (uy + Au) + (go + Ag)(wo + Aw) — (ry + Ar)(v, + Av)]
If we neglect products of the disturbance and assume that
Wo=0s=Po=¢qy=r =P,=1 =0 (3.40)
then the X equation becomes
X, + AX — mg sin(0, + A6) = m Au (3.41)

This equation can be reduced further by applying the following trigonometric
identity:

sin(f, + AB) = sin 6, cos A6 + cos 6, sin A = sin 8, + A8 cos 6,
Therefore, X, + AX — mg(sin 6, + AB cos 6,) = m Au (3.42)

If all the disturbance quantities are set equal to O in these equation, we have the
reference flight condition

X, — mg sin 6, = 0 (3.43)
This reduces the X-force equation to
AX — mg A cos 6, = m Au (3.44)

The force AX is the change in aerodynamic and propulsive force in the x direction
and can be expressed by means of a Taylor series in terms of the perturbation
variables. If we assume that AX is a function only of u, w, 8,, and &, then AX can
be expressed as

X X X X
=—Au+—Aw + — AS, + — .
AX o Au T Aw 30, AS, 35, Ad, (3.45)

where dX/du, dX/dw, dX/36,, and 9X/ad;, called stability derivatives, that are
evaluated at the reference flight condition. The variables &, and &, are the change
in elevator angle and throttle setting, respectively. If a canard or all-moveable

stabilator is used for longitudinal control, then the control term would be re-
placed by

X X

3—5,1 ASH or aac

A8,
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Substituting the expression for AX into the force equation yields:
%Au;!-%Aw+%Aﬁe+%A61—mgAﬂcoseo=mAu (3.46)
or on rearranging
(m% - %%f) Au — (Z—f}) Aw + (mg cos 6,) A = g;i AS, + g—g(TA‘o‘T

The equation can be rewritten in a more convenient form by dividing through by
the mass m:

d

(a - Xu> Au — X, Aw + (g cos 6) A8 = X, A8, + X, Ad; (3.47)
where X, = dX/ou/m, X,, = dX/dw/m, and so on are aerodynamic derivatives
divided by the airplane’s mass.

The change in aerodynamic forces and moments are functions of the motion
variables Au, Aw, and so forth. The aerodynamic derivatives usually the most
important for conventional airplane motion analysis follow:

X X

AX=£(Au+ﬂAw+—A5L,+—
ou ow a8, 367

~

Ad;

aY
dv

Ay = a0 + T ap+ War + Wy,
ap ar 396,
(3.48)

Z Z Z Z
AZ=a—Au+—q—~Aw+a—.Aw+a—Aq
dou ow ow dq

0z aZ
+ —
Ty A8, 35, Ad;

—+

P

oL oL oL
AL=—Av+ —Ap +—Ar+
L o Av ap P+ - Ar

oM

oM

M

96,
oM

L

oL
96,

A8,

AM = —Au+ ——Aw + —Aw + — Aq
Ju ow w dq

(3.49)
M

36,

am

+ Ab, + Ad;
oN Ao + N

aN oN AS
dv ap

a6, 8,

The aerodynamic forces and moments can be expressed as a function of all the
motion variables; however, in these equations only the terms that are usually
significant have been retained. Note also that the longitudinal aerodynamic control
surface was assumed to be an elevator. For aircraft that use either a canard or
combination of longitudinal controls, the elevator terms in the preceding equations
can be replaced by the appropriate control derivatives and angular deflections.

The complete set of linearized equations of motion is presented in Table 3.2.

AN =

Ab, +

oN
Ap + — Ar +
P ar r
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TABLE 3.2
The linearized small-disturbance longitudinal and lateral rigid body equation
of motion

Longitudinal equations

<;i(1t - X,4> Au — X, Aw + (gcos 6,) A8 = X; A8, + X;, Ad;

-7, Au + [(1 - Z“,)% - Zw:| Aw ~ |:(u,, +Z) % — gsin 0(,:| A = Z;,, AS, + Z;, AS,

d d? d
-M, Au — (M»a + Mw) Aw + <F -~ M, E) A0 = M, A8, + M;, A,

Lateral equations

(% - K) Av — Y, Ap + (uy — Y,) Ar — (g cos 6,)) Ad = ¥, A8,

d I, d
— 4+ = - | E—=+ = + Ls AS
L. Av <dt L,,) Ap (lx @ L,> Ar = L; A8, + Ls A5,

I.d d
_ | L - _ = +
N, Ac < Tt N,,) Ap + ( ” N,) Ar = N;, A8, + N, A,

3.6
AERODYNAMIC FORCE AND MOMENT REPRESENTATION

In previous sections we represented the aerodynamic force and moment contribu-
tions by means of the aecrodynamic stability coefficients. We did this without
explaining the rationale behind the approach.

The method of representing the aerodynamic forces and moments by stability
coefficients was first introduced by Bryan over three-quarters of a century ago
[3.1, 3.3]. The technique proposed by Bryan assumes that the aerodynamic forces
and moments can be expressed as a function of the instantaneous values of the
perturbation variables. The perturbation variables are the instantaneous changes
from the reference conditions of the translational velocities, angular velocities,
control deflection, and their derivatives. With this assumption, we can express
the aerodynamic forces and moments by means of a Taylor series expansion of the
perturbation variables about the reference equilibrium condition. For example, the
change in the force in the x direction can be expressed as follows:

AX(u, 4, w, W, . . ., 8,, 8,)

= ax Au + _6_)£ A+ -+ X A8, + H.O.T. (higher order terms) (3:50)
ou au a8,
The term X/ du, called the stability derivative, is evaluated at the reference flight
condition.
The contribution of the change in the velocity u to the change AX in the X
force is just [0X/du] Au. We can also express dX/du in terms of the stability
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coefficient C, as follows:

X 1
6_= C.—0S (3.51)

ou “ U

aC,
where = x 3.52
A TOVN (352)

Note that the stability derivative has dimensions, whereas the stability coefficient
is defined so that it is nondimensional.

The preceding discussion may seem as though we are making the aerodynamic
force and moment representation extremely complicated. However, by assuming
that the perturbations are small we need to retain only the linear terms in Equa-
tion (3.50). Even though we have retained only the linear terms, the expressions
still may include numerous first-order terms. Fortunately, many of these terms also
can be neglected because their contribution to a particular force or moment is
negligible. For example, we have examined the pitching moment in detail in Chap-
ter 2. If we express the pitching moment in terms of the perturbation variables, as
indicated next,

M, o, w,u,v,w,p,q,r1,8,8,,86,)

(3.53)
M+ Mgy e Mg My
ou du aw ap

it should be quite obvious that terms such as (3M/3dv) Av and (3M/3 p) Ap are not
going to be significant for an airplane. Therefore, we can neglect these terms in our
analysis.

In the following sections, we shall use the stability derivative approach to
represent the aerodynamic forces and moments acting on the airplane. The expres-
sions developed for each of the forces and moments will include only the
terms usually important in studying the airplane’s motion. The remaining portion
of this chapter is devoted to presentation of methods for predicting the longitudi-
nal and lateral stability coefficients. We will confine our discussion to methods that
are applicable to subsonic flight speeds. Note that many of the stability coefficients
vary significantly with the Mach number. This can be seen by examining the data
on the A-4D airplane in Appendix B or by examining Figure 3.6.

We have developed a number of relationships for estimating the various stabil-
ity coefficients; for example, expressions for some of the static stability coefficients
such as C, , C,, and C,, were formulated in Chapter 2. Developing prediction
methods for all of the stability derivatives necessary for performing vehicle motion
analysis would be beyond the scope of this book. Therefore, we shall confine our
attention to the development of several important dynamic derivatives and simply
refer the reader to the US Air Force Stability and Control DATCOM [3.4]. This
report is a comprehensive collection of aerodynamic stability and control predic-
tion techniques, which is widely used through the aviation industry.
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Variation of selected longitudinal and |ateral stability derivatives

Symbol | Derivative | Variation with Mach number Symbol | Derivative | Variation with Mach number
Cma aCm _Cma ——ﬂ/\ CnB aCp CnB —/\
a 9
“ 0 1 2 o 0 1 2
M, M,
Cons aCm ~Cm; c aCrm ~Cp, /v\
mg 6( & ) :q7:r_ nr 8(rb ) —
2uo 0 1 2 2u, 0 1 2
M, M,
-_— -C -C
Cmg | a(£-) | 7™ Cig 2 8| N
a 2u, B
0 1 2 0 1 2
M, M,
aCy c
G Pb ~~p
P | o(z0;)
0 1 2
MO

FIGURE 3.6
Variation of selected longitudinal and lateral derivatives with the Mach number.

3.6.1 Derivatives Due to the Change in Forward Speed

The drag, lift, and pitching moments vary with changes in the airplane’s forward
speed. In addition the thrust of the airplane is also a function of the forward speed.
The aerodynamic and propulsive forces acting on the airplane along the X body
axes are the drag force and the thrust. The change in the X force, that is, AX due
to a change in forward speed, can be expressed as

X oD oT
AX = —Au=——Au+ — Au (3.54)
du u du

X aD  oT
- _ + 2L

or —_— -
ou du Ju

(3.55)

The derivative 9X/du is called the speed damping derivative. Equation (3.55) can
be rewritten as

Q(__p_S(zaCD aT
ou 2

ug — + 2u, CDO) + — (3.56)
ou ou

where the subscript 0 indicates the reference condition. Expressing 4X/du in
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coefficient form yields

Cx, = —(CDM + 2CD0) + (3.57)
aCD aC‘T
h Cp = = .
where 2= S Tud) and Cr, /) (3.58)

are the changes in the drag and thrust coefficients with forward speed. These
coefficients have been made nondimensional by differentiating with respect to
(u/uy). The coefficient Cp, can be estimated from a plot of the drag coefficient
versus the Mach number:

aC
oM
where M is the Mach number of interest. The thrust term Cr, is O for gliding flight;

it also is a good approximation for jet powered aircraft. For a variable pitch
propeller and piston engine power plant, Cr, can be approximated by assuming it

Co, =M (3.59)

to be equal to the negative of the reference drag coefficient (i.e., C;, = —Cp ).
The change in the Z force with respect to forward speed can be shown to be
9z 1
— = —— pSu[C, + 2C, ] (3.60)
au 2 u O

or in coefficient form as
C = —[CLM + 2CL0] (3.61)

The coefficient C, arises form the change in lift coefficient with the Mach number.
C L, can be estimated from the Prandtl-Glauent formula, which corrects the incom-
pressible lift coefficient for the Mach number effects:

CL IM=0
C, = —LM=0 (3.62)
LV - W
Differentiating the list coefficient with respect to the Mach number yields
M- 1M C, (3.63)
0
but c =G % 3G (3.64)
“« ufuy) a (u)
6 —
a
aC,
=M — 3.
M (3.65)
where a is the speed of sound.
C,, therefore can be expressed as
M2
CL,, = T:‘W CLo (3.66)
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This coefficient can be neglected at low flight speeds but can become quite large
near the critical Mach number for the airplane.

The change in the pitching moment due to variations in the forward speed can
be expressed as

oM
AM = — Au (3.67)
ou
M
or oM = C,, p Scu, (3.68)
ou "

The coefficient C,, can be estimated as follows:

_aC,
C, =—M .
"= o (3.69)
The coefficient C,, depends on the Mach number but also is affected by the elastic
properties of the airframe. At high speeds aeroelastic bending of the airplane can
cause large changes in the magnitude of C,, .

3.6.2 Derivatives Due to the Pitching Velocity, g

The stability coefficients C, and C, , represent the change in the Z force and
pitching moment coefficients with respect to the pitching velocity ¢ . The aerody-
namic characteristics of both the wing and the horizontal tail are affected by the
pitching motion of the airplane. The wing contribution usually is quite small in
comparison to that produced by the tail. A common practice is to compute the tail
contribution and then increase it by 10 percent to account for the wing. Figure 3.7
shows an airplane undergoing a pitching motion.

As illustrated in Figure 3.7, the pitching rate g causes a change in the angle of
attack at the tail, which results in a change in the lift force acting on the tail:

AL, = C,, Aa, 0,5, (3.70)
gl
or AZ = -AL, = —C,, . .S, (3.71)
U
Z
C, = — 3.72
27 05 ( )
L, S
AC, = —c, Ly (3.73)
“ Uy S
aC,  _ 2u,3C.
C, =——i = .
% 9(gT/2u) c 6q (3.74)

C. = —2C, MVy (3.75)



3.6 Aerodynamic Force and Moment Representation 113

AL, FIGURE 3.7
Mechanism for aerodynamic force due to
pitch rate.

The pitching moment due to the change in lift on the tail can be calculated as
follows:

AM,, = —1, AL, (3.76)
1,

AC, = -V,nC, L (3.77)
g “ I,

c = aC,, _ 2u, 0C, (3.78)

*~ a(qgc/2u) T dq
L,
Cp, = —2C,, Vi 2 (3.79)

Equations (3.75) and (3.79) represent the tail contribution to Czq and C,,,q, respec-
tively. The coefficients for the complete airplane are obtained by increasing the tail
values by 10 percent to account for the wing and fuselage contributions.

3.6.3 Derivatives Due to the Time Rate of Change
of the Angle of Attack

The stability coefficients C,. and C,, arise because of the lag in the wing downwash
getting to the tail. As the wmg angle of attack changes, the circulation around the
wing will be altered. The change in circulation alters the downwash at the tail;
however, it takes a finite time for the alteration to occur. Figure 3.8 illustrates the
lag in flow field development. If the airplane is traveling with a forward velocity u,,
then a change in circulation imparted to the trailing vortex wake will take the
increment in time At = [ /u, to reach the tail surface.
The lag in angle of attack at the tail can be expressed as

=2 Ar 3.
Ac, dt (3.80)
where At = 1 /Ju, (3.81)
de |, deda |
or Aa, = s u—o = da A g (3.82)
_de d-l'— (3.83)

da  u,



114 CcHAPTER 3: Aircraft Equations of Motion

L7

Tailpl .
fipfane Steady state condition

angle of attack is constant

%

Tailplane Unsteady flow created

by change in wing angle
of attack; change in wing
r circulation is convected
downstream

FIGURE 3.8
Mechanism for aerodynamic force due to the lag in flow field
development.

The change in the lift force can be expressed as

AL, = Cy, Aa, Q,S, (3.84)
or in terms of the z force coefficient
AL, S,
ACZ = - —Q—E = —CLD(, Aa, n '§ (385)
d L, S,
= ¢, Zarg (3.86)
wda  u,
aC, 2uy 0C
cC, =— =77 .
% 9(ac/2uy) T da (3.87)
de
= —2 —_— .
VamCe, o (3.88)

The pitching moment due to the lag in the downwash field can be calculated as
follows:

AM,, = —I, AL, = =1,C,_ Aa, Q,S, (3.89)
I

AC, = —Vyne, 34k (3.90)
*® “ dOl Uy
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aC,, 2u, 9C,,
C = —— D ———— .
"¢ 9(ac/2u) T da (3.91)
[, de
= —2 —r — .
CLa, nVy z do (3.92)

Equations (3.89) and (3.92) yield only the tail contribution to these stability
coefficients. To obtain an estimate for the complete airplane these coefficients are
increased by 10 percent. A summary of the equations for estimating the longitudi-
nal stability coefficients is included in Table 3.3.

3.6.4 Derivative Due to the Rolling Rate, p

The stability coefficients C, , C, , and C, arise due to the rolling angular velocity,
p. When an airplane rolls about its longitudinal axis, the roll rate creates a linear
velocity distribution over the vertical, horizontal, and wing surfaces. The velocity
distribution causes a local change in angle of attack over each of these surfaces that
results in a change in the lift distribution and, consequently, the moment about the
center of gravity. In this section we will examine how the roll rate creates a rolling
moment. Figure 3.9 shows a wing planform rolling with a positive rolling velocity.
On the portion of the wing rolling down, an increase in angle of attack is created
by the rolling motion. This results in an increase in the lift distribution over the
downward-moving wing. If we examine the upward-moving part of the wing we
observe that the rolling velocity causes a decrease in the local angle of attack and

Relative velocity normal
to the wing due to the
rolling motion

Relative velocity
components A Lift
Uy Aa = p_
uO

Station 2 Station 1

FIGURE 3.9
Wing planform undergoing a rolling motion.
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TABLE 33
Equations for estimating the longitudinal stability coefficients

X-force Z-force Pitching moment
derivatives derivatives derivatives
B _ M? _aC,
u Cx, = —[Cp, + 2Cp,] + Cy, C, = _1_—K/I;CLO - 2C,, C, = WMO
2C,, Cp, X X de
a Cx, = Cry — Teo XE Cy, = ~(CLq + CDo) Cmg = ch(_; - ‘E— + Cmum — nVu CL(,, 1 - a
. de I, de
a 0 Cz, = —20C, Ve — Cri = —20C V- —
't da 4

I
q 0 C, = —29C Vy Cryg = —29C, Vi =

¢

0 C C S ¢ y, Lu
Q = — = ——pn — = —
¢ Z5. L, S n dS, mse NV dae

Subscript 0 indicates reference values and M is the Mach number.
AR Aspect ratio Vi, Horizontal tail volume ratio
Cp, Reference drag coefficient M  Flight mach number
C,. Reference lift coefficient N Wing area
C,, Airplane lift curve slope S, Horizontal tail area
C.,, Wing lift curve slope de Ch in d hd h . le of K
C.. Tail lift curve slope ™ ange in downwash due to a change in angle of attac
¢ Mean aerodynamic chord n  Efficiency factor of the horizontal tail

€ Oswald’s span efficiency factor
l, Distance from center of gravity to tail quarter chord
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the lift distribution decreases. The change in the lift distribution across the wing
produces a rolling moment that opposes the rolling motion and is proportional to
the roll rate, p. In Figure 3.9 the negative rolling velocity induces a positive rolling
moment.

An estimate of the rolling damping derivative, G, due to the wing surface can
be developed in the following manner. The incremental lift force created by rolling
motion can be expressed as

d(Lift) = C,_ AaQc dy (3.93)

where Aa = py/u,.
The incremental roll moment can be estimated by multiplying the incremental
lift by the moment arm y:

dL = —c,a(‘%>gcy dy (3.94)
0

The total roll moment now can be calculated by integrating the moment contribu-
tion across the wing:

b/2
L= —2[ C, (p—y) QOcy dy (3.95)
0 “ \Hto
or in coefficient form
217 b/2 ,
= — d 9
C= S f C,,cy* dy (3.96)

To simplify this integral, the sectional lift curve slope is approximated by the wing
lift curve slope as follows:

20, (p\ [*
C= ——=> (—) f cy? dy (3.97)
o

Sb \ug
The roll damping coefficient C, is defined in terms of a nondimensional roll rate:
aC;

C, = 3.98
2u,
Differentiating Equation (3.98) yields
4C, (2
- _ L )2
C,ﬂ = b2 J; cy* dy (3.99)

which provides an estimate to C, , the roll damping coefficient due to wing surface.
From this simple analysis we readily can see that C, depends on the wing span.
Wings of large span or high aspect ratio will have larger roll damping than low
aspect ratio wings of small wing span.

The roll damping of the airplane is made up of contributions from the wing,
horizontal, and vertical tail surfaces. The wing, typically being the largest aerody-
namic surface, provides most of the roll damping. This is not necessarily the case




118 CHAPTER 3: Aircraft Equations of Motion

for aircraft having low aspect ratio wings or missile configurations; for these
configurations, the other components may contribute as much to the roll damping
coefficients as the wing.

3.6.5 Derivative Due to the Yawing Rate, r

The stability coefficient C,, C, , and C, are caused by the yawing angular velocity,
r. A yawing rate causes a change in the side force acting on the vertical tail surface
as illustrated in Figure 3.10. As in the case of the other angular rate coefficients the
angular motion creates a local change in the angle of attack or in this case a change
in sideslip angle of the vertical tail.

A positive yaw rate produces a negative sideslip angle on the vertical tail. The
side force created by the negative sideslip angle is in the positive direction:

Y=-C,_ABQ.S (3.100)
where AB = ~rl,/u, for a positive yawing rate. Rewritting Equation (3.100) in
coefficient form yields

1,
c., (fj)Qo S.
C. = _\%/ 101
L\ S,
=C, <Q>m—“ (3.102)
% uo S

The stability coefficient C, is defined in terms of the nondimensional yaw rate as
follows:

aC,
C, = . (3.103)
¥ 8( rb )
2u,
Taking the derivative of C, with respect to rb/2u, yields
S, L.
C, = 2C .104
L, 771 S b (3 )
S, . . )
The term CL,,, neg 1S approximately ~C,; ; therefore,
C, = —-2C L 1
"= 2% (3.105)

The stability coefficients, C, , which is the change in yaw moment coefficient
with respect to a nondimensional yaw rate rb/(2u,), is made up of contributions
from the wing and the vertical tail. The vertical tail contribution is derived next.
The yaw moment produced by the yawing rate is a result of the sideslip angle
induced on the vertical tail. A positive yaw rate produces a negative sideslip at the
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Relative velocity distribution
seen by the wing and vertical tail

due to a yawing velocity
Lower dynamic pressure Side force and yawing moment
is seen by this wing, due to yawing rate, r
therefore, a lower lift
Relative velocity
due to forward motion

g

Higher dynamic pressure is
seen by this wing, therefore,
a higher lift

The difference in dynamic
pressure seen by the yawing
wing creates a roll moment
due to the yaw rate, r.

Side force on the vertical
tail created by yawing rate,
r, causes a rolling moment
due to its displacement
above the center of gravity
in the vertical direction.

—\ ==

Roll moment due to
yawing rate, r

FIGURE 3.10
Influence of the yawing rate on the wing and vertical tail.
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vertical tail or a positive side force on the tail. A positive side force causes a
negative yawing moment; therefore,

N =C., ABQ.S,I, (3.106)
But AB = —rl /u, for a positive yawing rate:
N =—-C, (r—l”)QDSvlv (3.107)
=\ up
Or in coefficient form
¢ =-¢ (ﬂ)mvv (3.108)
o\ 1y

where 1, = Q,/Q and V, = S,1,/Sbh.
The stability coefficient C, is defined as

C, = af[; (3.109)
"’(5;;)
= -2C. 7, v,% (3.110)

The vertical tail contribution to C, also can expressed in terms of the side force
coefficient with respect to sideslip:

LY
C, = 2Cyﬂlail (Z) (3.111)

The yaw rate, r, also produces a roll moment. The stability coefficient C, is due
to both the wing and the vertical tail. An expression for estimating C, is given in
Table 3.4. As shown earlier the yawing rate creates a side force on the vertical tail
that is proportional to the yaw rate, r. Because this force acts above the center of
gravity a rolling moment is created. The contribution of the wing to C;, is due to the
change in velocity across the wing in the plane of the motion. Development of an
expression for C; due to the wing and the vertical tail is left as an exercise problem
at the end of this chapter.

In this section we have attempted to provide a physical explanation of some
of the stability coefficients. This was accomplished by simple models of the flow
physics responsible for the creation of the force and moments due to the motion
variables such as p, g, and r . Most of the simple expressions developed for estimat-
ing a particular stability coefficient were limited to only the contribution due to
the primary aircraft component; that is, either the wing, horizontal, or vertical tail
surface. To provide a more complete analysis of the aerodynamic stability coeffi-
cients a more detailed analysis is required than has been presented in this chapter.
References [3.4] and [3.5] provide a more complete set of stability and control
prediction methods.

The stability coefficients ¢.G,.C, C,,,q, C.,,and C,, all oppose the motion
of the vehicle and thus can be considered as damping terms. This will become more
apparent as we analyze the motion of an airplane in Chapters 4 and 5.
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TABLE 34
Equations for estimating the lateral stability coefficients

Y-force Yawing moment Rolling moment
derivatives derivatives derivatives
_ S, do _ do _{Cy I .

B C,= -*r;ECLuc 1+ EB Gy = Cop, T V.G 1+ —(E Cy= T + AC,, (see Figure 3.11)

C CAR+COSAt A c C, c C,,1+3A

= C,—————tan o= —— = ==
P 5 T MR T acos A » " g T T2 1+
I, I, CL Lz,
r C,, = ‘2(Z>(Cy5)mi1 C, = —2n, VU<Z>CL.% C, = 7 - 2; -I; C)'ﬂunl
] 2C,,7 [
8, 0 C,;, = 2KC,,C,, (see Figure 3.12) Ci = 7 cy dy
y1i
S, Sof 2

8, Cy = 3 7C,,, Cp = —V,n.7C,,, Cy, = E(;)TCLW
AR  Aspect ratio
b Wingspan S  Wing area
C., Reference lift coefficient S,  Vertical tail area
C,, Airplane lift curve slope z.  Distance from center of pressure of vertical tail to
C.,, Wing lift curve slope fuselage centerline
C,,, Tail lift curve slope I'  Wing dihedral angle
¢ Mean aerodynamic chord A Wing sweep angle
K  empirical factor n. Efficiency factor of the vertical tail
I, Distance from center of gravity to vertical tail A Taper ratio (tip chord/root chord)

aerodynamic center do - . -
V. Vertical tail volume ratio P Change in sidewash angle with a change in sideslip angle
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ACy, = 0.0002/rad
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FIGURE 3.11
Tip shape and aspect ratio effect on Cy,.
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n

122



3.6 Aerodynamic Force and Moment Representation 123

TABLE 3.5
Summary of longitudinal derivatives

_(CD., + ZCDO)QS _(Cna - C.,))0S

X, = ————("") X, = ——==(7")
muy, muy,

z = —(C,, + 2C, )OS =
muy

—(C,, + Cp,)0S c

Zw = U (g} Z;v - _(C —
mug 7" CZa 2u, QS/ (uom)

Z, = uyZ,,(ft/s? or (m/s?) Z, = uyZ, (ftfs) or (m/s)

c
zZ, = _CZ"Z_uO 0OS/m (ft/s) or (m/s) Z,, = ~Cgz, OS/m (ft/s?)

M, = ¢, & (L) or <_1_)
ugl, \ft-s m-s

M | 1 ¢ QSc
ML= G a(—> Or( > M, = G Bl ()
ul, \ft-s m-s “2up uyl,
M, = qu (Cp] M, = uM,; 7"
M, =C,, o (QS~)/1 (G M, = C,,(0Sc)/I, (s7%)
Up
TABLE 3.6
Summary of lateral directional derivatives
SC SbC, ShC,
Yg = ——Qm *8 (ft/s®) or (m/s?) N = Q =Y Lg= 256G, 7 (s
0sbC, QSb2C,, Qsb*C, .
Y, = =2 (ft/s) (m/ N, = 2 (s L o= 20C,
’ 2mu, (fe/s) (m/s) r 21 u, S ’ 21 u, ™)
bC, Sh? b?
Y, = 255C,, (ft/s) or (m/s) N, = osb7C,, ™" L = o567, ")
2mu, 2Ixu0 21;“()
SC, scv
Y5, = b (ft/s?) or (m/s?) Y, = 2 2 (ft/s?) or (m/s?)
m
ISHC, S6C,
& 2 I * (s72) N, = _Q — (57?)
z 1:
S6C SbC,
Ly, = ObCu (2 Ly, = O%Cs, ; )

X x

As noted earlier, there are many more derivatives for which we could develop
prediction methods. The few simple examples presented here should give the
reader an appreciation of how one would go about determining estimates of the
aerodynamic stability coefficients. A summary of some of the theoretical predic-
tion methods for some of the more important lateral and longitudinal stability
coefficients is presented in Tables 3.3 and 3.4. Tables 3.5 and 3.6 summarize the
longitidinal and lateral derivatives.
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EXAMPLE PROBLEM 3.1. Estimate the longitudinal stability derivatives for the
STOL transport described in Appendix B. A summary of the mass, geometric, and
aerodynamic characteristics of the airplane were obtained from 3.6} and are given
in Table 3.7.

Solution. The stability coefficients, C, , C.,.C., C.,.C.. Czq, Cys Cnps Co,» Con,s C,,,q,
and C, can be calculated from the formulas given in Table 3.3. Because we are

considering a low-speed flight condition, the terms related to the Mach number can be
ignored; for example, 9C,, /oM and Cp,, The stability coefficient for the STOL trans-
port are calculated next.

The change in the X force coefficient, C,, with respect to a change in the forward
speed is given by

C,, = ~{(Cp, +2Cp) + C,
Cp, is set to 0 and Cy, is assumed to be equal to —Cp, as explained in Section 3.6:

C,, = —3Cp, = —3(0.057) = —0.171

TABLE 3.7
Geometric, aerodynamic, and mass data for the STOL transport
Wing area, S, ft* 945 Horizontal tail area, S, 233
Wing span, b, ft 96 Horizontal tail span, b, 32
Wing mean aerodynamic 10.1 Horizontal tail mean 7.0
chord, ¢, ft aerodynamic chord, ¢,
Wing aspect ratio, AR 9.75 Horizontal tail aspect 4.4
ratio, AR,
Location of wing 1/4 root 31.6 Horizontal tail 35
chord on the fuselage, % moment arm, I,,
of fuselage length, /, distance from center of
gravity to tail aricraft
characteristics
Wing lift curve slope, 5.2 Horizontal tail lift 35
Cp, /rad curve slope, C,_ /rad
Aircraft lift coefficient, C,, 0.77 Elevator area, S,, ft 81.5
Span efficiency factor, e 0.75 C,,, due to fuselage and 0.93
power effects per rad
Fuselage length, I, ft 76 Fuselage width, w,, ft 9.4
Aircraft weight, W, lbs 40,000 Aircraft altitude, ft 0
Center of gravity location, 40 Ambient air density, p, 0.00238
% c, ft, measured from slug/ft*

leading edge

Aircraft mass moment of 21,500 Flight velocity u,, ft/s 215
inertia, [, slug-ft?,

measured about center of

gravity
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The change in the X-force coefficient, C,, with respect to a change in angle of
attack can be estimated from the following formula:

C., = (1 _ 2 CL")

= = Cio meAR

 (2.0)(5.2/rad)
m(0.75)(9.75)

The Z-force coefficient, C,, with respect to a change in forward speed is given by

MZ
Zu = —(l—m)c&) - 2CL0

= (0.77)[1 ] = 0.42/rad

C

where the first term can be neglected due to the low flight speed:

C, = —2(0.77) = —1.54

The Z -force coefficient, C,, with respect to a change in angle of attack is given by
the expression

Cz _(CL,. + CDO)

—-[5.2 + 0.057] = —5.26/rad

o

it

The Z-force coefficient, C, with respect to a change time rate of angle of attack
a, is given by

d
= =2C,, WVu —

¢ da

Za

The rate of change of the downwash angle with respect to the angle of attack can
be estimated using the relationship presented in Section 2.3
de  2CL., 2(5.2/rad) _

= 0.34
da  7AR, 7(9.75)

and the horizontal tail volume ratio, Vy, is defined as
_ LS _ (46 f1)(233 ft) _
S¢ (965 1%)(10.1 ft)

The tail efficiency factor, 7, is assumed to be equal to unity. With this information
we can now calculate C,,:

C,. = —2(3.5/rad)(1.0)(1.1)(0.34)
or C,, = —2.62/rad.

a

Vi

The change in the Z -force coefficient, C,, with respect to a nondimensional pitch
rate gc /(2ug) is given by

aC
C, = Lo = —2C,, MVy

- 6(4_5)
2u,

—(2.0)(3.5/rad)(1.1) = —7.7/rad

or C

I
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The Z-force coefficient, C,, with respect to a change in the elevator angle, §,, is
given by

S
C, = _CLG,T"’IEI

The flap effectiveness parameter, 7, can be estimated from Figure 2.21. For the
ratio of elevator area to tail plane area, S,/S, = 81.5 ft?/233 fi* = 0.35 the flap
effectiveness parameter is estimated to be 7 = 0.55.

233 ftz)

m = —0.46/rad

C,, = —(3.5/rad)(0.55)(1.0) (

The rate of change of the pitch moment coefficient, C,,, with respect to a change
speed, u, is given by

acC
="\
Co oM ?

For low-speed flight 9C,,/dM can be assumed to be 0; therefore, C,,, = 0.
The rate of change of the pitching moment coefficient, C,,, with respect to a change
in angle of attack, a, is given by

d
Co, = CLH(@ - xf) + Cp Vi C,_a(l - —8)
"\ € c ’ da

The fuselage contribution to C,, including power effects was given as Cona =
0.93/rad. The wing and tail contribution are added to the fuselage contribution:

Il

C,, = (5.2/rad)(0.4 — 0.25) + 0.93 — (1.0)(1.1)(3.5/rad)(1 — 0.34)
—0.83/rad

Il

The stability coefficients C,,, Cy,, and C,, are related to the corresponding
Z-force coefficients times the ratio of the tail moment over the wing mean chord. For
example,

~

Cp, = Cz(»x-z—' = (—2.62/rad)(4.55) = —11.92/rad
!

Cpn, = Cz‘,%l = (—7.7/rad)}(4.55) = —35/rad
l

Cps, = CZM%’ = (—0.46/rad)(4.55) = —2.09/rad

The dimensional derivatives X,,, X,, and the like can be estimated from the formulas
in Tables 3.5 and 3.6. To complete this problem we need to multiply each stability
coefficient by the appropriate parameter. The parameters included in the dimen-
sional derivatives are OS/m, OS/(mu), (c/2,,) QS/m, QSc/l,, or (¢/2,,) OSc/I,. These
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TABLE 3.8
Longitudinal dimensional derivatives for STOL transport

1 1
X, = Cxl‘(—)QS/m = —0.0.34/s M, = C,,,u(-—-> 0Sc/1,=0
Uy

X, = C, 0S/m = 18.06 fu/s* M, = CmuQuSOE/Iy = 2.1

z, = cz"(ul)gs/m = ~0.308/s M, = C,,,a(;)QSE/IV = —0.7k
o wo

Z, = C,0S/m = —226.2 fi/s* M, = C,,,q(%(’)QSE/I), = —2.035

Z, = CZa<—2—EI7—0)QS/m = —2.6 ftfs M;, = C,, 0S¢/I, = —5.27/s

¢
z, = C,q(;ﬁ—O)QS/m = 76 fis

Z,, = C,, 0S/m = —~19.8 ft/s?

quantities are calculated next:

m = W/g = 40,000 Ib/32.2 ft/s* = 1242 slugs
1
Q= EPM(Z) = (0.5)(0.0238 slug/ft’)(215 ft/s)* = 55 Ib/ft?

0S/m = (55 Ib/f?)(975 £t2)/(1242 slugs) = 43 ft/s?
OS/(muy) = (43 ft/s)/(215 ft/s) = 0.2/s
¢/(ug) = (10.1 f9)/[2(215 ft/s)] = 0.023 s
0Sc/I, = (55 1b/ft*)(975 ft2)(10.1 ft)/(215,000 slug-ft?)
0ST/I, = 2.52/5

( > > 0ST/I, = (0.023 5) (2.52/5%) = 0.058/s
0

A summary of the dimensional longitudinal derivatives are presented in Table 3.8.

37
SUMMARY

The nonlinear differential equations of motion of a rigid airplane were developed
from Newton’s second law of motion. Linearization of these equations was accom-
plished using the small-disturbance theory. In following chapters we shall solve the
linearized equations of motion. These solutions will yield valuable information on
the dynamic characteristics of airplane motion.
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PROBLEMS

3.1. Starting with the Y force equation, use the small-disturbance theory to determine the
linearized force equation. Assume a steady-level flight for the reference flight condi-
tions.

3.2. Starting with the Z-force equation, use the small-disturbance theory to determine the
linearized force equation. Assume a steady-level flight for the reference flight condi-
tions.

3.3. Repeat Problem 3.2 assuming the airplane is experiencing a steady pull-up maneuver;
that is, g, = constant.

3.4. Discuss why the products of inertial /., and [,, are usually O for an airplane
configuration. Use simple sketches to support your arguments. The products of inertia
L., I, and I, are defined as follows:

e[ e[ e ff] e

Why is /., usually not 0?

¥

3.5. Using the geometric data given below and in Figure P3.5, estimate C,,_, C,,, Cn,»

and C,,, .
Geometric data Assume
S=232f2 b=36 . C_ =0.1/deg C,. . =-0.02/deg
Wing: *w aCw
Sy=54ft2  [,=211t ay=-1.0°
S,=37ft2 [,=185ft
I =37 f2 Tail: CLaw= 0.1/deg C"‘acw= 0.00
A= 0°
g |
= 15 ft

|
C_ > T
45ﬂ‘:L—L

FIGURE P3.5a
Three-view sketch of a business jet.
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OT— 17T T 71

0 10 20 30 40 50

Nose Tail
Body station - ft

FIGURE P3.5b
Aircraft fuselage width as a function of body
station.

Estimate C,, and C,, for the airplane described in Problem 3.5.

Show that for a straight tapered wing the roll damping coefficient C;, can be ex-
pressed as

C. 1+ 3A
=" 1+ A

Develop an expression for C,, due to a canard surface.

Estimate C,,, C,,, and C, for the Boeing 747 at subsonic speeds. Compare your

predictions with the data in Appendix B.

Estimate the lateral stability coefficients for the STOL transport. See Example 3.1 and
Appendix B for the appropriate data.

Explain why deflecting the ailerons produces a yawing moment.

(a) The stability coefficient C; is the change in roll moment due to the yawing rate.
What causes this effect and how does the vertical tail contribute to the C, 7 A
simple discussion with appropriate sketches is required for this problem.

(b) The stability coefficient C,, is the change in roll moment coefficient due to rudder
deflection. Again, explain how this effect occurs.

In this chapter we developed an expression for C; due to the wing. How would you
estimate C, due to the vertical and horizontal tail surfaces. Use simple sketches to
support your discussion.
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CHAPTER 4

Longitudinal Motion (Stick Fixed)

“The equilibrium and stability of a bird in flight, or an aerodome or flying
machine, has in the past been the subject of considerable speculation, and no
adequate explanation of the principles involved has hitherto been given.”

Frederick W. Lanchester, Aerodonetics [4.1], published in 1908, in which
he develops an elementary theory of longitudinal dynamic stability.

4.1
HISTORICAL PERSPECTIVE

The theoretical basis for the analysis of flight vehicle motion developed almost
concurrently with the successful demonstration of a powered flight of a human-
carrying airplane. As early as 1897, Frederick Lanchester was studying the motion
of gliders. He conducted experiments with hand-launched gliders and found that
his gliders would fly along a straight path if they were launched at what he called
the glider’s natural speed. Launching the glider at a higher or lower speed would
result in an oscillatory motion. He also noticed that, if launched at its “natural
speed” and then disturbed from its flight path, the glider would start oscillating
along its flight trajectory. What Lanchester had discovered was that all flight
vehicles possess certain natural frequencies or motions when disturbed from their
equilibrium flight.

Lanchester called the oscillatory motion the phugoid motion. He wanted to use
the Greek word meaning “to fly” to describe his newly discovered motion; actually,
phugoid means “to flee.” Today, we still use the term phugoid to describe the
long-period slowly damped oscillation associated with the longitudinal motion of
an airplane.

The mathematical treatment of flight vehicle motions was first developed by
G. H. Bryan. He was aware of Lanchester’s experimental observations and set out
to develop the mathematical equations for dynamic stability analysis. His stability
work was published in 1911. Bryan made significant contributions to the analysis
of vehicle flight motion. He laid the mathematical foundation for airplane dynamic
stability analysis, developed the concept of the aerodynamic stability derivative,
and recognized that the equations of motion could be separated into a symmetric
longitudinal motion and an unsymmetric lateral motion. Although the mathemati-
cal treatment of airplane dynamic stability was formulated shortly after the first
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successful human-controlled flight, the theory was not used by the inventors be-
cause of its mathematical complexity and the lack of information on the stability
derivatives.

Experimental studies were initiated by L. Bairstow and B. M. Jones of the
National Physical Laboratory (NPL) in England and Jerome Hunsaker of the
Massachusetts Institute of Technology (MIT) to determine estimates of the aerody-
namic stability derivatives used in Bryan’s theory. In addition to determining
stability derivatives from wind-tunnel tests of scale models, Bairstow and Jones
nondimensionalized the equations of motion and showed that, with certain as-
sumptions, there were two independent solutions; that is, one longitudinal and one
lateral. During the same period, Hunsaker and his group at MIT conducted wind-
tunnel studies of scale models of several flying airplanes. The results from these
early studies were extremely valuable in establishing relationships between aerody-
namics, geometric and mass characteristics of the airplanes, and its dynamic sta-
bility.*

Although these early investigators could predict the stability of the longitudi-
nal and lateral motions, they were unsure how to interpret their findings. They were
preplexed because when their analysis predicted an airplane would be unstable the
airplane was flown successfully. They wondered how the stability analysis could be
used to assess whether an airplane was of good or bad design. The missing factor
in analyzing airplane stability in these early studies was the consideration of the
pilot as an essential part of the airplane system.

In the late 1930s the National Advisory Committee of Aeronautics (NACA)
conducted an extensive flight test program. Many airplanes were tested with the
goal of quantitatively relating the measured dynamic characteristics of the airplane
with the pilot’s opinion of its handling characteristics. These experiments laid the
foundation for modern flying qualities research. In 1943, R. Gilruth reported the
results of the NACA research program in the form of flying qualities’ specifica-
tions. For the first time, the designer had a list of specifications that could be used
in designing the airplane. If the design complied with the specifications, one could
be reasonably sure that the airplane would have good flying qualities [4.1-4.4].

In this chapter we shall examine the longitudinal motion of an airplane dis-
turbed from its equilibrium state. Several different analytical techniques will be
presented for solving the longitudinal differential equations. Qur objectives are for
the student to understand the various analytical techniques employed in airplane
motion analysis and to appreciate the importance of aerodynamic or configuration
changes on the airplane’s dynamic stability characteristics. Later we shall discuss
what constitutes good flying qualities in terms of the dynamic characteristics pre-
sented here. Before attempting to solve the longitudinal equations of motion, we
will examine the solution of a simplified aircraft motion. By studying the simpler
motions with a single degree of freedom, we shall gain some insight into the more
complicated longitudinal motions we shall study later in this chapter.

* The first technical report by the National Advisory Committee of Aeronautics, NACA (forerunner
of the National Aeronautics and Space Administration, NASA), summarizes the MIT research in
dynamic stability.
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4.2
SECOND-ORDER DIFFERENTIAL EQUATIONS

Many physical systems can be modeled by second-order differential equations. For
example, control servomotors, special cases of aircraft dynamics, and many elec-
trical and mechanical systems are governed by second-order differential equations.
Because the second-order differential equation plays such an important role in
aircraft dynamics we shall examine its characteristics before proceeding with our
discussion of aircraft motions.

To illustrate the properties of a second-order differential equation, we examine
the motion of a mechanical system composed of a mass, a spring, and a damping
device. The forces acting on the system are shown in Figure 4.1. The spring
provides a linear restoring force that is proportional to the extension of the spring,
and the damping device provides a damping force that is proportional to the
velocity of the mass. The differential equation for the system can be written as

d’x dx
—_—+ c— + = 1
maatey kx = F(1) 4.1
& cdx & 1
S I Sy =— .
or a:  mdt  om” mF(t) (4.2)

This is a nonhomogeneous, second-order differential equation with constant co-
efficients. The coefficients in the equation are determined from the physical char-
acteristics of the mechanical system being modeled, that is, its mass, damping
coefficient, and spring constant. The function F(z) is called the forcing function. If
the forcing function is 0, the response of the system is referred to as the free
response. When the system is driven by a forcing function F(#) the response is refer-
red to as the forced response. The general solution of the nonhomogeneous differ-
ential equation is the sum of the homogeneous and particular solutions. The homo-
geneous solution is the solution of the differential equation when the right-hand
side of the equation is 0. This corresponds to the free response of the system. The
particular solution is a solution that when substituted into the left-hand side of the

P m - mass
e
g k - spring constant
]
g ¢ - viscous damping Free body
4 K coefficient diagram
e kx
3
—ww—] F oo Fiv
E m T cx "
7
11— =
e c
MMM O WSS & WS Rolling friction is
\ neglected

§ (

FIGURE 4.1

A spring mass damper system.
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differential equation yields the nonhomogeneous or right-hand side of the differen-
tial equation. In the following section we will restrict our discussion to the solution
of the free response or homogeneous equation.

The solution of the differential equation with constant coefficients is found by
letting

x = AeM (4.3)

and substituting into the differential equation yields
2 At g At k At —
AfAeM + —AAeM + —Aete = 0 4.4)
m m

Clearing the equation of Ae* yields

c k
A+t —=A+==0 (4.5)
m m
which is called the characteristic equation. The roots of the characteristic equation
are called the characteristic roots or eigenvalues of the system.
The roots of Equation (4.5) are

c c\V k
= —-— =+ — - = 4.6
Arz 2m <2m> m (4.6)

The solution of the differential equation can now be written as
x(t) = CieM + Cye™ 4.7)

where C, and C, are arbitrary constants determined from the initial conditions of
the problem. The type of motion that occurs if the system is displaced from its
equilibrium position and released depends on the value of A. But A depends on the
physical constants of the problem; namely, m, ¢, and k. We shall consider three
possible cases for A.

When (¢/2m) > Vk/m, the roots are negative and real, which means that the
motion will die out exponentially with time. This type of motion is referred to as
an overdamped motion. The equation of motion is given by

2

c c k

= _— + —_— _ =
x(#) = C, exp [ o <2m) m]t

2
c c k
+ —_——— — —_— —_ —
G exp [ 2m (Zm) m]t
For the case where (c/2m) < Vk/m, the roots are complex:

2
A= — S ﬁ-(f,) (4.9)
m 2m

(4.8)
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The equation of motion is as follows:

x(®) = exp(—it)[cl exp[i i - ({-—)2 t]

(4.10)
k ¢V
+ —iy\/= - |=—
Czexp[ i - <2m) t]]
which can be rewritten as
2
x(t) = exp(—ﬁt) [A cos[ ;’;— - <EC’;) t]
(4.11)

e

The solution given by Equation (4.11) is a damped sinusoid having a natural
frequency given by

2
® = % - (ﬁ) (4.12)

The last case we consider is when (c/2m) = Vk/m. This represents the
boundary between the overdamped exponential motion and the damped sinusoidal
motion. This particular motion is referred to as the critically damped motion. The
roots of the characteristic equation are identical; that is,

c
Ay = m (4.13)

The general solution for repeated roots has the form
x() = (C, + Cp) e (4.14)

If Ais a negative constant, then e will go to O faster than C,¢goes to infinity as time
increases. Figure 4.2 shows the motion for the three cases analyzed here.

The damping constant for the critically damped case, called the critical damp-
ing constant, is defined as

Co = 2Vikm (4.15)

For oscillatory motion, the damping can be specified in terms of the critical
damping:

c = . (4.16)

where (is called the damping ratio,

r=< (4.17)
CCT
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OVerdamped FIGURE 4.2 A
x (1) Typical motions of a dynamic system.

Underdamped

\ A
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x {t)

Critically damped
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For a system that has no damping, that is, ¢ = 0, which implies that { = 0, the
motion is an undamped oscillation. The natural frequency, called the undamped
natural frequency, can be obtained from Equation (4.12) by setting ¢ = 0:

w, = \|~— (4.18)
m

Since both the damping ratio and undamped natural frequency are specified as
functions of the system physical constants, we can rewrite the differential equation
in terms of the damping ratio and undamped natural frequency as follows:

d*x dx

EE + 2w, :i; + wix = f( (4.19)
Equation (4.19) is the standard form of a second-order differential equation with
constant coefficients. Although we developed the standard form of a second-order
differential equation from a mechanical mass-spring-damper system, the equation
could have been developed using any one of an almost limitiess number of physical
systems. For example, a torsional spring-mass-damper equation of motion is given
by

&0 cd

dr* I dt
where c, k, and [ are the torsional damping coefficient, torsional spring constant,
and moment of inertia, respectively.

+ ’;‘o = £ (4.20)
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Characteristic roots

A=ntie
B Imaginary
6=cos{ part _
Period
X ] increasing
(& W = W, 1- {2
6 | v Real part
- {wn 1 n
Period
X increasing
Time to halve Time to double
amplitude increasing amplitude increasing
Left half plane is stable | Right half plane is unstable

FIGURE 4.3
Relationship among 7, @, {, and w,.

The characteristic equation for the standard form of the second-order differen-
tial equation with constant coefficients can be shown to be

A+ 2L\ + 0 = 4.21)

The roots of the characteristic equation are

s = —lw, * iw,V1 = 2 (4.22)

or As=7nFliw (4.23)
where n=—lw, (4.24)
w=0V1-7 (4.25)

The real part of A, that is, 7, governs the damping of the response and the imagi-
nary part, w, is the damped natural frequency.

Figure 4.3 shows the relationship between the roots of the characteristic equa-
tion and 7, w, {, and w,. When the roots are complex the radial distance from the
origin to the root is the undamped natural frequency. The system damping 7 is the
real part of the complex root and the damped natural frequency is the imaginary
part of the root. The damping ratio { is equal to the cosine of the angle between the
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negative real axis and the radial line from the origin to the root:

or

cos(mr — 0) = —cos B =

{=cosf

o

(4.26)

w,

(4.27)

The influence of the damping ratio on the roots of the characteristic equation
can be examined by holding the undamped natural frequency constant and varying
{ from — to © as shown in Figure 4.4. The response of the homogeneous equation
to a displacement from its equilibrium condition can take on many forms depend-
ing on the magnitude of the damping ratio. The classification of the response is

given in Table 4.1,

iw w, = Constant

0<¢<1t.,” \\0>§>-1
> 1 [ 61 {='°°\\‘/{=-1
|
A
0 -~— _ _ — -0
¢ {___1\\ (= [ < 1// n{
\
0<¢<1 ~__ L—’/ 0>¢>1
(=0
TABLE 4.1

Variation of response with damping ratio

FIGURE 4.4
Variation of roots with damping ratio.

Magnitude of
damping ratio

Type of root

Time response

< -1
0>L> -1

Two positive real distinct roots

Complex roots with a positive
real part

Complex roots with a real
part 0

Complex roots with a real
part negative

Two negative equal real
roots

Two negative distinct real
roots

Exponentially growing motion
Exponentially growing sinusoidal
motion
Undamped sinusoidal motion
Pure harmonic motion
Underdamped exponentially
decaying sinusoidal motion
Critically damped exponentially
decaying motion
Overdamped exponentially
decaying motion
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4.3
PURE PITCHING MOTION

Consider the case in which the airplane’s center of gravity is constrained to move
in a straight line at a constant speed but the aircraft is free to pitch about its center
of gravity. Figure 4.5 is the sketch of a wind-tunnel model constrained so that it can
perform only in a pitching motion.

The equation of motion can be developed from the rigid body equations devel-
oped in Chapter 3 by making the appropriate assumptions. However, to aid our
understanding of this simple motion, we shall rederive the governing equation from
first principles. The equation governing this motion is obtained from Newton'’s
second law:

>\ Pitching moments = >, M., = I, § (4.28)

The pitching moment M and pitch angle 6 can be expressed in terms of an initial
reference value indicated by a subscript, 0, and the perturbation by the A symbol:

M=M, + AM (4.29)
0=26,+ A8 (4.30)

If the reference moment M, is 0, then equation (4.28) reduces to
AM =1, A8 (4.31)

For the restricted motion that we are examining, the variables are the angle of
attack, pitch angle, the time rate of change of these variables, and the elevator
angle. The pitching moment is not a function of the pitch angle but of the other
variables and can be expressed in functional form as follows:

AM = fn(Aa, Ad, Ag, AS,) (4.32)

Equation (4.32) can be expanded in terms of the perturbation variables by means

FIGURE 4.5
A model constrained to a pure pitching motion.
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of a Taylor series:

oM oM oM oM
=" Aa + — Ad + — Ag + — Ab 4,
AM o Aa a Ad o q 25, o (4.33)

If we align the body and fixed frames so they coincide at ¢ = 0, the change in angle
of attack and pitch angles are identical; that is,

Aa=A0 and A0 = Ag = Ad (4.34)

This is true only for the special cases where the center of gravity is constrained.
Substituting this information into Equation (4.31) yields

Adé — (M, + M )Aa — M, Aa = M; AS, (4.35)

where

M, = M I, M, = ﬂ/[w and so forth
aq da/ -

Equation (4.35) is a nonhomogeneous second-order differential equation, having
constant coefficients. This equation is similar to a torsional spring-mass-damper
system with a forcing function, which was mentioned briefly in the previous sec-
tion. The static stability of the airplane can be thought of as the equivalent of an
aerodynamic spring, while the aerodynamic damping terms are similar to a tor-
sional damping device. The characteristic equation for Equation (4.35) is

A= (M, + MJA — M, =0 (4.36)

This equation can be compared with the standard equation of a second-order
system:

A+ 2w, A + @l = 4.37)

where {is the damping ratio and w,is the undamped natural frequency. By inspec-
tion we see that

w, = V—M, (4.38)

_(M + M‘i)
d =—4 % 4.39
an Ve vy 39

Note that the frequency is related to the airplane’s static stability and that the
damping ratio is a function of the aerodynamic damping and static stability.
If we solve the characteristic Equation (4.37), we obtain the following roots:
240, * Vilwl — da?

Ao = ) (4.40)

or Mo = —{w, *iw,V1 ~ 4.41)

Expressing the characteristic root as

A.=7%iw (4.42)
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and comparing Equation (4.42) with (4.41), yields
n = —{w, (4.43)
and w=00V1 - (4.44)

which are the real and imaginary parts of the characteristic roots. The angular
frequency w is called the damped natural frequency of the system.
The general solution to Equation (4.35) for a step change Aé,in the elevator
angle can be expressed as
e—{m"l
Aa(t) = Aa,im[(l + ——ssin(V1 — * w,t + ¢))] (4.45)
V=g

where Aa,;, = change in trim angle of attack =—(M;, AS)/M,,
{ = damping ratio = ~ (M, + M,)/2V—-M,)
w, = undamped natural frequency = V — M,

¢ = phase angle = tan™'(-V1 — {*/—{)

The solution is a damped sinusoidal motion with the frequency a function of
C,, and the damping rate a function of C,,,q + C,,and C,,. Figure 4.6 illustrates
the angle of attack time history for various values of the damping ratio {. Note that
as the system damping is increased the maximum overshoot of the response dimin-
ishes.

14—t b i FIGURE 4.6
_ L Angle of attack time history
1.6 J £=0.1 | of a pitching model for
0.2 L various damping ratios.
] 0.3
1.4 0.4 -
, 0.5 -
1.2 - 0.6 N
Aa 1.0 1 =
Aarpy n B
0.8 o
0.6 j 07 -
0.8 i
04 - \ [=10 .
1.5 L
2.0
0.2 + -
0 T ¥ T T T T T T T |
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—————— Variation of C,,
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FIGURE 4.7
Variation of the characteristic roots of the pitching motion as a
function of the stability coefficients.

The influence of the stability coefficients on the roots of the characteristic
equation can be seen in Figure 4.7. The curves show the effect of variations in C,
and C,, + C,,. on the roots. This type of curve is referred to as a root locus plot
Notice that as the roots move into the right half plane the vehicle will become
unstable.

The roots of the characteristic equation tell us what type of response our
airplane will have. If the roots are real, the response will be either a pure divergence
or a pure subsidence, depending on whether the root is positive or negative. If the
roots are complex, the motion will be either a damped or undamped sinusoidal
oscillation. The period of the oscillation is related to the imaginary part of the root
as follows:

Period = %T (4.46)

The rate of growth or decay of the oscillation is determined by the sign of the real
part of the complex root. A negative real part produces decaying oscillation,
whereas a positive real part causes the motion to grow. A measure of the rate of
growth or decay of the oscillation can be obtained from the time for halving or
doubling the initial amplitude of the disturbance. Figure 4.8 shows damped and
undamped oscillations and how the time for halving or doubling the amplitude can
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Period
tp

J» Envelope -
6 N\ 7N\ /\

Period
Period Time to half or double amplitude
wtp=27 Z—0=e"‘orln2—o=nt
tp= 2777 t,/zor t= oif’ls
FIGURE 4.8

Relationships for time to halve or double amplitude and the period.

be calculated. The expression for the time for doubling or halving of the amplitude is

0.693
tdouble or thalvc =7 (447)

[n]

and the number of cycles for doubling or halving the amplitude is

|o]

N(cyCICS)doubleorhalve = 01 10 P (4'48)
n

EXAMPLE PROBLEM 4.1. A flat plate lifting surface is mounted on a hollow slender
rod as illustrated in Figure 4.9. The slender rod is supported in the wind tunnel by a
transverse rod. A low friction bearing is used so that the slender rod-flat plate system
can rotate freely in pitch. To have the center of gravity located at the pivot point ballast
is placed inside the slender tube forward of the pivot. Estimate the damping ratio, , the
undamped natural frequency, w,, and the damped natural frequency of the tube-flat
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C=0.
W, =0.31lbs \<
WB =0.6lbs
Low friction

bearing

ballast .__Pivot and cg of
tube-plate system

Low friction

u .
° bearing

FIGURE 4.9
Rod-plate assembly constrained to a pure pitching motion.

plate assembly. The following assumptions are made in the analysis:

1. Neglect the mass of the slender rod.
2. Neglect the contribution of the pitching moment contribution due to the slender rod.
3. Neglect the mechanical friction of the bearings.

Solution. The equation of motion governing the pitching motion of the slender rod--
flat plate model can be derived as follows:

3 Pitching moments about the center of gravity = 1,6
M =10

The pitching moment for this model will be a function of only the angle of attack, o,
and the pitch rate, g. The contribution due to ¢ is not included because this effect is due
primarily to the interaction of the wing wake on an aft surface. Because there is no wing
in this case the & term can be ignored. The aerodynamic pitching moment can be
expressed as follows:

oM oM
M=—a+—gq
da dq
Substituting the moment expression into the differential equation and rearranging
yields

b~ Mg — M,a =0
oM
where M,=—/1,
oq/ -

oM
M,=—/ 1
o)
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Because the center of gravity is constrained the angle of attack, a, and the pitch angle,
8, are the same. The pitch rate, g, is the same as 8; therefore, the equation of motion
can be written in terms of either « or 6. In terms of 0 the equation is as follows:

6-Mb-MH0=0

This equation is similar to the differential equation developed for a pitching aircraft.
The next step in the analysis is to develop expressions to estimate the stability deriva-
tives M, and M,,.

The moment contribution due to a change in angle of attack can be estimated from
the geometric and aerodynamic characteristics of the flat plate lifting surface. The
moment created by a change in angle of attack is due to the change in lift on the flat
plate times the moment arm to the pivot (center of gravity location).

M(a) = —1 A Lift
M(a) = —1C,a QS

where Q = {pud, lis the distance from the center of gravity to the aerodynamic center
of the plate, S is the planform area of the plate, and C, _ is the lift curve slope of the flat
plate.

The derivative M, can be estimated from the preceding formula:

oM
M, = —(,;;/Iy = —1C,, 05/,

In a similar manner the moment contribution due to the pitch rate, g, can be estimated.
Recall that when an aft surface undergoes a pitching motion a change in the angle of
attack is induced on the surface. The change in angle of attack can be approximated as

!
tan @ = L

or for small angles a = 4!
Uo

The pitching moment as a function of g is equal to the change in lift on the aft plate
times the moment arm to the center of gravity:

M(g) = —I CL.,<q_l> os
Uy

The derivative M, can be estimated from this equation:

oM l
M, = a—q/ly = -l CL"(u_O) 0s/1,

The next step in our analysis it to determine the appropriate values for C; , Q, and /,
from the data given. The lift curve slope, C,_, can be estimated by using the theoretical
value of an infinite flat plate, C,, = 27r/rad and correcting this value for the influence
of aspect ratio:

Ce,

G =—<o
=" 1 + C,,/@AR)
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The flat plate has an aspect ratio of 6, therefore, C;,, = 4.7/rad. The only term in the
expression that is not known is the mass moment of inertia, /,. The inertia of a thin flat
plate about the y' axis through the plate’s center of gravity is given in terms of p, b, ¢,
and c, the mass density of the material and the dimensions of the plate, respectively.

1 1
lyr prte = Emc2

1
- (9.3 - 1073 slugs)(0.167 ft)?

= 2.16 - 107 slug - ft?

The inertia of the plate about an axis through the pivot point can be determined using
the parallel axis theorem:

I, =1, + md*
where d is the distance to the new axis:
I, = 2.16 X 1075 slug - ft* + (9.3 X 107 slugs)(1 ft)?
= 9,32 X 10 3slug - ft?
The mass moment of inertia of the complete system, flat plate, and ballast is given by
L R
= 9.32 X 107 %slug - f2 + (1.86 X 1072 slugs){0.5 ft)?
1.4 X 10 %slug - ft?

With the expressions developed for M, and M, and the data in Figure 4.9 we now can
develop estimates of the derivatives:

i
Q = puf = (0.5)(0.002378 slug-fE)(25 fu/s?

= 0.7 Ib/ft?

M, = ~IC,.0S/1,
= —(0.92 ft)(4.7/rad)(0.7 1b/ft})(0.167 ft3)/(1.4 X 10 %slugs - ft?)
= —36.1/s?

l
and M, = —lC,‘a<—) 0s/1,
Up
= —(0.92 ft)(4.7/rad)[ (0.96 ft)/(25 ft/s)](0.7 Ib/ft*)(0.167 ft?)/
(1.4 X 107 %slugs - ft?)
= —1.38/s
Substituting these values into the differential equation yields
6+ 1386+3616=0

A second-order differential equation can be expressed in terms of the system damping
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ratio, ¢, and the system’s undamped natural w, frequency as follows:
6+2w,b+a>0=0

The system damping ratio and undamped natural frequency can be obtained by inspec-

tion:
w? = 36.1/5°
or w, = 6.0 rad/s
and 2w, = 1.38
{=0.115
Finally the damped natural frequency, w, is obtained from the following equation:
w = a),,\/l——{2
= 5.96 rad/s

In this example problem we have developed the governing differential equation
from Newton’s second law. The aerodynamic moment was assumed to be linear and
a function of « and ¢ and was expressed in terms of stability derivatives. Expressions
for estimating the stability derivatives were developed in terms of the aerodynamic,
geometric, and inertia characteristics of the rod-plate system.

44
STICK FIXED LONGITUDINAL MOTION

The motion of an airplane in free flight can be extremely complicated. The airplane
has three translation motions (vertical, horizontal, and transverse), three rotational
motions (pitch, yaw, and roll), and numerous elastic degrees of freedom. To ana-
lyze the response of an elastic airplane is beyond the scope of this book.

The problem we shall address in this section is the solution of the rigid-body
equations of motion. This may seem to be a formidable task; however, some
simplifying assumptions will reduce the complexity of the problem. First, we shail
assume that the aircraft’s motion consists of small deviations from its equilibrium
flight condition. Second, we shall assume that the motion of the airplane can be
analyzed by separating the equations into two groups. The X-force, Z-force, and
pitching moment equations embody the longitudinal equations, and the Y-force,
rolling, and yawing moment equations form the lateral equations. To separate the
equations in this manner, the longitudinal and lateral equations must not be cou-
pled. These are all reasonable assumptions provided the airplane is not undergoing
a large-amplitude or very rapid maneuver.

In aircraft motion studies, one must always be sure that the assumptions made
in an analysis are appropriate for the problem at hand. Students are all too eager
to use the first equation they can find to solve their homework problems. This type
of approach can lead to many incorrect or ridiculous solutions. To avoid such
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Lightly Maximum speed
damped f———— Long period ——
oscillation
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-

Short period {several seconds)

FIGURE 4.10
The phugoid and short-period motions.

embarrassment, one must always verify that the assumptions used in developing the
equations one wishes to use are consistent with the problem one is attempting to
solve. This is particularly important when solving problems related to aircraft
dynamics.

In the following sections we shall examine the longitudinal motion of an
airplane without control input. The longitudinal motion of an airplane (controls
fixed) disturbed from its equilibrium flight condition is characterized by two oscil-
latory modes of motion. Figure 4.10 illustrates these basic modes. We see that one
mode is lightly damped and has a long period. This motion is called the long-period
or phugoid mode. The second basic motion is heavily damped and has a very short
period; it is appropriately called the short-period mode.

4.4.1 State Variable Representation of the Equations of Motion

The linearized longitudinal equations developed in Chapter 3 are simple, ordinary
linear differential equations with constant coefficients. The coefficients in the
differential equations are made up of the aerodynamic stability derivatives, mass,
and inertia characteristics of the airplane. These equations can be written as a set
of first-order differential equations, called the state-space or state variable equa-
tions and represented mathematically as

X = AX + By (4.49)

where x is the state vector, 1 is the control vector, and the matrices A and B contain
the aircraft’s dimensional stability derivatives.
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The linearized longitudinal set of equations developed earlier are repeated
here:

(;—t - X,,) Au — X, Aw + (g cos 6) A = X; Ad + X5 Ad;

—Z, Au + [(1 - Z;) % - Zw] A - [(uo + Zq)% — gsin 00] A6 (4.50)

= Z, A8 + Z, A8,

—M,,Au—(M-—(l+Mw>Aw+<

d? d
wdt - M— A0=M5A6+M51A6T

dr? de
where A8 and A8, are the aerodynamic and propulsive controls, respectively.

In practice, the force derivatives Z, and Z, usually are neglected because they
contribute very little to the aircraft response. Therefore, to simplify our presenta-
tion of the equations of motion in the state-space form we will neglect both Z, and
Z,. Rewriting the equations in the state-space form yields

Au X, X, 0 —g || Au
Awl Z, Z, Uy 0 || Aw
Ag M, +MZ, M,+MZ, M, +Mu 0 ||Aq
A 0 0 1 0 |LAg
X5 Xs, (4.51)
Zs Zs, [ A ]
M, + M, Z; Ms + M,Zs Ab;
0 0
where the state vector x and control vector n) are given by
Au
Aw Ad
= = 4.52
A0
and the matrices A and B are given by
[ X, X, 0 -8
Z Z, Uy 0
= “ " 4.53
A M, + M,Z, M,+ M,Z, M,+ M,u, 0 ( )
0 0 1 0
[ x, Xs,
Zs Xs,
= 4.54
B Ms+ M, Z, Ms; + M,Z; ( )
B 0 0
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TABLE 4.2
Summary of longitudinal derivatives

X = —(CD“ + 2CDU)QS X = ~(Cu,, - CL[])QS
“ miy " mug,
7 = —{C,, + 2C,,)0S
“ mug
—(C,, + C M c
Z, = _(_ﬁ_ﬂlg_ Z, = C, - 0S/(ugm)
muy 2u,
Z,, = uOZW Z(; = uOZM-,
¢
Z, = Cz‘, — QS/m Zs. = Cy, OS/m
2uq
M. =C, (QS¢)
uyl,
M. =C, (QS°T) M, =C, ¢ OS¢
“ upl, " 2up uyl,
M{x = uOMw M(', = MOMM'.

M, = Co == @D/, My, = Cri(QSOII,

" g

The force and moment derivatives in the matrices have been divided by the mass
of the airplane or the moment of inertia, respectively, as indicated:

_ aX/au, M, = BX/au,
m I

¥

X, and so forth (4.55)
Table 4.2 includes a list of the definitions of the longitudinal stability derivatives.
Methods for estimating the stability coefficients were discussed in Chapter 3.

The homogeneous golution to Equation (4.49) can be obtained by assuming a
solution of the form

x = x,eM (4.56)
Substituting Equation (4.56) into Equation (4.49) yields
I — A, =0 (4.57)
where I is the identity matrix
1 0 00
I= 8 (1) (1) 8 (4.58)
0 0 0 1

For a nontrivial solution to exist, the determinant
AM—A|l =0 (4.59)
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must be 0. The roots A, of Equation (4.59) are called the characteristic roots or
eigenvalues. The solution of Equation (4.59) can be accomplished easily using a
digital computer. Most computer facilities will have a subroutine package for
determining the eigenvalues of a matrix. The software package MATLAB* was
used by the author for solution of matrix problems.

The eigenvectors for the system can be determined once the eigenvalues are
known from Equation (4.60).

M- AP, =0 (4.60)

where P; is the eigenvector corresponding to the jth eigenvalue. The set of equa-
tions making up Equation (4.60) is linearly dependent and homogeneous; there-
fore, the eigenvectors cannot be unique. A technique for finding these eigenvectors
will be presented later in this chapter.

EXAMPLE PROBLEM 4.2. Given the differential equations that follow
% +05x, — 10x, = —16
X — x,+ x, =28
where x, and x, are the state variables and § is the forcing input to the system:
(a) Rewrite these equations in state space form; that is,
X = Ax + Bq

(b) Find the free response eigenvalues.
() What do these eigenvalues tell us about the response of this system?

Solution. Solving the differential equations for the highest order derivative yields
x.l = —O.SXI + 10x2 -8

= —x + x, + 28

HE N M

which is the state space formulation

or in matrix form

x = Ax + By

-05 10 -1
where A = [_1‘0 1‘0] and B = [ 2]

The eigenvalues of the system can be determined by solving the equation

AI-A] =0

* MATLAB is the trademark for the software package of scientific and engineering computrics
produced by The Math Works, Inc.
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where I is the identity matrix. Substituting the A matrix into the preceding equation
yields

1 0 -05 10
p— == O
I)\[O 1] [—1.0 1.0]
A Of [-05 10} _ 0
0 A -1.0 1.0

A+ 05 —-10
1.0 A= 1.0

Expanding the determinant yields the characteristic equation
(A+035)A—-10)+10=0
or AZ—-05A+95=0

The characteristic equation can be solved for the eigenvalues for the system.
The eigenvalues for this particular characteristic equation are

A, =025 + 307

The eigenvalues are complex and the real part of the root is positive. This means that
the system is dynamically unstable. If the system were given an initial disturbance, the
motion would grow sinusoidally and the frequency of the oscillation would be gov-
erned by the imaginary part of the complex eigenvalue. The time to double amplitude
can be calculated from Equation (4.47).

,_ 06930693
double l n l 0.25
=277s

The period of the sinusoidal motion can be calculated from Equation (4.46).

2 2
Period = 2= = = = 205 s
eriod o 307 05 s

4.5
LONGITUDINAL APPROXIMATIONS

We can think of the long-period or phugoid mode as a gradual interchange of
potential and kinetic energy about the equilibrium altitude and airspeed. This is
illustrated in Figure 4.10. Here we see that the long-period mode is characterized
by changes in pitch attitude, altitude, and velocity at a nearly constant angle of
attack. An approximation to the long-period mode can be obtained by neglecting
the pitching moment equation and assuming that the change in angle of attack is
0; that is,
_Aw

Aa . Aa =0—Aw =0 (4.61)
0
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Making these assumptions, the homogeneous longitudinal state equations reduce to
the following:

. X, —g
Au Au
[Aé] il == [Aa] (4.62)
Uy

The eigenvalues of the long-period approximation are obtained by solving the
equation

[AL-A| =0 (4.63)
A—X, g
or Z, A =0 (4.64)
Uy

Expanding this determinant yields

A — x4 - 28— (4.65)
Uo
, Z.g
or A = | X = X2+ 475 [20 (4.66)
0

The frequency and damping ratio can be expressed as

w, = \|—2& (4.67)
’ Ug

-X,
& = 2w

(4.68)

If we neglect compressibility effects, the frequency and damping ratios for the
long-period motion can be approximated by the following equations:

w, =V2& (4.69)
p Uy

;=L (4.70)
?  \2L/D '

Notice that the frequency of oscillation and the damping ratio are inversely propor-
tional to the forward speed and the lift-to-drag ratio, respectively. We see from this
approximation that the phugoid damping is degraded as the acrodynamic efficiency
(L/D) is increased. When pilots are flying an airplane under visual flight rules the
phugoid damping and frequency can vary over a wide range and they will still find
the airplane acceptable to fly. On the other hand, if they are flying the airplane
under instrument flight rules low phugoid damping will become very objectable. To
improve the damping of the phugoid motion, the designer would have to reduce the
lift-to-drag ratio of the airplane. Because this would degrade the performance of
the airplane, the designer would find such a choice unacceptable and would look for
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another alternative, such as an automatic stabilization system to provide the proper
damping characteristics.

4.5.1 Short-Period Approximation

An approximation to the short-period mode of motion can be obtained by assuming
Au = 0 and dropping the X-force equation. The longitudinal state-space equations
reduce to the following:

Aw = Z, Uy Aw
[Aci] B [Mw + Mz, M,+ Mw-,uo][Aq] (4.71)

This equation can be written in terms of the angle of attack by using the relation-
ship

_aw

Aa (4.72)

Ug

In addition, one can replace the derivatives due to w and w with derivatives due to
« and & by using the following equations. The definition of the derivative M, is

1M _ 1 oM Uy IM

M,=-—=—-—F"7F—=——=uyM, 4.73
L aa I, a(wiuy) I, aw (4.73)

In a similar way we can show that
Z, = uyZ, and M, =uM, (4.74)

Using these expressions, the state equations for the short-period approximation
can be rewritten as

- 1

Ag
[A?‘] - “o z [i"] (4.75)
A, + M2 o, M P

Uy

The eigenvalues of the state equation can again be determined by solving the
equation

IAT-A| =0 (4.76)
which yields
A~ Za -1
Uy
7 =0 (4.77)
-M, — Mdu—“ A— (M, + M)
0

The characteristic equation for this determinant is

Z Z
22— (Mq + M, + —“)A + M= - M, =0 (4.78)

Uy Uo
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TABLE 43
Summary of Iongitudinal approximations

Long period (phugoid) Short period
- Z.M,
Frequency w,, = [——"—g Opp = =4 M,
Ug Ug
M, + M, +—
D . i l = -X, L= — Uy
amping ratio > = S » = %

The approximate short-period roots can be obtained easily from the characteristic

equation,
V4 z\
Asp=<Mq+Ma-+—">/2¢ [(Mq+M,,+—">
Ug uO

z 12 (4.79)
~a(mZ-m)| /2
Uy
or in terms of the damping and frequency
7 1/2
w, = [(Mq u—" — Ma)] (4.80)
0
Z,
{o = —[Mq + M, + ——]/(20)"_) (4.81)
u() hd

Equations (4.80) and (4.81) should look familiar. They are very similar to the
equations derived for the case of a constrained pitching motion. If we neglect the
Z, term (i.e., neglect the vertical motion), Equations (4.80) and (4.81) are identical
to Equations (4.38) and (4.39). A summary of the approximate formulas is pre-
sented in Table 4.3.

To help clarify the preceding analysis, we shall determine the longitudinal
characteristics of the general aviation airplane included in Appendix B.

EXAMPLE PROBLEM43. Find the longitudinal eigenvalues and eigenvectors for the
general aviation airplane included in Appendix B and Figure 4.11. Compare these
results with the answers obtained by using the phugoid and short-period approxima-
tions. The exact solution was determined numerically using MATLAB.

Solution. First, we must determine the numerical values of the dimensional longitudi-
nal stability derivatives. The dynamic pressure Q and the terms 0S, OS¢, and ¢ /2u, are

0 = Lpu = (0.5)(0.002378 slug/ft*)(176 ft/s)
= 36.8 Ib/ft?
0S = (36.8 Ib/ft?)(184 ft?) = 6771 Ib
0S¢ = (6771 Ib)(5.7 ft) = 38596 ft - Ib
(T/2uy) = (5.7 f)/(2 X 176 ft/s) = 0.016 s
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The longitudinal derivatives can be estimated from the formulas in Table 4.2.

u derivatives
X, = —(Cp, + 2Cp,)0S/(uom)
—[0.0 + 2(0.05)](6771 1b}/[(176 ft/s)(85.4 slugs)]
—-0.045 (s7)
Z, = —(C, + 2CL0)QS/(u0m)
—[0.0 + 2(0.41)}(6771 1b)/[(176 ft/s)(85.4 slugs)]
—0.369 (s71)
M, =0

I

w derivatives
X, = _(CD,, - CLO)QS/(u()m)

—(0.33 — 0.41)(6771 1b)/[(176 ft/s)(85.4 slugs)]

= 0.036 (s7')
zZ, = _(CL,x + CDO)QS/ (ugm)
—(4.44 + 0.05)(6771 b)/[((176 ft/s)(85.4 slugs))

= -202(")
M, = C, 05c/(uyl,)
(—0.683)(38 596 ft - 1b)/[(176 ft/s)(3000 slugs - ft?)]
—0.05 [1/(ft - s)]

w derivatives

X, =

Z,=0

M, = C, -~ 05c/(u,l)

v ™ Uy Y
= (—4.36)(0.016 s)(38 596 ft - 1b)/[(176 ft/s)(3000 slugs - ft?)]
= —0.0051 (ft™")
q derivatives

X, =

z, =

M, = C, £ osc/I,

7 2uy,

(—9.96)(0.016 $)(38 596 ft - 1b)/(3000 slugs - ft?)
—2.05(s7")

157
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Substituting the numerical values of the stability derivatives into Equation (4.51), we
can obtain the stability matrix:

X = AXx
Au —0.045 0.036 0.0000 —-32.2 Au
or Aw | |-0.369 —-2.02 176 0.0000 || Aw
Aq 0.0019 -0.0396 —2.948 0.000 Aq
A8 0.0000 0.0000 1.0000 0.0000 || A6

The eigenvalues can be determined by finding eigenvalues of the matrix A:
[AT-A| =0
The resulting characteristic equation is
A%+ 5.050°% + 13202 4+ 0.67A + 0.59 = 0

The solution of the characteristic equation yields the eigenvalues:

Arn
Ayg = —25 £i(2.59) (short period)

—0.0171 = 1(0.213) (phugoid)

The period, time, and number of cycles of half amplitude are readily obtained once the
eigenvalues are known.

Phugoid
(long period) Short period
0.69 0.69
typ = 069/ = 5577 hp = 069/In| = =53
tyy=403s ty,=028s
Period = 27/w = 27/0.213 Period = 27/w = 27/2.59
Period = 29.5 s Period = 242 s
Number of cycles to half amplitude Number of cycles to half amplitude
Ly [ )
Ny =-—-==0.110— Nip = 0.110—
P [l 2 El
_ (0.110)(0.213) _ (0.110)(2.59)
|-0.0171] | -2.5]
Ny, = 1.37 cycles Ny, = 0.11 cycles

Now let us estimate these parameters by means of the long- and short-period approx-
imations. The damping ratio and undamped natural frequency for the long-period
motion was given by Equations (4.69), (4.70), (4.80), and (4.81).

Phugoid approximation

1/2
[— —(0.369)(32.21
Wy, = u,,g = [ ( (17)6() )] = 0.26 rad/s
0
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_ =X, _ —(=0.045) _
2w,  2(026) 0.087
Az = —Lw, *iw, V1 - &

= —(0.087)(0.26) * i(0.26)V'1 — (0‘087)?

= —0.023 * i0.26
Period = _2;071' = % =242s
r./2=0'—:9=%:305
Ny = 0.110 I—j”—l =0.110 % = 1.24 cycles

Short-period approximation

@y, = uq_Ma
0

Recall that Z, = u,Z,, M, = uyM,,, and M, = uyM,
[(=2.02)(—2.05) — (—0.05)(176)]'/? = 3.6 rad/s

Z
o (1) fo
Uy g

= [(—2.05) + (—0.88) + (—2.02))/[(2)(3.6)]
= 0.69

Moy = —Lpwn, * iw, V1 = 5

—(0.69)(3.6) * i(3.6)V1 — (0.69)°

€
Il

= —2.48 + i2.61
Period = % = —;—Z—] =24s
0.69 0.69
fy = o = = 0.278
=Ty [—2a4g] 02788
w 3.6

Ny = 0110 22 = 0.110—2"— = 0.16 cycl
e ] [—2ag] ~ O16cvcles

A summary of the results from the exact and approximate analyses is included in
Table 4.4. In this analysis, the short-period approximation was found to be in closer
agreement with the exact solution than the phugoid approximation. In general, the
short-period approximation is the more accurate one.

The eigenvectors for this problem can be determined by a variety of techniques;
however, we will discuss only one relatively straightforward method. For additional
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TABLE 4.4
Comparison of exact and aproximate methods

Exact method  Approximate method Difference

Phugoid ti, =403s tia=30s 25%
P =295s P =242s 18%
Short period ti,=0.280s ti, = 0.278s 0%
P=242s P=24s 0%

information on other techniques, readers should go to their methematics library or
computer center. Most computer facilities maintain digital computer programs suitable
for extracting eigenvalues and eigenvectors of large-order systems.

To obtain the longitudinal eigenvectors for this example problem, we will start
with Equation (4.60), which is expanded as follows:
N — A A, — Ap Aw; — A3 Ag; — A, A6, =0

/)

—Ay Ay + (A — Ap)Aw; — Ayg; — Ay A8, =0
—Au Ay, — ApAw; + (A — Ap)Ag — Ay A =0
— Ay Au; — Ay Aw, — Ay Ag + (A — A)AG =0

In this set of equations, the only unknowns are the components of the eigenvector; the
eigenvalues A; and the elements of the A matrix were determined previously. Dividing
the preceding equations by any one of the unknowns (for this example we will use A6)),
we obtain four equations for the three unknown ratios. Any three of the four equations
can be used to find the eigenvectors. If we drop the fourth equation, we will have a set
of three equations with the three unknown ratios, as follows:

Au Aw A
W - An)(@)j - A12<A_9>j - A'3<A—Z>J_ =Ay
Au Aw Ag
—Ajy K9j+(/\j_A22) KE}_—AB E),-:AM

Au Aw Ag
_A31<_> _A32<—> + (/\j - A33)<—> = Ay
Ag i Af ; A6 ;

This set of equations can easily be solved by conventional techniques to yield the
eigenvector [Au/AG, Aw/A6, Ag/A6, 1].

The nondimensional eigenvectors for the example problem have been computed
and are listed in Table 4.5. The longitudinal modes now can be examined by means of
a vector or Argand diagram. The magnitude of the eigenvectors are arbitrary so only
the relative length of the vectors is important.

Figure 4.12 is an Argand diagram illustrating the long-period and short-period
modes. In this diagram the lengths of the vectors are decreasing exponentially with
time, while the vectors are rotating with the angular rate w. The motion of the airplane
can be imagined as the projection of the eigenvectors along the real axis.

On close examination of Figure 4.12, several observations can be made. For the
long-period mode, we see that the changes in angle of attack and pitch rate are
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TABLE 45
Longitudinal eigenvectors for general aviation

Eigenvector Long period Short period

A=-00171 £0213i A= —-25*25%

Au/u(, . .
_— —=0.114 = 0.837i 0.034 = 0.0251
A6
%_% 0.008 + 0.05i 1.0895 + 0.733i
Ao AO A Ly VR 1 R gy U N 1
Al 2
w —0.000027 + 0.00347i  —0.039 = 0.04li
Long FIGURE 4.12
period mode I Eigenvectors for the general
Au o = 0.213 rad/sec vectors aviation airplane in
Uy are decaying exp (-0.0171t)  Problem 4.3,
~ a0
| J " Re
w
Short
period mode
Im éE -not visible
uD
Aqe not visible Aa
2u,
A8

o = 2.5 rad/sec vectors
are decaying exp (-2.5t)

negligible. The motion is characterized by changes in speed and pitch attitude. Notice
that the velocity vector leads the pitch attitude by nearly 90° in phase. In contrast, the
short-period mode is characterized by changes in angle of attack and pitch attitude with
negligible speed variations. As we can see from the vector diagrams, the assumptions
we made earlier in developing the long- and short-period approximations indeed are
consistent with the exact solution.
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4.6
THE INFLUENCE OF STABILITY DERIVATIVES
ON THE LONGITUDINAL MODES OF MOTION

The type of response we obtain from solving the differential equations of motion
depends on the magnitude of the stability coefficients. This easily can be seen by
examining the expressions for the damping ratio and frequency of the long- and
short-period approximations. Table 4.6 summarizes the effect of each derivative on
the longitudinal motion

Of the two characteristic modes, the short-period mode is the more important.
If this mode has a high frequency and is heavily damped, then the airplane will
respond rapidly to an elevator input without any undesirable overshoot. When the
short-period mode is lightly damped or has a relatively low frequency, the airplane
will be difficult to control and in some cases may even be dangerous to fly.

The phugoid or long-period mode occurs so slowly that the pilot can easily
negate the disturbance by small control movements. Even though the pilot can
correct easily for the phugoid mode it would become extremely fatiguing if the
damping were too low.

Figures 4.13 and 4.14 show the effects of varying the center of gravity position
and the horizontal tail area size on the long- and short-period responses. As the
center of gravity is moved rearward the longitudinal modes become aperiodic and,
eventually, unstable.

From a performance standpoint, it would be desirable to move the center of
gravity further aft so that trim drags during the cruise portion of the flight could
be reduced. Unfortunately, this leads to a less stable airplane. By using an active
control stability augmentation system, the requirement of static stability can be
relaxed without degrading the airplane’s flying qualities.

Recent studies by the commercial aircraft industry have shown that fuel saving
of 3 or 4 percent is possible if relaxed stability requirements and active control
stability augmentation are incorporated into the design. With the ever-rising costs
of jet fuel, this small percentage could mean the savings of many millions of dollars
for the commercial airlines.

TABLE 4.6
Influence of stability derivatives on the long- and
short-period motions

Stability derivative

Mode affected

How affected

M, + M, Damping of short- Increasing M, + M,
period mode of motion increases damping

M, Frequency of short- Increasing M, or static
period mode of motion stability increases the

frequency

X, Damping of the phugoid Increasing X, increases
or long-period mode of damping
motion

Z, Frequency of phugoid Increasing Z, increases

mode of motion

the frequency
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FIGURE 4.13
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response.

iw FIGURE 4.14
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4.7
FLYING QUALITIES

In the previous sections we examined the stick fixed longitudinal characteristics of
an airplane. The damping and frequency of both the short- and long-period mo-
tions were determined in terms of the aerodynamic stability derivatives. Because
the stability derivatives are a function of the geometric and aerodynamic character-
istics of the airplane, designers have some control over the longitudinal dynamics
by their selection of the vehicle’s geometric and aerodynamic characteristics. For
example, increasing the tail size would increase both the static stability of the
airplane and the damping of the short-period motion.* However, the increased tail
area also would increase the weight and drag of the airplane and thereby reduce the
airplane’s performance, The designer is faced with the challenge of providing an
airplane with optimum performance that is both safe and easy to fly. To achieve
such a goal, the designer needs to know what degree of stability and control is
required for the pilot to consider the airplane safe and flyable.

The flying qualities of an airplane are related to the stability and control
characteristics and can be defined as those stability and control characteristics
important in forming the pilot’s impression of the airplane. The pilot forms a
subjective opinion about the ease or difficulty of controlling the airplane in steady
and maneuvering flight. In addition to the longitudinal dynamics, the pilot’s im-
pression of the airplane is influenced by the feel of the airplane, which is provided
by the stick force and stick force gradients. The Department of Defense and
Federal Aviation Administration has a list of specifications dealing with airplane
flying qualities. These requirements are used by the procuring and regulatory
agencies to determine whether an airplane is acceptable for certification. The
purpose of these requirements is to ensure that the airplane has flying qualities that
place no limitation in the vehicle’s flight safety nor restrict the ability of the
airplane to perform its intended mission. The specification of the requirements for
airplane flying qualities can be found in [4.5].

As one might guess, the flying qualities expected by the pilot depend on the
type of aircraft and the flight phase. Aircraft are classified according to size and
maneuverability as shown in Table 4.7. The flight phase is divided into three
categories as shown in Table 4.8. Category A deals exclusively with military air-
craft. Most of the flight phases listed in categories B and C are applicable to either
commercial or military aircraft. The flying qualities are specified in terms of three
levels:

Level 1 Flying qualities clearly adequate for the mission flight phase.

Level 2 Flying qualities adequate to accomplish the mission flight phase but
with some increase in pilot workload and/or degradation in mission
effectiveness or both.

* Because the aerodynamic derivatives also are a function of the Mach number, the designer can
optimize the dynamic characteristics for only one flight regime. To provide suitable dynamic charac-
teristics over the entire flight envelope, the designer must provide artificial damping by using stability
augmentation.
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TABLE 47
Classification of airplanes

Class 1 Small, light airplanes, such as light utility, primary trainer, and light
observation craft
Class 11 Medium-weight, low-to-medium maneuverability airplanes, such as heavy

utility/search and rescue, light or medium transport/cargo/tanker,
reconnaissance, tactical bomber, heavy attack and trainer for Class II
Class III Large, heavy, low-to-medium maneuverability airplanes, such as heavy
transport/cargo/tanker, heavy bomber and trainer for Class 111
Class IV High-maneuverability airplanes, such as fighter/interceptor, attack, tactical
reconnaissance, observation and trainer for Class IV

TABLE 438
Flight phase categories

Nonterminal flight phase
Category A Nonterminal flight phase that require rapid maneuvering, precision tracking,
or precise flight-path control. Included in the category are air-to-air combat
ground attack, weapon delivery/launch, aerial recovery, reconnaissance,
in-flight refueling (receiver), terrain-following, antisubmarine search, and
close-formation flying
Category B Nonterminal flight phases that are normally accomplished using gradual
maneuvers and without precision tracking, although accurate flight-path
control may be required. Included in the category are climb, cruise, loiter,
in-flight refueling (tanker), descent, emergency descent, emergency
deceleration, and aerial delivery.
Terminal flight phases
Category C Terminal flight phases are normally accomplished using gradual maneuvers
and usually require accurate flight-path control. Included in this category
are takeoff, catapult takeoff, approach, wave-off/go-around and landing.

Level 3 Flying qualities such that the airplane can be controlled safely but pilot
workload is excessive and/or mission effectiveness is inadequate or
both. Category A flight phases can be terminated safely and Category
B and C flight phases can be compieted.

The levels are determined on the basis of the pilot’s opinion of the flying character-
istics of the airplane.

4.7.1 Pilot Opinion

Handling or flying qualities of an airplane are related to the dynamic and control
characteristics of the airplane. For example, the short- and long-period damping
ratios and undamped natural frequencies influence the pilot’s opinion of how easy
or difficult the airplane is to fly. Although we can calculate these qualities, the
question that needs to be answered is what values should { and w, take so that the
pilot finds the airplane easy to fly. Researchers have studied this problem using
ground-based simulators and flight test aircraft. To establish relationships between
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TABLE 4.9
Cooper-Harper scale

Pilot Overall
rating  Aircraft characteristic Demand of pilot assessment
1 Excellent, highly desirable  Pilot compensation not a factor for
desired performance
2 Good, negligible Pilot compensation not a factor for Good flying
deficiencies desired performance qualities
3 Fair, some mildly Minimal pilot compensation
unpleasant deficiencies required for desired performance
4 Minor but annoying Desired performance requires
deficiencies moderate pilot compensation
5 Moderately objectionable Adequate performance requires Flying qualities
deficiencies considerable pilot compensation warrant
6 Very objectionable but Adequate performance requires improvement
tolerable deficiencies extensive pilot compensation
7 Major deficiencies Adequate performance not
attainable with maximum tolerable
pilot compensation; controllability Flying quality
not in question deficiencies
8 Major deficiencies Considerable pilot compensation is require
required for control improvement
9 Major deficiencies Intense pilot compensation is
required to retain control
10 Major deficiencies Control will be lost during some Improvement
portion of required operation mandatory

the stability and control parameters of the airplane and the pilot’s opinion of the
airplane a pilot rating system was developed. A variety of rating scales have been
used over the years; however, the rating system proposed by Cooper and Harper
[4.6] has found widespread acceptance. The Cooper-Harper scale is presented in
Table 4.9. The rating scale goes from 1 to 10 with low numbers corresponding to
good flying or handling qualities. The scale is an indication of the difficulty in
achieving the desired performance that the pilot expects.

Flying qualities research provides the designer information to assess the flying
qualities of a new design early in the design process. If the flying qualities are found
to be inadequate then the designer can improve the handing qualities by making
design changes that influence the dynamic characteristics of the airplane. A de-
signer that follows the flying qualities guidelines can be confident that when the
airplane finally is built 1t will have flying qualities acceptable to its pilots.

Extensive research programs have been conducted by the government and the
aviation industry to quantify the stability and control characteristics of the airplane
with the pilot’s opinion of the airplane’s flying qualities. Figure 4.15 is an example
of the type of data generated from flying qualities research. The figure shows the
relationship between the level of flying qualities and the damping ratio and un-
damped natural frequency of the short-period mode. This kind of figure is some-
times referred to as a thumbprint plot. Table 4.10 is a summary of the longitudinal
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Short-period flying qualities.
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3 0.15 — 0.15 —
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specifications for the phugoid and short-period motions that is valid for all classes

of aircraft.

The information provided by Table 4.10 provides the designer with valuable
design data. As we showed earlier, the longitudinal response characteristics of an
airplane are related to its stability derivatives. Because the stability derivatives are
related to the airplane’s geometric and aerodynamic characteristics it is possible for
the designer to consider flying qualities in the preliminary design phase.

EXAMPLE PROBLEM44. A fighter aircraft has the aerodynamic, mass, and geomet-
ric characteristics that follow. Determine the short-period flying qualities at sea level,
at 25,000 ft, and at 50,000 ft for a true airspeed of 800 ft/s. How can the designer




168 CHAPTER 4: Longitudinal Motion (Stick Fixed)

improve the flying qualities of this airplane?

W =17 580 1b I, = 25 900 slug - ft?
S = 260 ft? c =108 ft

C,, = 4.0rad™’ C,, = —43rad™

C,, = —0.4rad™’ C,, = —1.7 rad™’

Solution. The approximate formulas for the short-period damping ratio and frequency
are given by Equations (4.80) and (4.81):

Z.M,
w, = - M,
» Uy
g _ (Mq + Md + Za/uo)
sp

where Z, = —C,, QOS/m

-\ ose
M, = C,, (_c_> QI_C

2“0 v
M, = c, B¢
Iy
¢ \ gSt
“ e (2“0) I_v

If we neglect the effect of Mach number changes in the stability coefficients, the
damping ratio and frequency can easily be calculated from the preceding equations.
Figure 4.16 is a plot of {, and v, as functions of the altitude. Comparing the esti-
mated short-period damping ratio and frequency with the pilot opinion contours in
Figure 4.15, we see that this airplane has poor handling qualities at sea level that
deteriorate to unacceptable characteristics at altitude.

To improve the flying qualities of this airplane, the designer needs to provide more
short-period damping. This could be accomplished by increasing the tail area or the tail
moment arm. Such geometric changes would increase the stability coefficients C,, ,
C,,. and C,,,. Unfortunately, this cannot be accomplished without a penalty in flight
performance. The larger tail area results in increased structural weight and empennage
drag. For low-speed aircraft geometric design changes usually can be used to provide
suitable flying qualities; for aircraft that have an extensive flight envelope such as
fighters it is not possible to provide good flying qualities over the entire flight regime

0.3 1 6 FIGURE 4.16
F Variation of {, and w,,, as a
T ) function of altitude.
wn
¢ 024 -4 (rad/sec)
. -3
0.1 LANAE B RS BN S A B 2

0 10 20 30 40 50 60
Altitude: 1000 ft
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from geometric considerations alone. This can be accomplished, however, by using a
stability augmentation system.

4.8
FLIGHT SIMULATION

To determine the flying quality specifications described in a previous section re-
quires some very elaborate test facilities. Both ground-based and in-flight simulators
are used to evaluate pilot opinion on aircraft response characteristics, stick force
requirements, and human factor data such as instrument design, size, and location.

The ground-based flight simulator provides the pilot with the “feel” of flight by
using a combination of simulator motions and visual images. The more sophisti-
cated flight simulators provide six degrees of freedom to the simulator cockpit.
Hydraulic servo actuators are attached to the bottom of the simulator cabin and
driven by computers to produce the desired motion. The visual images produced on
the windshield of the simulator are created by projecting images from a camera
mounted over a detailed terrain board or by computer-generated images. Fig-
ure 4.17 is a sketch of a five degree of freedom ground-based simulator used by the

FIGURE 4.17

Sketch of United States Air Force Large Amplitude Multimode Aerospace Research
Simulator (LAMARS). Courtesy of the Flight Control Division, Flight Dynamics
Directorate, Wright Laboratory.
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United States Air Force for handling qualities research. The crew station is located
at the end of a 30 ft arm that can be controlled to provide the crew with vertical
and lateral accelerations.

An example of an in-flight simulator is shown in Figure 4.18. This figure is a
sketch of the U.S. Air Force’s total in-flight simulator (TIFS), which is a modified
C131 transport. By using special force-producing control surfaces such as direct
lift flaps and side force generators, this airplane can be used to simulate a wide
range of larger aircraft. The TIFS has been used to simulate the B-1, C-5, and
space shuttle among other craft.

The stability characteristics of the simulator can be changed through the com-
puter. This capability permits researchers to establish the relationship between
pilot opinion and aircraft stability ch::racteristics. For example, the short-period
characteristics of the simulator could be varied and the simulator pilot would be
asked to evaluate the ease or difficulty of flying the simulator. In this manner, the
researcher can establish the pilot’s preference for particular airplane response
characteristics.

4.9
SUMMARY

In this chapter we examined the stick fixed longitudinal motion of an airplane using
the linearized equations of motion developed in Chapter 3. The longitudinal dy-
namic motion was shown to consist of two distinct and separate modes: a long-
period oscillation that is lightly damped, and a very short-period but heavily
damped oscillation.

Approximate relationships for the long- and short-period modes were devel-
oped by assuming that the long-period mode occurred at constant angle of attack
and the short-period mode occurred at a constant speed. These assumptions were
verified by an examination of the exact solution. The approximate formulas permit-
ted us to examine the relationship of the stability derivatives on the longitudinal
motion.

Before concluding, it seems appropriate to discuss several areas of research
that will affect how we analyze aircraft motions. As mentioned, active control
technology in commercial aircraft can be used to improve aerodynamic efficiency.
With active controls, the aircraft can be flown safely with more aft center of gravity
position than would be possible with a standard control system. By shifting the
center of gravity further aft, the trim drag can be reduced substantially. This allows
for improved fuel economy during the cruise portion of the flight.

Active control technology also can be used to improve ride comfort and reduce
wing bending during flight in turbulent air. With active controls located on the
wing, a constant load factor can be maintained. This alleviates most of the un-
wanted response associated with encounters with a vertical gust field. In addition
to improving the ride for passengers, the gust alleviation system reduces the wing
bending moments, which means the wing can be lighter. Again, this will result in
potential fuel savings.
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Body vortices

Wing tip
vortex

Wing tip
vortex
v
FIGURE 4.19

Sketch of a fighter aircraft illustrating separated vortical
flows.

The analysis presented in this chapter assumes that the aerodynamic character-
istics are linear and can be represented by stability derivatives. This assumption is
quite good if the angle of attack of the airplane is smail. However, modern fighter
aircraft are capable of performing transient maneuvers that involve high angular
rates and large angles of attack [4.7, 4.8]. The flow field around a slender fighter
aircraft at large angles of attack is dominated by vortices created by flow separation
around the forebody (nose of the fuselage), strake, wing and control surfaces.
Figure 4.19 is a sketch of the leeward wake over a slender fighter aircraft. The
interaction of these vortices with various components of the aircraft can create
significant nonlinear aerodynamic forces and moments. To further illustrate the
complexity of the wake flow around a fighter aircraft, we will examine the separated
flow over the forebody that is the nose region of the fuselage in the next section.

As the angle of attack of the airplane increases, the flow around the fuselage
separates. The separated flow field can cause nonlinear static and dynamic aerody-
namic characteristics. An example of the complexity of the leeward wake flows
around a slender aircraft and a missile is sketched in Figure 4.20. Notice that as the
angle of attack becomes large the separated body vortex flow can become asym-
metric. The occurence of this assymetry in the flow can give rise to large side
forces, yawing, and rolling moments on the airplane or missile even though the
vehicle is performing a symmetric maneuver (i.e., sideslip angle equals 0). The
asymmetric shedding of the nose vortices is believed to be a major contribution to
the stall spin departure characteristics of many high-performance airplanes.

Figure 4.21 a and b are multiple exposure photographs of the vortex pattern
above a cone finned model. A laser light sheet is used to illuminate smoke entrained
into the body vortices. The light sheet was positioned so that it intersected the flow
normal to the longitudinal axis of the model. The cross section of the body vortices
are observed at several axial locations along the model. The model was painted



Aircraft configuration Missile configuration

v Low o Low a

- % %f Symmetric pattern Symmetric pattern
v High o High a

= >\ Asymmetric pattern Asymmetric pattern
FIGURE 4.20

Vortex flows around an aircraft at large angles of attack.

(b)

FIGURE 4.21
Flow visualization of body vortices. (a) Symmetric body
vortex pattern. (b) Asymmetric body vortex pattern.
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black so that only the vortices are visible. The model surface is indicated by a
curved line which is a reflection of the laser sheet from the model surface. In part
a the body vortices are symmetric; however, as the angle of attack is increased
further the wake vortices become asymmetric. The vortex on the right side of the
model is farther away from the model surface than the left side vortex. When the
wake vortices become asymmetric the body experiences both a side force and
yawing moment even though the model is at zero sideslip angle.

The asymmetric vortex wake can lead to aerodynamic cross-coupling between
the longitudinal and lateral equations of motion. Analyzing these motions requires
a much more sophisticated analysis than that presented in this chapter.

PROBLEMS

Problems that require the use of a computer have the capital letter C after the problem
number

4.1. Starting with Newton’s second law of motion, develop the equation of motion for
the simple torsional pendulum shown in Figure P4.1. The concept of the torsional
pendulum can be used to determine the mass moment of inertia of aerospace
vehicles or components. Discuss how one could use the torsional pendulum con-
cept to determine experimentally the mass moment of inertia of a test vehicle.

Torsional Q)

pendulum

FIGURE P4.1
Aircraft model swinging as a torsional pendulum.

4.2. A mass weighing 5 1b is attached to a spring as shown in Figure P4.2 (a). The
spring is observed to extend 1 in. when the mass is attached to the spring. Suppose



4.3.

44.

4.5(C).

4.6.

Problems 175

the mass is given an instantaneous velocity of 10 ft/s in the downward direction
from the equilibrium position. Determine the displacement of the mass as a
function of time. Repeat your analysis for the spring mass damper system in
Figure P4.2 (b), assume F = —cy, where ¢ = 0.6 (Ib - s/ft.).

i ; Viscous
Spring Spring damper
Mass Mass
e g
{(a) fVIass-spring system (b) Mass-spring-damper-system
FIGURE P4.2

Spring-mass and spring-mass-damper systems.

The differential equation for the constrained center of gravity pitching motion of
an airplane is computed to be

& + 4a + 36a =0

Find the following:

(a) w,, natural frequency, rad/s

(b) ¢, damping ratio

() w, damped natural frequency, rad/s

Given the second-order differential equation
6+20+50=-8
(a) Rewrite this equation in the state space form:
X = Ax + Bq

(c) Determine the eigenvalues of the A matrix.

Determine the eigenvalues and eigenvectors for the following matrix:
2 -3 1
A= 3 1 2
-5 2 —4

"The characteristic roots of a second-order system are shown in Figure P4.6. If this
system is disturbed from equilibrium, find the time to half-amplitude, the number
of cycles to half amplitude, and the period of motion.
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4.7(C).

4.8.

4.9.

X iw FIGURE P4.6
4 Second-order system roots.
12
1 I et B —
-6 -4 -2 2 4
+-2
X .4

The missile shown in Figure P4.7 is considered so that only a pitching motion is
possible. Assume that the aerodynamic damping and static stability come com-
pletely from the tail surface (i.e., neglect the body contribution). If the model is
displaced 10” from its trim angle of attack (@, = 0) and then released determine
the angle of attack time history. Plot your results. What effect would moving the
center of gravity have on the motion of the model?

[

A (1) —
D = Characteristic length

10° Pivot D =5.0cm
T

V = 30m/sec 3D Tail surfaces are
flat plates

l,=5.0 X 102kg - m?2
S = 7D?%/4

FIGURE P4.7
Pitching wind-tunnel model.

Develop the equation of motion for an airplane that has freedom only along the
flight path; that is, variations in the forward speed. Assume that X = fn (u, 8;),
where u is the forward speed and 8; is the propulsive control. If the airplane is
perturbed from its equilibrium state, what type of motion would you expect?

Given the following differential equation
¥+x% —4dx+6x=r

(a) Rewrite the equation in state-space form; that is, X = Ax + Bw. Hint: let
X) = X, Xy = X, x3 = X.
(b) If the characteristic equation is given by

A+3)A2=-22+2)=0

describe the free response modes of motion.
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4.11(C).

4.12.

4.13.

4.14.

4.15.
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Given the differential equation
d’x dx
—+3—=4+2x=4
a? a7

(a) Rewrite the equation in state-space form.

(b) Determine the characteristic equation of the system

(c) Find the eigenvalues of the system and describe the motion one might expect
for these eigenvalues.

For the set of differential equations that follow
@d+2a—qg=0
6 + 10a + 150 = — 56

(a) Rewrite the equations in state-space form.

(b) Use MATLAB or similar software to determine the eigenvalues of the A
matrix.

(c) Determine the response of the system to a unit step input. Assume the initial
states all are 0.

Use the short- and long-period approximations to find the damping ratio for the
executive jet airplane described in Appendix B.

Show that if one neglects compressibility effects the frequency and damping ratio
for the phugoid mode can be expressed as
1 1
=v2E&  and = —=—
Wpp ” an . Vi L D
From data in Figure P4.14 estimate the time to half-amplitude and the number of
cycles for both the short- and long-period modes.
Longitudinal roots FIGURE P4.14
iw
X 52
11
o«
T T T T T T T 1 M
1.2 0.8 04 X 0.4
-1
X --2

The short—period equations for a particular airplane can be expressed as follows:

MR

u
M, M,
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4.16.

4.17.

4.18(C).

4.19(C).

4.20(C).

4.21(C).

Suppose Z,/u, = —1. Determine M, and M,, so that the damping ration { = 0,
and the undamped natural frequency is 2 rad/s.

What effect will increasing altitude have on the short- and long-period modes? Use
the approximate formulas in your analysis.

Develop the equation of motion for an airplane that has freedom only along the
flight path; that is, variations in forward speed. If the airplane is perturbed from
its equilibrium state what type of motion would you expect? Clearly state all of
your assumptions.

Develop a computer program to compute the eigenvalues for the longitudinal
equations of motion. Use your program to determine the characteristic roots for
the executive jet airplane described in Appendix B. Compare your results with
those obtained in Problem 4.12.

An airplane has the following stability and inertia characteristics:

W = 564 000 Ib Cc, =111

I, = 13.7 X 10° slug - ft? Cp =0.102
I,=305X 10%shg - f* €, = 5.7 rad”"

I, = 43.1 X 10 slug - ft? Cp, = 0.66 rad™"
h = sea level C,.,= —1.26 rad™!
S = 5500 ft? C,. = —3.2rad"!
b = 195.68 ft Cn, = —208 rad™!
c=273ft

V = 280 ft/s

(a) Find the frequency and damping ratios of the short- and long-period modes.

(b) Find the time to half-amplitude for each mode.

{¢) Discuss the influence of the coefficients C, and C, on the longitudinal
motion,

Determine the longitudinal equations
X = Ax + Bnq

for that STOL transport in Appendix B.
(a) Determine the eigenvalues of the A matrix.

(b) Determine the response of the airplane to a step input of the elevator,
A8, = —0.1 rad.

Using the plant matrix A determined in Problem 4.18(C), examine the influ-
ence of the stability derivatives, C,,, C,,, Cz,, and C, on the longitudinal eigen-
values. Vary one stability coefficient at a time and plot the movement of the
eigenvalues.



Problems 179

4.22. A wind-tunnel model is constrained so that only a pitching motion can occur. The
model is in equilibrium when the angle of attack is 0. When the model is displaced
from its equilibrium state and released, the motion shown in Figure P4.22 is

10
1=
5 l.
4 ' I.. H
(C] . LT} n .- s Hy
(Deg) © . ..‘_'._'4-
n -
n " -
-5 . ® ut
.l
-10 T T T T
0 2 4 6 8
Time (seconds)
FIGURE P4.22

recorded. Using the following data determine C,,, and C,,, + C,, :

up = 100 ft/s c=021t
Q= 11.91b/f¢ I, = 0.0l slug - f2
S = 0.5 fe2

Assume that equation of motion is

0(t) = 6, e™ cos wt

where n= (M, + M)/2.0
and 0w=V-M,
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CHAPTER 5

Lateral Motion (Stick Fixed)

“Dutch Roll is a complex oscillating motion of an aircraft involving rolling,
yawing and sideslipping. So named for the resemblance to the characteristic
rhythm of an ice skater.”

F. D. Adams, Aeronautical Dictionary [5.1]

5.1
INTRODUCTION

The stick fixed lateral motion of an airplane disturbed from its equilibrium state is
a complicated combination of rolling, yawing, and sideslipping motions. As was
shown in Chapter 2, an airplane produces both yawing and rolling moments due to
the sideslip angle. This interaction between the roll and the yaw produces the
coupled motion. Three potential lateral dynamic instabilities are of interest to the
airplane designer: directional divergence, spiral divergence, and the so-called
Dutch roll oscillation.

Directional divergence can occur when the airplane lacks directional or weath-
ercock stability. If disturbed from its equilibrium state such an airplane will tend
to rotate to ever-increasing angles of sideslip. Owing to the side force acting on the
airplane, it will fly a curved path at large sideslip angles. For an airplane that has
lateral static stability (i.e., dihedral effect) the motion can occur with no significant
change in bank angle. Obviously, such a motion cannot be tolerated and readily can
be avoided by proper design of the vertical tail surface to ensure directional sta-
bility.

Spiral divergence is a nonoscillatory divergent motion that can occur when
directional stability is large and lateral stability is small. When disturbed from
equilibrium, the airplane enters a gradual spiraling motion. The spiral becomes
tighter and steeper as time proceeds and can result in a high-speed spiral dive if
corrective action is not taken. This motion normally occurs so gradually that the
pilot unconsciously corrects for it.

The Dutch roll oscillation is a coupled lateral-directional oscillation that can
be quite objectionable to pilots and passengers. The motion is characterized by a
combination of rolling and yawing oscillations that have the same frequency but
are out of phase with each other. The period can be on the order of 3 to 15 seconds,
so that if the amplitude is appreciable the motion can be very annoying.

181
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Before analyzing the complete set of lateral equations we shall examine several
motions with a single degree of freedom. The purpose of examining the single
degree of freedom equations is to gain an appreciation of the more complicated
motion comprising the stick fixed lateral motion of an airplane.

5.2
PURE ROLLING MOTION

A wind-tunnel model free to roll about its x axis is shown in Figure 5.1. The
equation of motion for this example of a pure rolling motion is

E Rolling moments = I,[ﬁ (5.1)
oL aL "
5, +—Ap =LA 52
or a(SaAa ap P L Ad (5.2)

where (9L/98,) A8, is the roll moment due to the deflection of the ailerons and
(3L/3 p) Ap is the roll-damping moment. Methods for estimating these derivatives
were presented in Chapters 2 and 3. The roll angle ¢ is the angle between z,, of the
body axes and z,of the fixed axis system. The roll rate Ap is equal to A, which will
allow us to rewrite Equation (5.2) as follows:

L;, A,
TAp + Ap = — =2 —* (5.3)
LP
Here 7, L,, and L;, are defined as follows:
1 aL/ap aL/d8,
T = "L—p and L,, = T Laa = T (54)

The parameter 7is referred to as the time constant of the system. The time constant
tells us how fast our system approaches a new steady-state condition after being
disturbed. If the time constant is small, the system will respond very rapidly; if the
time constant is large, the system will respond very slowly.

The solution to Equation (5.3) for a step change in the aileron angle is

Lﬁa
LF
Recall that C;, is negative; therefore, the time constant will be positive. The roll
rate time history for this example will be similar to that shown in Figure 5.2. The

steady-state roll rate can be obtained from Equation (5.5), by assuming that time
t is large enough that ¢ " is essentially 0:

Ap(y = —=2(1 — 777 A8, (5.5)

_ _Léa
pss - LP Aau (56)
~C,, OSb/I,
== T AS, 5.7
Pe = C, (0/2u)0Sb]1T, ©-D
pob G,

= — A3
2u, Clp AL,
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Zpr Zt

FIGURE 5.1
Wind-tunnel model constrained to a pure rolling motion.

FIGURE 5.2
Typical roll response due to aileron
deflection.

Pgs-steady state roll rate

P(t)

Time

The term (p,b/2u,) for full aileron deflection can be used for sizing the aileron.
The minimum requirement for this ratio is a function of the class of airplane under
consideration:

Cargo or transport airplanes: pb/2u, = 0.07
Fighter airplanes: pb/2u, = 0.09

EXAMPLE PROBLEM 5.1. Calculate the roll response of the F104A to a 5° step
change in aileron deflection. Assume the airplane is flying at sea level with a velocity
of 87 m/s. The F104A has the following aerodynamic and geometric characteristics:

—0.285 rad™! §=18m?
0.039 rad™! b=67m

i

G

(4

G,

Il
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f
I

4676 kg - m’

b 6.7 m
— ——— 0-
2 28Ty 0308

Q= %pu% = (0.5)(1.225 kg/m3)(87 m/s)? = 4636 N/m?

b
L,=C, 'é;oQSb/IX

(—0.285 rad™")(0.039 s')(4636 N/m?)(18 m?)(6.7 m)(4676 kg - m?)
, = —13(67

h
Il

1 1
=—= ——7 =077
L, (—=13s71) s
Steady-state roll rate

L 65

P = — = A8,
L,
Ls, = Clsa QSb/1,
L = (0.039 rad™")(4636 N/m*) (18 m?)(6.7 m)/(4676 kg - m?) = 4.66 (s72)
Pes = —(4.661 s72)(5 deg)/[(—1.3 s71)(57.3 deg/rad)] = 0.31 rad/s

Figure 5.3 is a plot of the roll rate time history for a step change in aileron deflection.

Let us reconsider this problem. Suppose that Figure 5.3 is a measured roll rate
instead of a calculated response. The roll rate of the airplane could be measured by
means of a rate gyro appropriately located on the airplane. If we know the mass and
geometric properties of the airplane we can extract the aerodynamic stability
coefficients from the measured motion data.

If we fit the solution to the differential equation of motion to the response we
can obtain values for C;, and C, It can be shown that after one time constant the
response of a first-order” system o a step input is 63% of its final value. With this

FIGURE 5.3

Pgs = 17.8 Deg/sec Roll time history of an F104A to a
20 5° step change in aileron
______________________ deflection.

P
(Deg/sec) 1q 5-Degree
aileron step

input

Time (sec)
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in mind we can obtain the time constant from Figure 5.3. The steady-state roll rate
can also be measured directly from this figure. Knowing 7and p,,, we can compute
Ls and L, and, in turn, C;, and C, The technique of extracting aerodynamic data
from the measured response is often called the inverse problem or parameter
identification.

5.2.1 Wing Rock

One of the most common dynamic phenomena experienced by slender-wing air-
craft flying at high angles of attack is known as wing rock. Wing rock is a
complicated motion that typically affects several degrees of freedom simulta-
neously; however, as the name implies the primary motion is an oscillation in roll.
The rolling motion is self-induced and characterized by a limit cycle behavior.
Obviously such a dynamic motion is unwanted and should be avoided.

A highly swept wing will undergo a wing rock motion at large angles of attack.
Figure 5.4 shows the rolling motion for a delta wing having a leading edge sweep
of 80° (from {5.2] and [5.3]). The wing was mounted on an air bearing system that
permitted only a free to roll motion. The model was released with initial conditions
¢ = 0 and ¢ = 0. The model is unstable in a roll: The motion begins to build up
until it reaches some maximum amplitude at which time it continues to repeat the
motion. This type of motion is called a limit cycle oscillation. The limit cycle
motion clearly is indicated when the response data is plotted in a phase plane
diagram. In the phase plane diagram, the amplitude, ¢, is plotted versus the roll
velocity, ¢. The data in Figure 5.4 when plotted in the phase plane is as shown on

60 FURSTERET RPN N UG ORI (NS S ST SN NN S ST SN S H VT ST SR Y S ST SR U SN SN S S S Rt -
Alpha=30deg (@ E
40 —- ©) -
R r
§ s % H ‘ $ ‘ ‘ w $ » \ —
E L
3 0 ( I .
& ] [
= 3
0] :
< :
-60 +—+——7 7T T T T T T T T T T T T T
0 5 10 15 20 25 30 35 40
Time (sec)
Wing rock buildup (a=30°).
FIGURE 5.4

Wing rock motion of a fiat plate delta wing.
Leading edge sweep angle of 80° and a = 30°
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(a=30°).
FIGURE 5.5

Phase plane plots of the wing rock motion of a delta wing.

the left side of Figure 5.5. The motion is observed to spiral out to the limit cycle.
If the initial conditions on release were any combination on ¢ and ¢ within the
limit cycle boundary the motion would still spiral out the limit cycle boundary. On
the other hand if the initial conditions were outside the limit cycle boundary
the motion would spiral into the limit cycle as illustrated on the right side of Fig-
ure 5.5. The limit cycle motion is due to the nonlinear aerodynamic characteristics
of a slender delta wing at large angles of attack. Because the aerodynamics are
nonlinear, the equation of motion also will be nonlinear. This type of motion can
not be predicted using the linear differential equations presented in this chapter.

Airplanes most susceptible to this oscillatory phenomenon typically have
highly swept planforms or long, slender forebodies that produce vortical flows
during excursions into the high angle-of-attack regime. The wing rock motion
arises from the unsteady behavior of the vortical flow fields associated with these
planforms, coupled with the rolling degree of freedom of the aircraft. The unsteady
loads created by the flow field produce a rolling oscillation that exhibits the classic
limit cycle behavior. The motion can be quite complex and in many cases is the
result of the coupling of several degrees of freedom. There are cases where the
motion is primarily a rolling motion, however, as presented here.

5.2.2 Roll Control Reversal

The aileron control power per degree, ( pb/2u,)/8, is shown in Figure 5.6. Note that
(pb/2u,)/8, essentially is a constant, independent of speeds below 140 m/s. How-
ever, at high speeds (pb/2u,)/5, decreases until a point is reached where roll
control is lost. The point at which (pb/2uy)/8, = 0 is called the aileron reversal
speed. The loss and ultimate reversal of aileron control is due to the elasticity of the
wing.
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Some understanding of this aeroelastic phenomenon can be obtained from the
following simplified analysis. Figure 5.7 shows a two-dimensional wing with an
aileron. As the aileron is deflected downward it increases the lift acting on the wing.
The increased lift produces a rolling moment. Deflecting the aileron also produces
a nose-down aerodynamic pitching moment that tends to twist the wing downward.
Such a rotation will reduce the lift and rolling moment. The aerodynamic forces
vary with the square of the airplane’s velocity whereas the elastic stiffness of the
wing is independent of the flight speed. Thus, the wing may twist enough that the
ailerons become ineffective. The speed at which the ailerons become ineffective is
called the critical aileron reversal speed.

To determine the aileron reversal speed, we shall use the information in Fig-
ure 5.7. The torsional stiffness of the wing will be modeled by the simple torsional
spring located at the elastic axis of the wing. The lift and moment coefficients for
the two-dimensional airfoil can be expressed as functions of the stability co-
efficients:

Ce=Cra+ Cpd (5.8)
C,=C,_ +C,5 (5.9)

where 8 is the flap angle; that is, aileron. Aileron reversal occurs when the rate of
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change of lift with aileron deflection is O:

Lz@a+@@@: (5.10)
dL _
da Ce
- 1
or a5 C.. (5.12)

Note that the angle of attack is a function of the flap angle because the wing can
twist. The aerodynamic moment acting about the elastic axis is

=[C,, + C,,8 + (Coa + Cp8)a)Qc? (5.13)
This moment is balanced by the torsional moment to the wing:
ka =[C, + C, 8 + (Ca + C. 6)alQc? (5.14)

where k is the torsional stiffness of the wing.
Differentiating Equation (5.14) with respect to & yields

do

k5 = [Cm + (C( 5 + C(a> ]ch (5.15)

Substituting Equation (5.12) into (5.15) and solving for Q yields the critical dy-
namic pressure when control reversal will occur:

kC,,

rev c 2 C{»" Cma

(5.16)

The reversal speed is given by

Ue = 1/ 2KCe, 5.17
rev pC2Cga (;m‘s ( . )

Note that the reversal speed increases with increasing torsional stiffness and in-
creasing altitude.

5.3
PURE YAWING MOTION

As our last example of a motion with a single degree of freedom, we shall examine
the motion of an airplane constrained so that it can perform only a simple yawing
motion. Figure 5.8 illustrates a wind-tunnel model that can only perform yawing
motions. The equation of motion can be written as follows:

>, Yawing moments = ¢ (5.18)

The yawing moment N and the yaw angle ¢ can be expressed as

N=N,+AN =4y + AY (5.19)
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Yo FIGURE 5.8
Wind-tunnel model
constrained to a pure
yawing motion.
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a positive yawing angular
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negative sideslip

The yawing moment equation reduces to
AN = I, A (5.20)
aN 6N aN
= + — .
where AN 3B AB o8 25, Ad, (5.21)

Because the center of gravity is constrained, the yaw angle y and the sideslip angle
B are related by the expression

Ay = —AB Ay =—-AB Ay =Ar (5.22)

Substituting these relationships into Equation (5.20) and rearranging yields

. N
AB+—6?AI‘+

Afr — (N, — Ng) A + Ng Ay = N; A3, (5.23)
N, = dN/ar

I,
For airplanes, the term N usually is negligible and will be eliminated in future

expressions.
The characteristic equation for Equation (5.23) is

A= NA+ Ng=0 (5.24)

The damping ratio ¢ and the undamped natural frequency , can be determined
directly from Equation (5.24):

where and so forth.

w, = VN, (5.25)
N

= — L 5.26

£ ~owm, (5:26)

The solution to Equation (5.23) for a step change in the rudder control will
result in a damped sinusoidal motion, provided the airplane has sufficient aerody-
namic damping. As in the case of the pure pitching we see that the frequency of
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FIGURE 5.9
Yawing motion due to rudder
defiection.

AB
ABraa

oscillation is a function of the airplane’s static stability (weathercock or directional
stability) and the damping ratio is a function of the aerodynamic damping deriva-
tive. Figure 5.9 illustrates the yawing motion due to a step change in rudder deflec-
tions for different levels of aecrodynamic damping.

EXAMPLE PROBLEM 5.2. Suppose an airplane is constrained to a pure yawing
motion as described in Section 5.3. Using the data for the general aviation airplane in
Appendix B, determine the following:

(a) The yawing moment equation rewritten in state-space form.

(b) The characteristic equation and eigenvalues for the system.

(c) The damping ratio, {, and undamped natural frequency, w,.

(d) The response of the airplane to a 5° rudder input. Assume the initial conditions
are AB(0) = 0, Ar(0) = 0.

Solution. The lateral derivatives can be estimated from the data in Appendix B. For
the sea-level flight condition, the weathercock static stability coefficient, C,,. the
yawing damping coefficient, C, , and the rudder control power, C,, , have the following

numerical values:
C,
C

ns,

= 0.071/rad C, = —0.125/rad
—0.072/rad

The derivative C,; is not included in the table of Appendix B and will be assumed to
be O for this problem.

For a flight velocity of 176 ft/s, the dimensional derivatives Ny, N,, and N can be
estimated from the mass, geometric, and aerodynamic stability coefficient data of
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Appendix B. The dynamic pressure, @, is calculated next:
1
Q= Epu?, = (0.5) (0.002378 slug/ft®) (176 ft/s)?

= 36.8 1b/ft?

The dimensional derivative, Ng, which is the yaw moment due to the airplane’s weath-
ercock stability, is obtained from the expression
C,, QSbh
Ng=—
B Iz

_ (0.071/rad) (36.8 1b/ft?) (184 ft?) (33.4 ft)

or Np 3530 slug - I

= 4.55/s*

The dimensional derivative, N,, which is the yaw damping of the airplane, is obtained
from the expression

b
C,| — )0OSb
n,( 2“0)Q
I
_ (~0.125/rad) [33.4 ft/(2(176 fi/s))] (36.8 Ib/fc) (184 %) (33.4 )
3530 slug - ft?

N, =

—0.76/s

The dimensional derivative, N; , the rudder control derivative, is obtained from the
expression

C,, 0Sb
No = ——
z

_ (—0.072/rad) (36.8 1b/ft?) (184 ft?) (33.4 fr)
3530 slug - ft?

= —4.6/5

Substituting the dimensional derivatives into the constrained yawing moment equation
(Equation (5.23)) yields

AJ — (N, — Np) Ad + Ng Ay = N5 A8,
where N is assumed to be 0:
A + 0.76 A + 4.55 Ay = —4.6 A§,

This is a second-order differential equation in terms of the dependent variable Ayr. The
preceding second-order differential equation can be written as a system of two first-
order differential equations by defining the system states as Ayrand Ar. Recall that the
time rate of change of the yaw angle is the same as the yaw rate; that is, Ay = Ar.
Solving the yaw moment equation for the highest order derivative Ad,

Af = —0.76 Ay — 4.55 Ay — 4.6 A5,
or AF = —0.76 Ar — 4.55 Ay — 4.6 A5,
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The two state equations are
Ay = Ar
AF = =0.76 Ar — 4.55 Ay — 4.6 A,

which can be readily arranged in matrix form as

][0 o] [5es

or X = Ax + By

Ay
Ar

0 1
A= [—4.55 —0.76]

b= [—2_6]

The characteristic equation for the system is found from the equation

where the state vector, x = [ ] the control vector is AS,, and the A and B matrices

are

IAL—A| =0

where on substituting in the A matrix yields

o 11 ol

A -1
= + 0.76) + 455 =
‘4.55 A+ 0.76’ A +076) + 455 =0
or A2+ 076 +455=0

The characteristic equation for a second-order system could have been obtained di-
rectly from the second-order differential equation.

The eigenvalues of the system are found by obtaining the roots of the characteristic
equation. For this example the root or eigenvalues can be shown to be

A, = —038 % 2.1i

The eigenvalues are complex; therefore the free response motion will be a damped
sinusoidal oscillation. The motion is damped because the real part of the eigenvalue is
negative.

The damping ratio, , and the undamped natural frequency can be estimated from
Equations (5.25) and (5.26):

w, = VNg = V4.55/* = 2.13 rad/s

N, (07619

d =N
an ¢ VN, 2013 radly)

= 0.178
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Yawing Response to a Step Change in Rudder Angle
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FIGURE 5.10

Yawing motion response to a 5° step input in the rudder angle.

Finally the response of the airplane to a 5° step input in the rudder is shown in Fig-
ure 5.10. The change in both heading angle Ay and the yaw rate Ar are presented
as a function of time. The response was determined using MATLAB.

54
LATERAL-DIRECTIONAL EQUATIONS OF MOTION

The lateral-directional equations of motion consist of the side force, rolling mo-
ment, and yawing moment equations of motion. The lateral equations of motion
can be rearranged into the state-space form in the following manner. We start with

a lateral set of Equations (5.27):
d
(— - n) Av — Y, Ap + (uy — Y,) Ar — gcos 0, Ap = Y; A,

dr
I, d
L,,> Ap — (— =+ L,> Ar =L, A8, + Ls A8, (5.27)

d
_ + — —
L, Av (dt 1. d

—NﬁAu—(!ﬁg+Nﬂ)Ap+<%—N,

= +
[z dr ) Ar Nsa Aaa NB’ AS,
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Rearranging and collecting terms, this equation can be written in the state variable

form:

X = Ax + By

The matrices A and B are defined as follows:

Y, Y,
I. I
LY+ N} LE+ SN
A — X X
IXZ IXZ
NP+ ELE Nf+ LY
|0 1
0 A
I. I
LY + I—N;k LY + I—N;"
B = - x
I 1.
Ni+ LY N§ LY
0 0 |
—Av
Ap Ad
- d = a
1 ar and-m [Aé,
| Ad

The starred derivatives are defined as follows:

L

i T TR

® —
NE=mo

(5.28)
~(uy — Y,) gcos 00_
L* + %N;k 0
,‘ (5.29)
N* + 0% g
I
0 o |
(5.30)
:I (5.31)
Nv .
—“‘m and the like. (5.32)

If the product of intertia /., = 0, the equations of motion reduce to the following

form:
Av Y,
Ap| L. L, L,
Ar N, N, N,
Ad 0 1 0

Y, —(uy ~ Y,) g cos 6,

0
0
0

Av 0 Y,
Ap Ls L [AS{'
+ (] r
Ar Ns  Ns (LA, (5:33)
Ad 0 o0

It sometimes is convenient to use the sideslip angle AB instead of the side
velocity Av. These two quantities are related to each other in the following way:

AB = tan

Ao ae

Uy

(5.34)
Uy
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Using this relationship, Equation (5.33) can be expressed in terms of AfS:

AB . Y _(1 - E) g cos b, AB 0 Y,
. Uy Uy Up Uy Uy
A A
MRS L, 0 15-+L%L@Pg1 (5.35)
ap| Mo Mo N, 0 lag| [Mo Mo [T
0 1 0 0 0 0

The solution of Equation (5.35) is obtained in the same manner as we solved the
state equations in Chapter 4. The characteristic equation is obtained by expanding
the following determinant:

A=Al =0 (5.36)

where I and A are the identity and lateral stability matrices, respectively. The
characteristic equation determined from the stability matrix A yields a quartic
equation:

AV '+ BA*+ CAP+ DA+ E=0 (5.37)

where A, B, C, D, and E are functions of the stability derivatives, mass, and inertia
characteristics of the airplane.

In general, we will find the roots to the lateral-directional characteristic equa-
tion to be composed of two real roots and a pair of complex roots. The roots will
be such that the airplane response can be characterized by the following motions:

1. A slowly convergent or divergent motion, called the spiral mode.

2. A highly convergent motion, called the rolling mode.

3. A lightly damped oscillatory motion having a low frequency, called the Dutch
roll mode.

Figures 5.11, 5.12, and 5.13 illustrate the spiral, roll, and Dutch roll motions. An
unstable spiral mode results in a turning flight trajectory. The airplane’s bank angle
increases slowly and it flies in an ever-tightening spiral dive. The rolling motion
usually is highly damped and will reach a steady state in a very short time. The
combination of the yawing and rolling oscillations is called the Dutch roll motion
because it reminded someone of the weaving motion of a Dutch ice skater.

5.4.1 Spiral Approximation

As indicated in Figure 5.11 the spiral mode is characterized by changes in the bank
angle ¢ and the heading angle . The sideslip angle usually is quite small but
cannot be neglected because the aerodynamic moments do not depend on the roll
angle ¢ or the heading angle i but on the sideslip angle B, roll rate p, and yawing
rate r.

The aerodynamic contributions due to 8 and r usually are on the same order
of magnitude. Therefore, to obtain an approximation of the spiral mode we shall
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FIGURE 5.11
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FIGURE 5.12
The roll motion.

neglect the side force equation and A¢. With these assumptions, the equations of

motion for the approximation can be obtained from Equation (5.35):
LgAB + L, Ar=0
Ar = Nz AB + N, Ar

A+ LeNe Z LeNo

or
Lﬁ
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FIGURE 5.13
The Dutch roll motion.

The characteristic root for this equation is

LgN, — LN
)\spiral = e p (5'41)
Lg
The stability derivatives Lg (dihedral effect) and N, (yaw rate damping) usually are
negative quantities. On the other hand, N, (directional stability) and L, (roll mo-
ment due to yaw rate) generally are positive quantities. If the derivatives have the
usual sign, then the condition for a stable spiral model is

or LN, > N,L, (5.43)

Increasing the dihedral effect L, or the yaw damping or both can make the spiral
mode stable.
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5.4.2 Roll Approximation

This motion can be approximated by the single degree of freedom rolling motion,
which was analyzed earlier in the chapter:

TAp +Ap =0

where 7 is the roll time constant. Therefore,
1
Aroll = _:‘: = L (544)

The magnitude of the roll damping L, is dependent on the size of the wing and tail
surfaces.

5.4.3 Dutch Roll Approximation

If we consider the Dutch roll mode to consist primarily of sideslipping and yawing
motions, then we can neglect the rolling moment equation. With these assump-
tions, Equation (5.35) reduces to

. Y Y,

2B {1 =301 A

[if] = | uqy ( uo) [A’[j] (5.45)
Ng N,

Solving for the characteristic equation yields

A2 — (YB + uON,>A + YBN, — NBY, + uUNB _
Uq Uq

0 (5.46)

From this expression we can determine the undamped natural frequency and the
damping ratio as follows:

Y;N. — NyY. + ugN
Wy = \/‘* A LA (5.47)
Uy
1 Y, + uyN,
for = ~3 ( a— ) (5.48)
w"DR Uy

The approximations developed in this section give, at best, only a rough
estimate of the spiral and Dutch roll modes. The approximate formulas should,
therefore, be used with caution. The reason for the poor agreement between the
approximate and exact solutions is that the Dutch roll motion is truly a three-
degree-of-freedom motion with strong coupling between the equations.

EXAMPLE PROBLEM 53. Find the lateral eigenvalues of the general aviation air-
plane described in Chapter 4 and compare these results with the answers obtained
using the lateral approximations. A summary of the aerodynamic and geometric data
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TABLE 5.1

199

Summary of lateral directional derivatives

0sC osbC,,

SbC

s

Yg = =2 (ft/s® or m/s?) Ng = (™) Lg= 7 (s7?)
m z x
0s 0sh2C,
= 2mu: (ft/s) or (m/s) = T (7Y
0Sb2C,,
L= (!
0 o &)
SbC, b2C,
v, = % 015y or (mis) N, = LG (-
2muy, 2Luo
Sb2C,
L =25 (o
21 uy
SC, SC,
Ysa = GCs, (ft/s?) or (m/s?) Y, = Q5C (ft/s?) or (m/s?)
m
SbC, SbC,
ba = —Q 2 (s77) Ns, = —Q " (572
IZ IZ
SbC, ShC,
Ls, = ¢ 1 = (577 Ly = ¢ I; = (s7Y)

x

x

needed for this analysis is included in Appendix B.

follow:
AB B B _ ( 1 — &)
Ap B Uy Uy Uy
Al = Lg L, L,
0 1 0

The stick fixed lateral equations

uﬁ cos 6, || AB
0
A,
0 P
0 Ar
A
0 ¢

Before we can determine the eigenvalues of the stability matrix A, we first must
calculate the lateral stability derivatives. Table 5.1 is a summary of the lateral stability
derivative definitions and Table 5.2 gives a summary of the values of these derivatives

for the general aviation airplane.

Substituting the lateral stability derivatives into the stick fixed lateral equations

yields
X = Ax
AB -0254 0 -1.0 0.182]||AB
Ap -16.02 —8.40 219 0 Ap
or A# 4488 —0350 —0.760 0 Ar
Ad 0 1 0 0 Ad

The eigenvalues can be determined by finding the eigenvalues of the matrix A:

[AI-A| =0




200 CcHAPTER 5: Lateral Motion (Stick Fixed)

TABLE 5.2
Lateral derivatives for the general
aviation airplane

Y, = ~0.254 (s7') L,= —0.091 (ft -s)~!

Yy = —4572(ft/s?) Ly = —16.02 (s

Y,=0 L,=—84("")
=0 =219 (7Y

N, = 0.025 (ft - 5)""

Ny = 449 (s72)

N, = =035 (s7")
N, = ~0.76 (s7")

The resulting characteristic equation is
AY 4+ 9417A% 4+ 13.982A% + 48,1021 + 0.4205 = 0
Solution of the characteristic equation yields the lateral eigenvalues:
A = —0.00877 (Spiral mode)
A = —8.435 (Roll mode)
A = —0.487 % i(2.335) (Dutch roll mode)

The estimates for the lateral eigenvalues using the approximate expressions is obtained
as follows:

LgN, — LN,
)\spiral = _—L—_—
B

Susbtituting in the numerical values for the derivatives yields

Agica = [(—16.02 s72)(~0.76 s71) — (2.19 s71)(4.49 s)}/(—16.02 577
—~0.144 7!
Aat = L, = —8.4 57!

It

The Dutch roll roots are determined from the characteristic equation given by Equa-
tion (5.44):

ar o Tt wN) YN, = N¥ + wNy _
Uy Uy
or A2+ 11021 + 471 =0

which yields the following roots
Apr = —0.51 = 2.109i
and @, = 2.17 rad/s

DR

lor = 0.254
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TABLE 5.3
Comparison of exact and approximate roots

Exact Approximate
 Typpy 8 Tys P, s T2 s T, s P,s
Spiral 178.7 — — 479 — —
Roll \ 0.082 — — 0.082 _— —
Duichroll ' 1.42 — 2.69 1.35 — 2.98

Table 5.3 compares the results of the exact and approximate analysis. For this
example, the roll and Dutch roll roots are in good agreement. On the other hand, the
spiral root approximation is very poor.

The relationship between good spiral and Dutch roll characteristics presents a
challenge to the airplane designer. In Chapter 2 it was stated that an airplane
should possess static stability in both the directional and roll modes. This implies
the C, > 0 and C,ﬂ < (0. However, if we examine the influence of these stability
coefficients on the lateral roots by means of a root locus plot, we observe the
following. As the dihedral effect is increased, that is, C; becomes more negative,
the Dutch roll root moves toward the right half-plane, which means the Dutch roll
root is becoming less stable and the spiral root is moving in the direction of
increased stability. These observations are clearly shown in Figures 5.14 and 5.15.

Variation of lateral root with C, iw - 5.0
/]
[ C'B =0
o 5 < 0 - 4.0
L 3.0
Dutch
oll root
ronreod Lao
/
A
7 1.0
/ k C <0

/ .

n
-70 -60 -50 -40 -30 -20 “—1.0 :1.0 2.0
N L 1.0 Spiral

Roll root C'B >0 \‘\ root
Dutch - —2.0
roll root
- -3.0
& -4.0
L 5.0
FIGURE 5.14

Variation of lateral roots with Cy,.
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FIGURE 5.15

r 5.0 Variation of lateral roots with C,,.
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Roll root \‘1
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Y Cnﬁ <0
M
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!
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in rofl root |' - -2.0
I
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g I [
{
]
: L -4.0
- -5.0
/5,
8 e 8
PN ¢ [Rudder ] % [ Airplane | T
- servo dynamics
Rate
gyro
FIGURE 5.16

Block diagram of a yaw damper system.

Increasing directional stability of the airplane, that is, C, becomes more
positive, causes the spiral root to become less stable and the frequency of the Dutch
roll root is increased. Increasing the yaw damping, that is, C, becomes more
negative, will result in better Dutch roll damping. Unfortunately, this is not easy to
achieve simply by geometric design changes. Increasing the vertical tail size will
cause an increase in both C, and C,. Many airplanes are provided with a rate
damper to artificially provide adequate damping in Dutch roll. Figure 5.16 is a
sketch of a simple control system to provide increased yaw damping for the air-

plane.
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5.5
LATERAL FLYING QUALITIES

In this chapter we examined the lateral direction characteristics of an airplane. The
relationship between the aerodynamic stability and control derivatives and the
lateral response was discussed. We have developed the necessary equations and
analysis procedures to calculate the lateral dynamics. Although these techniques
allow us to determine whether an airplane design is stable or unstable, by itself the
analysis does not tell us whether the pilot will judge the airplane to have acceptable
flying characteristics. To determine this the designer needs to know what dynamic
characteristics are considered favorable by the pilots who will fly the airplane. This
information is available through the lateral-directional flying quality specifications.

The lateral-directional flying quality requirements are listed in Tables 5.4, 5.5,
and 5.6. The definition of class and category were presented in Chapter 4. In
Example Problem 5.2 the aircraft would be considered a Class 1 vehicle and the
flight phase as Category B. Using the information from Table 5.4, we find that the
aircraft studied here has Level 1 flying qualities.

EXAMPLE PROBLEM 54. As shown earlier, the Dutch roll motion can be improved
by increasing the magnitude of the yaw damping term N,. One means of increasing N,
is by increasing the vertical tail area. Unfortunately, increasing the vertical tail area
will add additional drag to the airplane as well as increase the directional stability. The
increase in directional stability will degrade the spiral characteristics of the airplane.
For most transport and fighter aircraft, increased damping is provided artificially by
means of a yaw damper.

In this example we examine the basic idea behind a yaw damper. More detailed
information on stability augmentation systems and autopilots will be provided in

TABLE 5.4
Spiral mode (minimum time to double amplitude)
flying qualities

Class Category Level 1 Level 2 Level 3
I and IV A 12 12s 4s
B and C 20 s 12s 4s
I and II All 20s 12s 4
TABLE 5.5

Roll mode (maximum roll time constant) flying
qualities (in seconds)

Class Category Level 1 Level 2 Level 3

LIV 1.0 1.4

1L, 111 A 1.4 3.0 10
All B 14 1.0 10
LIV - 1.0 1.4 0

II, 111 1.4 3.0
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TABLE 5.6
Dutch roll flying qualities

Min {w,,* Min w,,

Level Category Class Min {* rad/s rad/s
1 A LIV 0.19 0.35 1.0
I1, 111 0.19 0.35 0.4

B All 0.08 0.15 0.4

C L II-C 0.08 0.15 1.0

v

1I-L, 111 0.08 0.15 04

2 All All 0.02 0.05 0.4

3 All All 0.02 — 0.4

Where C and L denote carrier- or land-based aircraft.
*The governing damping requirement is that yielding the larger value of {.

Chapters 7—10. To examine how a yaw damper can be used to provide damping for an
airplane, consider the yawing moment equation developed earlier:

A — N, A + Ng Ay = Nj A,

Suppose that for a particular airplane the static directional stability, yaw damping,
and control derivatives were as follows:

Ng= 177572 N, = —0.10s~! N, = —0.84 57!
For this airplane the damping ratio and undamped natural frequency would be
N,
{ = ——= = 0.037 w, = VNg = 1.33 rad/s
2VN, f

The low damping ratio would result in a free response that would have a large over-
shoot and poor damping. Such an airplane would be very difficult for the pilot to fly.
However, we could design a feedback control system such that the rudder deflection is
proportional to the yaw rate; that is,

AS, = —k Ay

Substituting the control deflection expression into the equation of motion and rearrang-
ing yields

Ag — (N, — kNs) A + Ny Ay = 0

By proper selection of & we can provide the airplane whatever damping characteristics
we desire. For the purpose of this example, consider the simple yawing motion to be an
approximation of the Dutch roll motion. The flying quality specifications included in
Table 5.6 state that a Level | flying quality rating would be achieved for the landing
flight phase if

{ > 0.08 {w, > 0.15 rad/s w, > 0.4 rad/s

A damping ratio of 0.2 and a frequency of 1.33 would be considered acceptable by
pilots. The problem now is to select the unknown gain k so that the airplane has the
desired damping characteristics. If we compare the yaw moment equation of motion to
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the standard form for a second-order system, we can establish a relationship for & as
follows:

2w, = —(N, — kNg) 0.532 = ~[-0.1 — k(~0.84)] k= -0514

Figure 5.16 is a sketch of a simple yaw damper stability augmentation system.

Although we designed a feedback system to provide improved damping, it is
possible to control both the damping and the frequency. This can be accomplished
by making the rudder deflection proportional to both the yaw rate and yaw angle;
that is,

AS, = —k| Ay — ky Ay
Substituting this expression back into the differential equation yields
Ad — (N, = kyN5) A + (Ng + k) A = 0

The gains k; and k, then are selected so that the characteristic equation has the desired
damping ratio and frequency. The use of feedback control to augment the stability
characteristics of an airplane plays an important role in the design of modern aircraft.
By using stability augmentation systems, the designer can ensure good flying qualities
over the entire flight regime. Furthermore, with the addition of a stability augmenta-
tion system, the designer can reduce the inherent aerodynamic static stability of the
airplane by reducing the vertical tail size. Thus, the designer can achieve an improve-
ment in performance without compromising the level of flying qualities.

5.6
INERTIAL COUPLING

In the analysis presented in this and the previous chapter, we treated the longitudi-
nal and lateral equations separately. In so doing we assumed that there is no
coupling between the equations. However, slender high-performance fighter air-
craft can experience significant roll coupling that can result in divergence from the
desired flight path, causing loss of control or structural failure.

The mechanisms that cause this undesirable behavior can be due to inertial or
aerodynamic coupling of the equations of motion. To explain how inertial coupling
occurs, we examine the nonlinearized moment equations developed in Chapter 3.
The moment equations are reproduced in Equation (5.49):

2 Roll moments = Lp + gr(l, — L) — (+ + gp)l.,

E Pitching moments = I,¢ + pr(I, — L) + (p* — riI, (5.49)

> Yawing moments = L7 + pg(l, — L) + (qr — p)L..

The first cases of inertial coupling started to appear when fighter aircraft
designs were developed for supersonic flight. These aircraft were designed with
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low aspect ratio wings and long, slender fuselages. In these designs, more of the
aircraft’s weight was concentrated in the fuselage than in the earlier subsonic
fighters. With the weight concentrated in the fuselage, the moments of inertia
around the pitch angle yaw axis increased and the inertia around the roll axis
decreased in comparison with subsonic fighter aircraft.

On examining Equation (5.49) we see that the second term in the pitch equa-
tion could be significant if the difference in the moments of inertia becomes large.
For the case of a slender high-performance fighter executing a rapid rolling maneu-
ver the term pr(I. — I.) can become large enough to produce an uncontrollable
pitching motion.

A similar argument can be made for the product of inertia terms in the equa-
tions of motion. The product of inertia /.. is a measure of the uniformity of the
distribution of mass about the x axis. For modern fighter aircraft /., typically is not
0. Again we see that if the airplane is executing a rapid roll maneuver the term
(p* — r*)I,, may be as significant as the other terms in the equation.

Finally, aerodynamic coupling also must be considered when aircraft are ma-
neuvering at high angular rates or at high angles of attack. As was discussed in
Chapter 4 high angle of attack flow asymmetries can cause out-of-plane forces and
moments even for symmetric flight conditions. Such forces and moments couple
the longitudinal and lateral equations of motion.

5.7
SUMMARY

In this chapter we examined the lateral modes of motion. The Dutch roll and spiral
motions were shown to be influenced by static directional stability and dihedral
effect in an opposing manner. The designer is faced with the dilemma of trying to
satisfy the flying quality specifications for both the spiral and Dutch roll modes.
This becomes particularly difficult for airplanes that have extended flight en-
velopes. One way designers have solved this problem is by incorporating a yaw
damper in the design. The yaw damper is an automatic system that artificially
improves the system damping. The increased damping provided by the yaw damper
improves both the spiral and Dutch roll characteristics.

PROBLEMS

Problems that require the use of a computer have a capital C after the problem number.

5.1. Determine the response of the A-4D to a 5° step change in aileron deflection. Plot
the roll rate versus time. Assume sea-level standard conditions and that the
airplane is flying at M = 0.4. What is the steady-state roll rate and time constant
for this motion?
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For the roll response shown in Figure P5.2, estimate the aileron control power L;,
and the roll damping derivative L,. Information on the characteristics of the
airplane is in the figure.

o [T e
V = 224 ft/sec
P ] S =542 ft?
b = 54 ft
[deg/sec] I, = 42,273 slug/ft?
. AS, =5°
p = 0.00205 slug/ft®
0 T T T T T T
0 1 2 3
Time~ sec
FIGURE P5.2

Roll rate time history.

A wind-tunnel model free to rotate about its x axis is spun up to 10.5 rad/s by
means of a motor drive system. When the motor drive is disengaged, the model
spin will decay as shown in Figure P5.3. From the spin time history determine the
roll damping derivative L,.

12 FIGURE P5.3

10 ] Roll rate time history.

8 - Rolf spin down

6 -
4

21

E

P(rad/sec)

0 +—7—"——F——F7———
0 2 4 6 8 10 12

Time-sec

A wind-tunnel model is constructed of two small lifting surfaces mounted to an

axisymmetric body as illustrated in Figure P5.4. The body houses a set of ball

bearings that permit the model to roll freely about the longitudinal or x axis. The

right lifting surface (positive y axis) is mounted to the body at a —3° and the left

lifting surface is set at a +3°.

{(a) Estimate the rolling moment of inertia, /,, of the model. Approximate the
lifting surfaces as thin flat plates. Neglect the body contribution.

(b) Estimate the roll torque due to the differential mounting incidence. Express
your answer as a roll moment coefficient per unit deflection, C,,.

(c) Estimate the roll damping coefficient, C, .
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(d) Calculate the response of the model if it is released from the rest. Neglect the
friction of the bearings.

Low friction
bearing

Mounting support

c=2"
x/ b=12"
X e «\’<C
Free to roll about +3° //
the x-axis Assume the diameter of

the body is very small.

Assume surfaces are made
of aluminum and are 0.1 inches thick.

FIGURE P5.4

5.5. Suppose the wing segments for the model described in Problem 5.4 are set so that
there is no differential incidence between the two sections. If the wings are
mounted in this manner, the roll torque due to the differential incidences will be
0. Now consider what would happen if a half-span wing were mounted upstream
of the free-to-roll model as illustrated in Figure P5.5. Assume that the free-to-
roll wing is centered in the tip vortex. Estimate the maximum roll rate of the

Low friction
bearing

Mounting support

3 c=2"
No differential 2 » bh=12"
wing incidence
/ o~
Wing tip vortex Assume the diameter of

the body is very small.

Assume surfaces are made
of aluminum and are 0.1 inches thick.

FIGURE P5.5
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free-to-roll wing. The strength of the vortex can be shown to be as follows.
I= 8C. VS
b

where C; = wing lift coefficient
V = velocity of the tunnel
S = wing area of generating wing
b = span of generating wing.

Assume the vortex core is 5% of the generating wing span.

Assuming the cruciform finned model in Figure P5.6 is mounted in a wind
tunnel so that it is constrained to a pure yawing motion. The model is displaced
from its trim position by 10° and then released. Neglect the fuselage and 8
contribution and assume S = wD?/4.

(@) Find the time for the motion to damp to half its initial amplitude.

(b) What is the period of the motion?

: 10D - D = Characteristic length
t T D=5.0cm
_— —3D
V = 30 m/sec C_) IR Tail surfaces are
L) —] = flat plates
1D I, =5.0 X 102kg-m?
4D S = xD%4

7777777777777 7777777777177 777777777 7777777777777,

FIGURE P5.6
Yawing wind-tunnel model.

Figure P5.7. shows the stick fixed lateral roots of a jet transport airplane. Identify
the roots and determine the time for the amplitude and period to halve or double
where applicable.

iw
(rad/sec)

16
44

X B
42

X T T X T sl
-8 -6 -4 -2 ] 2 4

4-2

X
-4
1.6

FIGURE P5.7
Lateral roots for a jet transport.
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5.8(C). The Dutch roll motion can be approximated using the following equations:

. Yy _ _Z,_ Y;,
I:AB]: u_o <1 "0) [AAB]+ o | AS,

A
r Na

=

Assume the coefficients in the plant matrix have the following numerical values:
Yy = —7.8 ft/s? N,=—-0341/s Y5, = —5.236 f/s?

Y, = 2.47 ft/s ug = 154 ftfs N;, = 0.616 1/s?

Ng = 0.64 1/5

(a) Determine the Dutch roll eigenvalues.

(b) What is the damping ratio and undamped natural frequency?

(c) What is the period and time to half amplitude of the motion?

(d) Determine the response of the system if the initial conditions are as follows:

2] 15)

From the time history plot, estimate the period and time to half amplitude.
(e) Determine the response of the system to a step input. For this part assume that
the initial conditions are both 0.

i

The last two parts of this problem should be solved by computer.

5.9(C). Develop a computer code to obtain the stick fixed lateral eigenvalues from the
lateral stability matrix. Use your computer program to analyze the lateral motion
of the 747 jet transport. Estimated aerodynamic, mass, and geometric character-
istics of the 747 are included in Appendix B. The MATLAB Software is suggested
for this problem.

5.10(C). Using the program developed in problem 5.9, examine the influence of C;, and C,,
on the lateral roots. Use the 747 data, but vary C,, and C,, separately.

5.11. Using the Dutch roll approximation, determine the state feedback gains so that the
damping ratio and frequency of the Dutch roll are 0.3 and 1.0 rad/s, respectively.
Assume the airplane has the following characteristics:

Yy = —19.5 ft/s? Y, = 1.3 ftls
Ng= 15572 N, = —0.21s"!
Ys, = 4.7 fus? N; = —0.082s72
uy = 400 ft/s
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CHAPTER 6

Aircraft Response to Control
or Atmospheric Inputs

6.1
INTRODUCTION

In the previous chapters we examined the free response of an airplane as well as
several simple examples of single degree of freedom motions with step changes in
control input. Another useful input function is the sinusoidal signal. The step and
sinusoidal input functions are important for two reasons. First, the input to many
physical systems takes the form of either a step change or sinusoidal signal. Second,
an arbitrary function can be represented by a series of step changes or a periodic
function can be decomposed by means of Fourier analysis into a series of sinusoidal
waves. If we know the response of a linear system to either a step or sinusocidal
input, then we can construct the system’s response to an arbitrary input by the
principle of superposition.

Of particular importance to the study of aircraft response to control or atmo-
spheric inputs is the steady-state response to a sinusoidal input. If the input to a
linear stable system is sinusoidal, then after the transients have died out the
response of the system also will be a sinusoid of the same frequency. The response
of the system is completely described by the ratio of the output to input amplitude
and the phase difference over the frequency range from zero to infinity. The
magnitude and phase relationship between the input and output signals is called the
frequency response. The frequency response can be obtained readily from the
system transfer function by replacing the Laplace variable s by iw. The frequency
response information is usually presented in graphical form using either rectangu-
lar, polar, log-log or semi-log plots of the magnitude and phase angle versus the
frequency. At first it might appear that the construction of the magnitude and phase
plots would be extremely difficult for all but the simplest transfer functions. Fortu-
nately, this is not the case. Consider the factored form of a transfer function,
given by

G(s) = k(1 + T,9)(1 + Tys) - - -

T (6.1)
s" (1 + Tys)(1 + Tos) - - <1 + 25+ 5—2>

w" w’l

The transfer function has been factored into first and second-order terms.
Replacing the Laplace variable s by iw and rewriting the transfer function in

212
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polar form yields

k| X |1 + Tiw| X |1 + Tiw| - - -

1 - <ﬁ>2 + 2024
w, w,
X expli (b + -+ — & — 2~ - 9)] (6.2)

Now, if we take the logarithm of this equation, we obtain

M(w) = |Gliw)| =

|w)"| X |1 + Tiw| -+ - X

log M(w) = logk + log |1 + T,iw| + log |1 + T,iw|- - - — mlog |iw|
—log |l + Thiw| —log |l + Tiw
g | Hw| g | yiw| (6.3)
~ log |1 - <3>2 + 2020 | -
w, w,
and £G (iw) = tan”! &T, + tan™' T, + - - - — m(90°)
) (6.4)
—tan™' oI} + - -+ — tan™' (%)
0w - o

By expressing the magnitude in terms of logarithms, the magnitude of the transfer
function is readily obtained by the addition of the individual factors. The contribu-
tion of each of the basic factors, that is, gain, pole at the origin, simple poles and
zeros, and complex poles and zeros, is presented in appendix D at the end of this
book. In practice, the log magnitude is often expressed in decibels (dB). The
magnitude in decibels is found by multiplying each term in Equation (6.3) by 20:

Magnitude in dB = 20 log | G(iw) | 6.5)

The frequency response information of a transfer function is represented by
two graphs, one of the magnitude and the other of the phase angle, both versus the
frequency on a logarithmic scale. When the frequency response data are presented
in this manner, the plots are referred to as Bode diagrams after H. W. Bode who
made significant contributions to frequency response analysis.

We shall now look at the application of the frequency response techniques to
the longitudinal control transfer functions. As the first example, let us consider the
longitudinal pitch angle to elevator transfer function that can be shown as indicated
below, where the coefficients A,, By, and so forth are functions of the aircraft
stability derivatives. The longitudinal pitch angle to elevator transfer function is as
follows:

0(s) Aps? + Bys + Cy (6.6)
5.(s) As*+ Bs’+ Cs?+ Ds + E )
which can be written in the factored form:
B(S) . kga(Tms + 1)(T92s + 1) (6.7)

5:(9) (s; +2—{s£s+1>(sj +—zés+1>

’wnsp wnsp wnp wnp
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FIGURE 6.1
102 A Magnitude plot of A6/ASe versus
gw frequency.
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The magnitude and phase angle for the control transfer function is obtained by
replacing s by iw as follows:

8, (iw) iw)? : iw? 2 ’
(“‘2’) 4+ 2y 4 1’ —(“‘;) T
wnsp wnsp wnp wnp

£6(iw)/6,(iw) = tan™'wTy, + tan”'wly, — tan '[2{,w,,0/ (@}, — 0]

— tan"'[2{, w,, @/ (%, — ®?)]

The frequency response for the pitch attitude to control deflection for the
corporate business jet described in Appendix B is shown in Figure 6.1. The ampli-
tude ratio at both the phugoid and short-period frequencies are of comparable
magnitude. At very large frequencies the amplitude ratio is very small, which
indicates that the elevator has a negligible effect on the pitch attitude in this
frequency range.

The frequency response for the change in forward speed and angle of attack to
control input is shown in Figure 6.2 and 6.3 for the same aircraft. For the speed
elevator transfer function the amplitude ratio is large at the phugoid frequency and
very small at the short-period frequency. Recall that in Chapter 4 we assumed that
the short-period motion occurred at essentially constant speed. The frequency
response plot confirms the validity of this assumption. Figure 6.3 shows the ampli-
tude ratio of the angle of attack to elevator deflection; here we see that angle of
attack is constant at the low frequencies. This again is in keeping with the assump-
tion we made regarding the phugoid approximation. Recall that in the phugoid
approximation the angle of attack was assumed to be constant. The phase plot
shows that there is a large phase lag in the response of the speed change to elevator
inputs. The phase lag for /8 is much smaller, which means that the angle of attack
will respond faster than the change in forward speed to an elevator input.

A similar type of analysis can be conducted for the lateral response to aileron
or rudder control input. Several problems dealing with the lateral frequency re-
sponse are presented at the end of this chapter.

Frequency response techniques also are useful in studying the motion of an
aircraft encountering atmosphere turbulence. In Chapter 3 the equations of motion
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were developed for flight in a stationary atmosphere. In the following sections we
discuss the influence of wind gusts, that is, turbulence, on aircraft response.

6.2
EQUATIONS OF MOTION IN A NONUNIFORM ATMOSPHERE

The atmosphere rarely is calm but usually is characterized by winds, gusts, and
turbulence. To study the influence of atmospheric disturbances on aircraft motions,
the equations must be modified. The aerodynamic forces and moments acting on
the airplane depend on the relative motion of the airplane to the atmosphere and
not on the inertial velocities. Therefore, to account for atmospheric disturbances
such as winds, gusts, or turbulence the forces and moments must be related to the
relative motion with respect to the atmosphere. This is accomplished by expressing
the velocities used in calculating the aerodynamics in terms of the inertial and gust
velocities as follows:
Au, = Au — u, Av, = Ao — v, Aw, = Aw — w,

Ap,=Ap—p, Aq,=Aq—gq, Ar,=Ar —r, (6.9)
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FIGURE 6.4
Gust field creating an effective

' rolling gust.
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where the A quantities are the perturbations in the inertial variables and the sub-
scripted variables are the gust velocities. The aerodynamic forces and moments
now can be expressed as follows:

AX:Q((Au—u,,)Jra—X%Aw )+%(AW—W)
ou ow
aX X
+a_q(Aq_qg)+5§eA6e
Az =92 Ay - )+a—(Aw—w)+a—Z(Aw—w)+ . (6.10)

dJu

oN oN oN
= (Av —v) + —(Ar ~r) + — (Ap —
AN o (Av — v,) o (Ar — r,) op (Ap — p,)

The disturbances in the atmosphere can be described by the spatial and temporal
variations in the gust components. The rotational gusts ¢g,, p,, and so forth included
in Equations (6.10) arise from the variation of u,, v,, and w, with position and
time.

The rotary gusts p,, q,, and r, occur due to the spatial variations of the gust
components. For example, if the gust field wavelength is large in comparison with
the airplane, as shown in Figure 6.4, the vertical gust produces a spanwise variation
of velocity along the span of the wing. The linear variation of velocity across the
span is the same as that produced on arolling wing. The velocity normal to the wing
at some point along the span is given by

w = py (6.11)
]

or o (6.12)
ay

Using this analogy, we can express the rotary gust velocity in terms of the gradient
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in the vertical gust field:

ow,

- 6.13
3y (6.13)
In a similar manner, the g, can be developed. The variation of the vertical gust
velocity along the X axis of the airplane is similar to the velocity distribution created
on a pitching airplane. Figure 6.5 helps to show the origin of rotary gust g,.

P =

aw,

= % 14

9% = 5% (6.14)
ow, /ot

or q, = -axi//g = —W,/uy (6.15)

The equations of motion, modified to account for atmospheric disturbances,
can be written in the state-space form as follows:

% = Ax + Bq + CE (6.16)

where x, ), and £ are the state, control, and gust disturbance vectors. The longitu-
dinal equations are

arl X, x. o —glfau] [% X |
Aw| _|Z, Z, u O Aw + Z; Zs, [A(Se]
Aq Mu Mw Mq 0 Aq M,s M'ST AST
Ab 0o 0 1 0]Lae 0 0
(6.17)
-X, -X, 0
|-z o-zo “e
-M, -M, -M,[| "

0 0 0 s
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and the lateral equations are

Av Y, 0 (¥, —u) gilAv 0 7,
Ap| L. L, L, ol Ap oL L, [A&,}
AF N, N, N, 0| Ar N5 Ns [LAS,
Ad 0 1 0 ol{Ae 0 0
-Y, 0 0 (6.18)
~L, —-L, —L|{|"
+ Pe
-N, —N, —N,

0 0 0 ¢

The longitudinal and lateral gust transfer functions can be determined by taking the
Laplace transform of Equations (6.17) and (6.18) and then dividing by the gust
function. A linear set of algebraic equations in terms of Au/u, are obtained. These
equations then can be solved for the transfer functions.

To provide some insight into the influence of atmospheric disturbances on
aircraft response, we shall examine the vertical motion of an airplane that encoun-
ters a vertical gust field.

6.3
PURE VERTICAL OR PLUNGING MOTION

Consider an airplane constrained so that movement is possible only in the vertical
direction. This type of motion could be simulated in the wind tunnel using a model
constrained by a vertical rod as illustrated in Figure 6.6. The model is free to move
up or down along the rod but no other motion is possible.

Now let us examine the response of this constrained airplane subjected to an
external disturbance such as a wind gust. The equation of motion for this example
is obtained by applying Newton’s second law; that is

2 Forces in the vertical direction = m (ii_v: (6.19)
dw

Z+W=m— 6.20

ma (6.20)

where Z is the aerodynamic force in the z direction and W is the weight of the
airplane model. If we assume the motion of the airplane will be confined to small
perturbations from an initial unaccelerated flight condition, then the acrodynamic
force and vertical velocity can be expressed as the sum of the reference flight
condition plus the perturbation:

Z=27Z,+ AZ w=w, + Aw (6.21)
Substituting Equation (6.21) into (6.20) yields

Zo+AZ+W=m &% (wy + Aw) (6.22)
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FIGURE 6.6
Wind tunnel model constrained to motion in the vertical
direction.

This equation can be simplified by recognizing that in unaccelerated flight the
condition for equilibrium is

Zy,+W=20 (6.23)
Therefore, Equation (6.22) reduces to
d
AZ/m = — Aw (6.24)
dt
The aerodynamic force acting on the airplane is a function of the angle of attack

and time rate of change of the attack and it can be expressed in terms of the stability
derivatives as follows:

AZ/m = Z, Aa + Z; Ad (6.25)
Adc
or AZ/m = C, Aa QS/m + C., —2—u——QS/m (6.26)
0
where C, = —C., C, = —C,

To simplify our analysis we will assume that the lag in lift term, Z, Ad, is negligible
in comparison to the Z, A« term.

The change in angle of attack experienced by the airplane is due to its motion
in the vertical direction and also to the vertical wind gust. The angle of attack can

be written as

A = 2 _ 20 6.27)

U Ug
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Substituting Equations (6.25) and (6.27) into (6.24) and rearranging yields
dAw

o =g Z,&w = ~Z.w, (1) (6.28)
uy, dAw
R i A = .
or Z. Aw = w, (1) (6.29)

Equation (6.29) is a first-order differential equation with constant coefficients.
Systems characterized by first-order differential equations are referred to as first-
order systems. We rewrite Equation (6.29) to have the form:

dAw d
I = (»ra ; 1) Aw = w, () (6.30)
where ] (6.31)
T Za .

and w,(r) is the gust velocity as a function of time.

The solution to Equation (6.30) for a sharp-edged or sinusoidal gust will now
be examined. Figure 6.7 shows an airplane encountering a sharp-edged or step gust
and a sinusoidal gust profile. The reason for selecting these two types of gust inputs
is that they occur quite often in nature. Furthermore, as was mentioned earlier both
the steps function and sinusoidal inputs can be used to construct an arbitrary gust
profile. For example, Figure 6.8 shows the construction of an arbitrary gust profile
as a series of step changes. Also in the case of an arbitrary-periodic gust function
the profile can be decomposed into a series of sine waves by Fourier analysis.

The transient response of an airplane to an encounter with a sharp-edged gust
can be modeled by expressing the gust profile as a step function:

40 t=0"
w, (1) = {Axu(t) = ot (6.32)

where u(t) is a unit step change and A, is the magnitude of the gust. The solution
to Equation (6.30) for a step input can be obtained by taking the Laplace transfor-
mation of the differential equation

7s Aw(s) + Aw(s) = w,(s) (6.33)
or solving for the ratio of the output to input yields

Aw(s) |
w,(s) s+

(6.34)

Equation (6.34) is the transfer function of the change in vertical velocity to the
vertical gust input. When the forcing function or input is a step change in the gust
velocity,

w,(s) = éf (6.35)

A

or AW(S) = S(’)’S—il)

(6.36)
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FIGURE 6.7
Idealized gust profiles.

FIGURE 6.8
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Expanding Equation (6.36) by the method of partial factions and taking the inverse
Laplace transformation yields

Aw()) = A,(1 — &™) (6.37)

The vertical velocity of the airplane grows exponentially from O to a final value
of A,. The initial slope of the curve at ¢ = 0 is given by the derivative

dw A, . d_w _ﬁ
dr 'Te or de T

t—0

(6.38)

The parameter 7 is referred to as the time constant of the system. The time constant
tells us how fast our system approaches a new steady-state condition after being
disturbed. If the time constant is small the system will respond very rapidly; if the
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time constant is large the system will respond very slowly. Figure 6.9 shows the
response of the airplane to a sharp-edged gust. Notice that the output of the system
approaches the final value asymptotically; however, the response is within 2 per-

cent of the final value after only four time constants.
Additional insight into the vehicle’s response can be obtained by looking at the
maximum acceleration of the airplane. The maximum acceleration occurs at ¢ = 0:
ai = QSAg =4 (6.39)

muy T

Dividing Equation (6.39) by the gravitational constant g we obtain an equation for
the change in load factor due to a sharp-edged gust:

. C, 08
ﬂz_i_AgzﬁzAn (6.40)
g mipg w
u, A
or An=C, % s (6.41)

Equation (6.41) indicates that airplanes having low wing loading W/S will be much
more responsive to the influence of vertical wing gust than airplanes with high wing
loadings.

The takeoff and landing performance of an airplane can be shown to be a
function of wing loading W/S, weight per unit of wing area. Airplanes having a low
wing loading in general will have short takeoff and landing field requirements.
Airplanes designed for minimum runway requirements, such as short-takeoff-and-
landing (STOL) aircraft, will have low wing loadings compared with conventional
transport and fighter airplanes and therefore should be more responsive to atmo-
spheric disturbances.

Initial Asvmptote FIGURE 6.9
slope ymp
AW(t — o) Response to a sharp edged gust.
B [ B =Tt = ----
o
L
2 5 Ag=10fps
0 T T T T T
0 T 2t 37 4z 5+
t Awjwg = 1 - et
0 0
27 0.632
3T 0.865
4T 0.950
5T 0.982
67 0.993
4 0.998
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If the gust profile encountered by the airplane is sinusoidal the response will
consist of a transient phase followed by a steady-state sinusoidal oscillation. The
steady-state response to a sinusoidal gust can be written as

Aw(t) = A, sin (wt — @) (6.42)

1
where ¢ = —tan"'(rew)
The steady-state response of the airplane will have the following characteristics:

1. The response will have the same frequency as the gust wave.
2. The amplitude of the response will be

Ag

Amplitude = ——=——=
P V1 + 72w?

where the amplitude of the gust is A,.
3. The phase angle of the response is ¢ = —tan™'(rw); the phase angle of the
input gust is 0. The response of the airplane lags the gust wave by the angle ¢.

Figure 6.10 shows the vertical response of an airplane to a sinusoidal gust encoun-
tered for values of wr. Remember that w is the frequency of the gust and 7 is the
time constant of the airplane. Notice for small values of wr, that is, low-frequency
gusts or small airplane time constants, the phase angle ¢ is very small and the ratio
of the response to gust input amplitudes is near unity. In this situation, the response
is in phase with the gust wave and the amplitude of response of the airplane is nearly
equal to the amplitude of the gust profile.

For very large values of w the response amplitude tends to O; that is, the
airplane is unaffected by the gust profile. These trends easily are observed in the
frequency response curve shown in Figure 6.11. This analysis shows us that the
rigid body motion of the airplane is excited by the low-frequency or long wave-
length gusts and that the high-frequency or short wavelength gusts have little effect
on the airplane’s motion. Although the high-frequency gusts do not influence the
rigid body motion they will excite the structural modes of the airplane.

Although this example gives us some insight into how atmospheric gusts will
affect an airplane the turbulence in the atmosphere is not deterministic. That is to

Gust profile FIGURE 6.10
wglt) = Agsin w Response of a first order
system to a sinusoidal input.
Ag Response for
— / small ot
‘<§l’ L L
e \\\
4 AS
'/ Pl -.\\_\ —_
L. N~ _,/.«'k
\\ ’
~— Response for
T 2 large wT

w w
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Phase angle
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Frequency response information.
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say, no analytical expressions completely describe atmospheric turbulence. Rather,
turbulence is a stochastic process or random process and can be described only in

a statistical manner.

EXAMPLE PROBLEM 6.1. Determine the response of two different airplanes to an
encounter with a sharp edge gust of 15 ft/s. Assume the airplanes are in final approach
for landing. Data on the airplanes follows:

Approach speed Wing area Lift curve

Aircraft Weight, Ibs. ft/s ft? rad™!
General aviation 2,750 125 184 4.44
Jet transport 126,000 225 2,000 4,52

Solution. The vertical response to a sharp edge gust can be computed using Equa-
tion (6.37).

Aw(t) = A1 — ™)
where A, is the magnitude of the vertical gust and 7 is the airplane time constant
defined as

pe Mo
z,
The derivative Z, can be computed from the formula
Z, = C;, 0S/m
but Cz, = —Cp,

therefore Z,= —C, 0S/m
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FIGURE 6.12
Response of light general aviation and jet transport to a vertical gust
encounter.

Substituting the expression for Z, into the equation for the time constant and rearrang-
ing yields
_2UW/S)
Cr.puog

For the general aviation airplane,
T = 2(14.9 1b/ft?) /[(4.44)(0.002378 slug/ft>)(125 ft/s)(32.2 ft/s*)]
=0.7s

For the jet transport 7 is found to be 1.61 s. Figure 6.12 shows the response of the two
airplanes to the vertical gust encounter. The general aviation airplane is much more
responsive to the vertical gust than the jet transport. This is due primarily to the
difference in wing loading for the two aircraft.

6.4
ATMOSPHERIC TURBULENCE

The atmosphere is in a continuous state of motion. The winds and wind gusts
created by the movement of atmospheric air masses can degrade the performance
and flying qualities of an airplane. In addition, the atmospheric gusts impose
structural loads that must be accounted for in the structural design of an airplane.
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The movement of atmospheric air masses is driven by solar heating, the Earth’s
rotation, and various chemical, thermodynamic, and electromagnetic processes.
The velocity field within the atmosphere varies in both space and time in a
random manner. This random velocity field is called atmospheric turbulence. The
velocity variations in a turbulent flow can be decomposed into a mean part and a
fluctuating part. Figure 6.13 shows a typical atmospheric turbulence profile. The
size or scale of the fluctuations vary from small wavelengths on the order of
centimeters to wavelengths on the order of kilometers. Because atmospheric turbu-
lence is a random phenomenon it can be described only in a statistical way.

To predict the effect of atmospheric disturbances on aircraft response, flying
qualities, autopilot performance, and structural loads requires a mathematical
model. In the following sections the discussion will include a description of statis-
tical functions used in describing atmospheric turbulence, a mathematical model of
turbulence, and finally an indication of how the turbulence model can be used to
determine the response of an airplane to atmospheric disturbances.

Before presenting the mathematical model of turbulence, it is necessary to
review some of the basic concepts used to describe turbulence. The discussion at
best will be only a cursory review of an extremely complicated subject. The reader
is referred to [6.2] and [6.3] for a more informative treatment of the subject.

FIGURE 6.13
Atmospheric gust profiles.
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6.5
HARMONIC ANALYSIS

An arbitrary periodic signal having a period T can be represented as an infinite
series of cosine and sine functions as follows:

f) = ay + Z a, cos(nwt) + Z b, sin(mwt) (6.43)

where the angular frequency w = 27/T and the Fourier coefficients are found
from the relationship

to+ 21/
W
= -— d 6.

a o A f(r) dt (6.44)
® 1yt 2m/@

a, = po J f(#) cos{wit) dt (6.45)
© (:0+211/w

b, = p f f(2) sin(nwt) dr (6.46)

0 .
When the function is not periodic the technique still can be used by allowing the
period T to go to infinity; then the Fourier series becomes a Fourier integral:

f@ = }rj e dwf flr) e ™ dr (6.47)
If we define the second integral to be
Glw) = f f@) e do (6.48)
I A
then fy = — J G(w) e™ dw (6.49)
27 ),

where G(w) and f(¢) are a Fourier transform pair. The integrand G(w) dw gives the
contribution of the harmonic components of f(¢) between the frequencies w and
w + dw. Unfortunately, this harmonic analysis does not hold for turbulence. For
the Fourier integral to be applicable the integrals must be convergent. The nonpe-
riodic turbulence disturbances persist for long periods of time without dying out in
time. The persistence of turbulence yields integrals that do not converge.

To obtain a frequency representation for a continuing disturbance requires the
use of the theory of random processes. A random process is one which is random
by its nature, so that a deterministic description is not practical. For example, we
are all familiar with board games. In most of these games we must roll dice to move
around the board. The rolling of the dice constitutes a random experiment. If we
denote the sum of the points on the two dice as X, then X is a random variable that
can assume integer values between 2 and 12. If we roll the dice a sufficient number
of times, we can determine the probabilities of the random variable X assuming any
value in the range of X. A function f(X) that yields the probabilities is called the
probability or frequency function of a random variable.
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Atmospheric turbulence also is a random process and the magnitude of the gust
fields can be described only by statistical parameters. That is, we can conduct
experiments to determine the magnitude of a gust component and its probability of
occurrence. The properties of atmospheric turbulence include that it is homoge-
neous and stationary. The property of homogeneity means that the statistical
properties of turbulence are the same throughout the region of interest; stationarity
implies that the statistical properties are independent of time. L

For the case when f(r) is a stationary random process, the mean square f>(¢)
is defined as

Pw = tim 1| 0T a (6.50)

where f(f) represents a measure of the disturbance intensity. The disturbance
function f(z) can be thought of as an infinite number of sinusoidal components
having frequencies ranging from zero to infinity. That portion of f*(#) that occurs
from w to dw is called the power spectral density and denoted by the symbol ®(w).
The intensity of the random process can be related to the power spectral density.

The response of a physical system such as an airplane to a random disturbance
such as atmospheric turbulence can be obtained from the power spectral density of
the input function and the system transfer function. If G(iw) represents the system
frequency response function and ®;(w) is the power spectral density of the distur-
bance input function, then the output ®,(w) is given by

Dy(w) = Di(w)|Gliow) (6.51)

With Equation (6.51) we can determine the response of an airplane at atmospheric
disturbances. The transfer function G is the system gust transfer function described
earlier. All that remains now is to describe ®,(w) for the gust input.

6.5.1 Turbulence Models

Two spectral forms of random continuous turbulence are used to model atmo-
spheric turbulence for aircraft response studies: the mathematical models named
after von Karman and Dryden, the scientists who first proposed them. Because the
von Karman model is more widely used in practice it will be the only one described
here. The power spectral density for the turbulence velocities is given by

, 2L, 1

P, () = o} 7 [T + (1L39L " (6.52)
2L, 1+ $(1.339L.Q)
— 2 t 3 v
D) = o o [T (1330L Q) " (6.53)
2L, 1+ £(1.339L,0)*
d,.(Q) = a2 L. 1(1.339L,.8) (6.54)

"o [1+ (1.339L,0)%"/

where ¢ is the root mean square intensity of the gust component, {} is the spatial
frequency, defined by 27/A, where A is the wavelength of a sinusoidal component,
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One dimensional gust

Two dimensional gust

FIGURE 6.14
One and two dimensional gust fields.

and L is the scale of the turbulence. The subscripts u, v, and w refer to the gust
components. The scales and intensities of atmospheric turbulence depend on the
altitude and the type of turbulence; that is, clear air (high or low altitude) and
thunderstorm turbulences.

For an airplane passing through a gust field, it is assumed that the turbulence
encountered is independent of time (i.e., the turbulence is stationary). This as-
sumption can be visualized by considering the gust field to be frozen in both time
and space, as illustrated in Figure 6.14. Assuming the frozen-field concept the
turbulence-induced motion is due only to the motion of the airplane relative to the
gust field.

The three power spectral densities presented earlier were a function of a spatial
frequency; however, as the airplane passes through the frozen turbulent field it
senses a temporal frequency. The relationship between the spatial and temporal
frequency is given by

QO = w/uy (6.55)

where o is in rad/s and u, is the velocity of the airplane relative to the air mass it
is passing through.

6.6
WIND SHEAR

Wind shear is defined as a local variation of the wind vector. The variations in wind
speed and direction are measured in the vertical and horizontal directions. In a
vertical wind shear the wind speed and direction vary with changing altitude; in a
horizontal wind shear, wind variations are along some horizontal distance.
Wind shears are created by the movement of air masses relative to one an-
other or to the Earth’s surface. Thunderstorms, frontal systems, and the Earth’s
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Wind shear created by a down burst.
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Measured wind shear velocity profiles.

boundary layer all produce wind shear profiles that at times can be hazardous to
aircraft flying at low altitudes. The strong gust fronts associated with thunder-
storms are created by downdrafts within the storm system. As the downdrafts
approach the ground, they turn and move outward along the Earth’s surface. The
wind shear produced by the gust front can be quite severe.

The wind shear created by a frontal system occurs at the transition zone
between two different air masses. The wind shear is created by the interaction of
the winds in the two air masses. If the transition zone is gradual, the wind shear will
be small. However, if the transition zone is small, the conflicting wind speeds and
directions of the air masses can produce a very strong wind shear. Figure 6.15
shows some of the mechanisms that create a wind shear and Figure 6.16 shows an
experimentally measured shear profile near the ground.

No simple mathematical formulations characterize the wind shears pro-
duced by the passage of frontal systems or thunderstorms. Generally, these shears
are represented in simulation studies by tables of wind speed components with
altitude.
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Mean wind FIGURE 6.17
An aircraft descending into a
horizontal wind shear.
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The surface boundary layer also produces wind shear. The shape of the profile
is determined, primarily, by local terrain and atmospheric conditions. Additional
problems arise when there is an abrupt change in surface roughness (which can be
expected near airports), resulting in additional internal boundary layers, and when
the direction of the wind varies with altitude.

To analyze the influence of wind shear on aircraft motion, the characteristics
of wind shear must be known. The magnitude of the shear can be expressed in terms
of the change in wind speed with respect to altitude, du/dh, where a positive wind
shear increases with increasing altitude. The qualitative criteria for judging the
severity of wind shear were proposed to the International Civil Aviation Organiza-
tion (ICAO). It was suggested that shear be considered light if du/dh ranges from
0 to 0.08 s™', moderate for 0.08~0.15 s/, strong for 0.15-0.20 s™', and severe if
greater than 0.2 s™'. These criteria are useful in giving an idea of the magnitude of
wind shear but the ICAO did not accept them. A shear that is moderate for an
airplane with a high stall speed may be strong for one with a low stall speed, so
universal criteria are impossible owing to differences among aircraft types.

EXAMPLE PROBLEM 6.2. Consider an airplane on a final approach encountering a
vertical wind shear; that is, the variation of horizontal wind velocity with altitude.
Figure 6.17 shows an airplane flying into a wind shear. To analyze this problem we can
use Equation (6.17). The change in wind velocity is represented by

du
u —E};dh

8

where du/dh is the velocity gradient and d# is the change in altitude. If we assume that
the controls are fixed, Equation (6.17) reduces to

Au X, X. 0 —gllAu -X,

Aw zZ, Z, wu, O Aw -Z,
1= + (]

Ag M, M, M, 0 ||Aq ~M,

A6 0 0 1 0 []ae 0

But u, is a function of altitude and therefore we must add other equations to the system.
The vertical velocity of the airplane can be expressed as the time rate of change of
altitude as follows:

AR = uy(Aa — AB)
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Influence of wind shear on longitudinal roots.

Adding this equation to the state equations and substituting for u, yields

- 1T e

Au X, X, 0 -—g _X“E Au
zZ Z —2Z, du

Ad T D | Qe | Y

“« wy U u, dh “«
h d

Agl M, M, M, 0 -M,=|lAg
dh

A 0O 0 1 0 0 A8

ARl L0 w0 —u 0 |lAn]

The solution to this system of equations yields five eigenvalues: two complex pairs
representing the phugoid and short-period modes and a fifth, real, root indicating a
nonoscillatory motion. These equations were solved in [6.6] for STOL aircraft for
various magnitudes of the velocity gradient. The results showed that wind shear had
very little affect on the short-period motion; however, the phugoid motion was found
to be quite sensitive to du/dh. Figure 6.18 shows a root locus plot of the phugoid roots
for variations in du/dh. For very large gradients the phugoid mode can become un-
stable. An unstable phugoid mode would make the landing approach very difficult for
the pilot to control. Therefore, strong wind shears must be avoided for flight safety.

6.7
SUMMARY

In this chapter we examined some of the analytical techniques available to flight
control engineers to study the dynamic response of an airplane to control deflection
or atmospheric disturbances. Apart from the uncomfortable ride they create for the
pilot and passengers, the loads imposed on the airframe structure by the gust fields
must be calculated so that the structure can be properly designed.

Wind shear recently has been shown to be a greater hazard to commer-
cial aviation than had been appreciated. Wind shears created by thunderstorm
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systems have been identified as the major contributor to several airline crashes. The
techniques outlined in this chapter can be used by stability and control engineers
to study the effects of atmospheric disturbances on aircraft flight characteristics.
Such studies can be used to improve flight safety.

PROBLEMS

6.1. For the business jet aircraft whose details are included in Appendix B determine the

6.2.

6.3

6.4

6.5.

lateral response curves for an aileron input. Present your results in the form of
frequency response curves.

The vertical motion of an airplane subjected to a sharp-edged gust is described by the
equation
Aw(r) = A (1 — e

where Aw is in the vertical velocity, A, is the magnitude of the gust, and 7 is the time
constant of the airplane. Using the information in Figure P6.2 determine the maxi-
mum vertical acceleration and the time constant of the airplane.
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FIGURE P6.2
Vertical velocity response.

For the general aviation airplane whose details are included in Appendix B determine
the vertical response to a sinusoidal gust field. Assume the problem can be modeled
by a single degree of freedom vertical equation of motion. Present your results in the
form of frequency response curves.

Discuss how changes in the aerodynamic stability characteristics would effect the
response curves obtained in Problem 6.3.

Assume that an airplane is on final approach and encounters a wind shear that can be
represented as
du
u, = —dh
¢ dh

where du/dh is the wind gradient. Assume that the pitch attitude of the airplane is
maintained by an automatic control system. Develop the equations of motion goversi-
ing the vertical and horizontal velocity of the airplane. How does the wind gradient
effect the two-dimensional response?
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CHAPTER 7

Automatic Control Theory—
The Classical Approach

“The transport aircraft of the future may well be on automatic control from the
moment of take-off to the automatic landing at its destination.”

William Bollay, 14th Wright Brothers Lecture, 1950

7.1
INTRODUCTION

Control theory deals with the analysis and synthesis of logic for the control of a
system. In the broadest sense, a system can be thought of as a collection of compo-
nents or parts that work together to perform a particular function. The airplane is
an example of a complex system designed to transport people and cargo.

What today we call control theory developed along two different analytical
approaches. The first approach was based on frequency response methods, the root
locus technique, transfer functions, and Laplace transforms. It had its beginning in
the late 1930s. This approach to control theory is sometimes called classical or
conventional control theory. A major feature of these analysis methods was their
adaptability to simple graphical procedures, which was particularly important
during this time period because computers were not available. Analysis techniques
had to be suitable for calculations made without computers. The analysis tools,
based upon the work of Bode, Nyquist, and Evans, form the foundation of
“classical” control theory. To apply classical control theory to the design of a
control system one needs to understand Laplace transforms and the concept of a
transfer function.

With the advent of high-speed digital computers, control system analysis
methods were developed based on the state-space formulation of the system. These
analysis techniques, developed since the 1960s, are commonly called modern con-
trol theory. To understand modern control methods one must understand matrix
algebra and the state-space concept of representing a system of governing equa-
tions. The selection of the names classical and modern is somewhat unfortunate in
that it seems to relegate the classical approach to a lesser status when this is not the
case. A control system designer needs to know both the classical and modern
control approaches. In this and the next three chapters we divide control theory into
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FIGURE 7.1
Examples of open-loop and closed-loop control systems.

the two categories, classical and modern, for convenience. Both approaches have
their strengths and weaknesses and find wide acceptance and use by control system
designers.

It is not possible to cover all aspects of control theory approach in just four
chapters. Therefore, it has been assumed that the reader has had an undergraduate
course in control theory. Chapters 7 and 9 provide a brief review of some of the
theoretical aspects of the classical and the modern control; Chapters 8 and 10 apply
the techniques to the design of simple airplane autopilots.

In each chapter we provide simple examples of the control analysis techniques
that one can do readily with a simple pocket calculator. Once the theoretical basis
of these techniques is understood more complicated problems can be attempted. A
number of software packages are available for control system analysis and design.
We have found the software package MATLAB* to be quite useful and used it in
developing problems and examples for these chapters. Readers are encouraged to
use whatever control software is available at their university or company to help
them with the problems at the end of the chapters.

Before discussing control system design, a review of some of the basic concepts
of control theory will be presented. Control systems can be classified as either
open-loop or closed-loop systems, as illustrated in Figure 7.1. An open-loop con-
trol system is the simplest and least complex of all control devices. In the open-loop
system the control action is independent of the output. In closed-loop system the
control action depends on the output of the system. Closed-loop control systems are
called feedback control systems. The advantage of the closed-loop system is its
accuracy.

To obtain a more accurate control system, some form of feedback between the
output and input must be established. This can be accomplished by comparing the
controlled signal (output) with the commanded or reference input. In a feedback
system one or more feedback loops are used to compare the controlled signal with
the command signal to generate an error signal. The error signal then is used to

*MATLAB is a registered trademark of The Math Works, Inc.
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FIGURE 7.2
A feedback control system.

drive the output signal into agreement with the desired input signal. The typical
closed-loop feedback system shown in Figure 7.2 is composed of a forward path,
a feedback path, and an error-detection device called a comparator. Each compo-
nent of the control system is defined in terms of its transfer function. The transfer
function, T.F.,, is defined as the ratio of the Laplace transform of the output to the
Laplace transform of the input where the initial conditions are assumed to be O:

TE = Laplace transform of the output
" Laplace transform of the input

(7.1)

The transfer function of each element of the control system can be determined from
the equations that govern the dynamic characteristics of the element. The aircraft
transfer functions are developed in Chapter 8 from the equations of motion.

The closed-loop transfer function for the feedback control system shown in
Figure 7.2 can be developed from the block diagram. The symbols used in the block
diagram are defined as follows:

R(s) reference input

C(s) output signal (variable to be controlled)

B(s) feedback signal

E(s) error or actuating signal

G(s) C(s)/E(s) forward path or open-loop transfer function
M(s) C(s)/R(s) the closed-loop transfer function

H(s) feedback transfer function

G(s)H(s) loop transfer function

The closed-loop transter function, C(s)/R(s), can be obtained by simple algebraic
manipulation of the block diagram. The actuating or error signal is the difference
between the input and feedback signals:

E(s) = R(s) — B(s) (7.2)

The feedback signal B(s) can be expressed in terms of the feedback transfer func-
tion and the output signal:

B(s) = H(s)C(s) (7.3)
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and the output signal C(s) is related to the error signal and forward path transfer
function in the following manner:

C(s) = G(s)E(s) (7.4)
Substituting Equations (7.2) and (7.3) into 7.4 yields
C(s) = G(s)R(s) — G(s)H(s)C(s) (7.5)

Equation (7.5) can be solved for the closed-loop transfer function C(s)/R(s):

& B G(s)

Re) ~ T ¥ GWHG) (7.6)

which is the ratio of the system output to the input. Most control systems are much
more complex than the one shown in Figure 7.2. However, theoretically the more
complex control systems consisting of many feedback elements can be reduced to
the simple form just described.

The feedback systems described here can be designed to control accurately the
output to some desired tolerance. However, feedback in itself does not ensure that
the system will be stable. Therefore, to design a feedback control system one needs
analysis tools that allow the designer to select system parameters so that the system
will be stable. In addition to determining the absolute stability, the relative stability
of the control system also must be determined. A system that is stable in the
absolute sense may not be a satisfactory control system. For example, if the system
damping is too low the output will be characterized by large amplitude oscillations
about the desired output. The large overshooting of the response may make the
system unacceptable.

Autopilots can be designed using either frequency- or time-domain methods
developed from servomechanism theory or by time-domain analysis using state
feedback design. In this chapter the techniques from servomechanism theory will
be discussed and several simple applications of the design techniques will be dem-
onstrated by applying the techniques to the design of autopilots.

The servomechanism design techniques include the Routh criterion, root locus,
Bode, and Nyquist methods. A brief description of these techniques is presented
either in the following sections or in the appendices at the end of this book. For a
more rigorous treatment of this material, the reader is referred to [7.2-7.5].

7.2
ROUTH’S CRITERION

As noted earlier, the roots of the characteristic equation tell us whether or not the
system is dynamically stable. If all the roots of the characteristic equation have
negative real parts the system will be dynamically stable. On the other hand, if
any root of the characteristic equation has a positive real part the system will be
unstable. The system is considered to be marginally stable if one or more of the
roots is a pure imaginary number. The marginally stable system represents the
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boundary between a dynamically stable or unstable system. For a closed-loop
control system the denominator of Equation (7.6) is the characteristic equation.

A simple means of determining the absolute stability of a system can be ob-
tained by the Routh stability criterion. The method allows us to determine whether
any of the roots of the characteristic equation have positive real parts, without
actually solving for the roots. Consider the characteristic equation

a A"+ a, A"t a, A" ca A+ a, =0 (1.7

So that no roots of Equation (7.7) have positive real parts the necessary but not
sufficient conditions are that

1. All the coefficients of the characteristic equation must have the same sign.
2. All the coefficients must exist.

To apply the Routh criterion, we must first define the Routh array as in
Table 7.1. The Routh array is continued horizontally and vertically until only zeros
are obtained. The last step is to investigate the signs of the numbers in the first
column of the Routh table. The Routh stability criterion states

1. If all the numbers of the first column have the same sign then the roots of the
characteristic polynominal have negative real parts. The system therefore is
stable.

2. If the numbers in the first column change sign then the number of sign changes
indicates the number of roots of the characteristic equation having positive real
parts. Therefore, if there is a sign change in the first column the system will be
unstable.

When developing the Routh array, several difficulties may occur. For example,
the first number in one of the rows may be 0, but the other numbers in the row may
not be. Obviously, if 0 appears in the first position of a row, the elements in the
following row will be infinite. In this case, the Routh test breaks down. Another

TABLE 7.1
Definition of Routh array: Routh table

A" a, a,—2 Qp—y
At [ a3 an_s
AnT2 b, b, by
<) [&] C3
where a,, a,_,, - . . , 4, are the coefficients of the characteristic equation

and the coefficients b,, b,, b3, ¢|, ¢,, and so on are given by

An-8n-2 — 4,053 Q,_\0y—4 — QnGy—s

b, = b, = and so forth
Q) L2
ba, ; — a, b ba,_s — a, b
€ = 21003 7 @niB2 o= 2Gns — @niP3 and so forth
b, b,
_ b, — &by

d, = and so forth

C
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possibility is that all the numbers in a row are 0. Methods for handling these special
cases can be found in most textbooks on automatic control theory.

Several examples of applying the Routh stability criterion are shown in Exam-
ple Problem 7.1.

EXAMPLE PROBLEM 7.1. Determine whether the characteristic equations given
below have stable or unstable roots.

@ AP +6A2+ 120 +8=0
B2V + 422+ 41+ 12=0
(©) AA*+ BAP+ CA’+ DA+ E=0

Solution. The first two rows of the array are written down by inspection and the
succeeding rows are obtained by using the relationship for each row element as pre-
sented previously:

i 12 0
6 8 0
64
3 0
8

There are no sign changes in column I; therefore, the system is stable. The Routh array
for the second characteristic equation is as follows:

2 4 0
4 12 0
-2 0
12

Note that there are two sign changes in column 1; therefore, the characteristic equation
has two roots with positive real parts. The system in unstable.

The Routh stability criterion can be applied to the quartic characteristic equation
that describes either the longitudinal or lateral motion of an airplane. The quartic
characteristic equation for either the longitudinal or lateral equation of motion is given
in part ¢ of this problem where A, B, C, D, and F are functions of the longitudinal or
lateral stability derivatives. Forming the Routh array from the characteristic equation
yields

A cC E
B D 0
BC — AD
B B0
[D(BC — AC)/B] — BE
(RC — AD)/B

E
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For the airplane to be stable requires that
A, B, C,DE >0
BC — AC >0
D(BC — AD) — B’E>0

The last two inequalities were obtained by inspection of the first column of the Routh
array.

If the first number in a row is O and the remaining elements of that row are
nonzero, the Routh method breaks down. To overcome this problem the lead
element that is 0 is replaced by a small positive number, €. With the substitution
of £ as the first element, the Routh array can be completed. After completing the
Routh array we can examine the first column to determine whether there are any
sign changes in the first column as & approaches 0.

The other potential difficulty occurs when a complete row of the Routh array
is 0. Again the Routh method breaks down. When this condition occurs it means
that there are symmetrically located roots in the s plane. The roots may be real with
opposite sign or complex conjugate roots. The polynomial formed by the
coefficient of the first row just above the row of zeroes is called the auxiliary
polynomial. The roots of the auxiliary polynomial are symmetrical roots of the
characteristic equation. The situation can be overcome by replacing the row of
zeroes by the coefficients of the polynomial obtained by taking the derivative of the
auxiliary polynomial. These exceptions to the Routh method are illustrated by way
of example problems.

EXAMPLE PROBLEM 7.2. In this example we will examine the two potential cases
where the Routh method breaks down. The two characteristic equations are as follows:

@ AP+ A*+3A+3A2+44+6=0
(BY A+ 305 + 6A + 123 + LIA2+9A + 6 =0

For equation a, the lead element of the third row of the Routh table is O which prevents
us from completing the table. This difficulty is avoided by replacing the lead element
0 in the third row by a small positive values £. With the 0 removed and replaced by &
the Routh table can be completed as follows:

1 3 4
1 3 6
£ -2
3e + 2
£ 6
£
—6e2 — 6 — 4 0
3e +2
6

Now as & goes to 0 the sign of the first elements in rows 3 and 4 are positive. However,
in row 5 the lead element goes to —2 as ¢ goes to 0. We note two sign changes in the
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first column of the Routh tables; therefore, the system has two roots with positive real
parts, which means it is unstable.

The second difficulty that can cause a problem with the Routh method is a
complete row of the Routh table being zeroes. This difficulty is illustrated by the Routh
table for equation b.

The Routh table can be constructed as follows:

1 6 11 6

3 12 9
2 8 6
0 0

Note that the fourth row of the Routh table is all zeroes. The auxiliary equation is
formed from the coefficients in the row just above the row of zeroes. For this example
the auxiliary equation is

20+ 8AT+ 6 =10
Taking the derivative of the auxiliary equation yields
8A 4+ 16A =0

The row of zeroes in the fourth row is replaced by the coefficients 8 and 16. The Routh
table now can be completed.

1 6 1 6

3 12 9
2 8 6
8 16

4

4 0

6

The auxiliary equation can also be solved to determine the symmetric roots,
At +4A2+3=0
which can be factored as follows:
AT+ DAT+3)=0
or A= x and A=xV3

If we examine column 1 of the Routh table we conclude that there are no roots with
positive real parts. However, solution of the auxiliary equations reveals that we have
two pairs of complex roots lying on the imaginary axis. The purely imaginary roots lead
to undamped oscillatory motions. In the absolute sense, the system is stable; that is, no
part of the motion is growing with time. However, the purely oscillatory motions would
be unacceptable for a control system.
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Even though the method developed by Routh provides an easy way of assessing
the absolute stability, it gives us no indication of the relative stability of the system.
To assess the relative stability requires another analysis tool such as the root locus
technique.

7.3
ROOT LOCUS TECHNIQUE

In designing a control system, it is desirable to be able to investigate the perfor-
mance of the control system when one or more parameters of the system are varied.
As has been shown repeatedly, the characteristic equation plays an important role
in the dynamic behavior of aircraft motions. The same is true for linear control
systems. In control system design, a powerful tool for analyzing the performance of
a system is the root locus technique. Basically, the technique provides graphical
information in the s plane on the trajectory of the roots of the characteristic
equation for variations in one or more of the system parameters. Typically, most
root locus plots consist of only one parametric variation. The control system
designer can use the root locus method to obtain accurate time-domain response
and frequency response information on a closed-loop control system.

The root locus technique was introduced by W. R. Evans in 1949. He developed
a series of rules that allow the control systems engineer to quickly draw the root
locus diagram. Although many software packages are available for accurately
determining the root locus plots, the graphical rules remain important. They
provide the control systems engineer a valuable tool to assessing system changes.
With Evans’s technique one can sketch a root locus plot in several minutes. The
rules for constructing a root locus plot are presented later in this section.

The transfer function was described earlier as the ratio of the output to the
input. On examining a transfer function we note that the denominator is the
characteristic equation of the system. The roots of the denominator are the eigen-
values that describe the free response of the system, where the free response is the
solution to the homogeneous equation. In controls terminology the characteristic
roots are called the poles of the transfer function. The numerator of the transfer
function governs the particular solution and the roots of the numerator are called
ZEeros.

As was noted earlier in Chapters 4 and 5 the roots of the characteristic equation
(or poles) must have negative real parts if the system is to be stable. In control
system design the location of the poles of the closed-loop transfer function allows
the designer to predict the time-domain performance of the system.

However, in designing a control system the designer typically will have a
number of system parameters unspecified. The root locus technique permits the
designer to view the movement of the poles of the closed-loop transfer functic ! as
one or more unknown system parameters are varied.

Before describing the root locus technique it would be helpful to examine he
significance of the root placement in the complex plane and the type of respor e
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Impulse response as a function of the pole location in the complex s plane.

that can be expected to occur. Figure 7.3 illustrates some of the important features
of pole location. First we note that any pole lying in the left half portion of the
complex plane is stable; that is, the response decays with time. Any pole in the right
half plane leads to a response that grows with time, which will result in an unstable
system. The farther the root is to the left of the imaginary axis, the faster the
response decays. All poles lying along a particular vertical line will have the same
time to half amplitude. Poles lying along the same horizontal line have the same
damped frequency, w, and period. The farther the pole is from the real axis, the
higher the frequency of the response will be. Poles lying along a radial line through
the origin have the same damping ratio, ¢, and roots lying on the same circular arc
around the origin will have the same undamped natural frequency. Finally, some
comments must be made about the poles lying on the imaginary axis. Poles of the
order 1 on the imaginary axis lead to undamped oscillations; however, multiple
order poles result in responses that grow with time.
The closed-loop transfer function was shown earlier to be

G(s)

M) = T GO

(7.8)
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The characteristic equation of the closed loop system is given by the denominator
of equation (7.8):

1+ G(s)H(s) = 0 (7.9)

or G()H(s) = —1 (7.10)
The transfer function G(s)H(s) can be expressed in factored form as follows:
k(s + z))(s + ) - - - (s + z,)
(s+ ps+ p)---(s+ pa)
where n > m and k is an unknown system parameter. Substituting this equation
into the characteristic equation yields.

k(s + 2)s+z) - - - s+ 2,) _

s+ p)s+p)---(s+ p)

The characteristic equation is complex and can be written in terms of a magnitude
and angle as follows:

G(s)H(s) = (7.11)

~1 (7.12)

[k |s + z,]|s + 2] oSt 2,
= (7.13)
ls + pills + pl - |s + pal
DL+ -2 Lis+p)=Q2q+ Vn (7.14)
i=1 i=1
whereg = 0,1,2,...,n — m — 1. Solution of these equations yields the move-

ment of the roots as a function of the unknown system parameter, k. These equa-
tions can be solved on the computer to determine the root locus contours. However,
a simple graphical technique developed by W. R. Evans can be used to rapidly
sketch a root locus plot. This graphical procedure is presented in the next section.
It can be shown easily that the root locus contours start at the poles of transfer
function, G(s)H(s) and end at the zeroes of the transfer function as k is varied from
0 to infinity. For example, if we rearrange the magnitude criteria in the following
manner,
|s+z,|,s+zz| |s+z,,,! =L (7.15)
Is + pills + po| - |s + pal K]

then as & goes to O the function becomes infinite. This implies that the roots
approach the poles as k goes to 0. On the other hand, as k goes to infinity the
function goes to 0, which implies that the roots are at the transfer function zeros.
Therefore, the root locus plot of the closed-loop system starts with a plot of the
poles and zeros of the transfer function, G(s)H(s). Evans developed a series of rules
based on the magnitude and angle criteria for rapidly sketching the root locus
branches on a pole zero map. A proof of these rules can be found in most control
textbooks and will not be presented here. Table 7.2 is a summary of the rules for
constructing a root locus contour.




246 CcHAPTER 7: Automatic Control Theory—The Classical Approach

TABLE 7.2
Rules for graphical construction of the root locus plot

1.
2.

The root locus contours are symmetrical about the real axis.

The number of separate branches of the root locus plot is equal to the number of poles of the transfer
function G(s)H(s). Branches of the root locus originate at the poles of G(s)H(s) for k = 0 and
terminate at either the open-loop zeroes or at infinity for k = . The number of branches that
terminate at infinity is equal to the difference between the number of poles and zeroes of the
transfer function G(s)H(s), where n = number of poles and m = number of zeros.

. Segments of the real axis that are part of the root locus can be found in the following manner: Points

on the real axis that have an odd number of poles and zeroes to their right are part of the real axis
portion of the root locus.

. The root locus branches that approach the open-loop zeroes at infinity do so along straight-line

asymptotes that intersect the real axis at the center of gravity of the finite poles and zeroes.
Mathematically this can be expressed as

g = [2 Real parts of the poles — 2 Real parts of the zeroes]/(n - m)

where #n is the number of poles and m is the number of finite zeroes.

. The angle that the asymptotes make with the real axis is given by

_180°[2g + 1]

n—m

&,
forg=0,1,2,....,(n—m—1)

. The angle of departure of the root locus from a pole of G(s)H(s) can be found by the following

expression:

¢, = = 180°Q2¢ + 1) + ¢ g=01,2,...
where ¢ is the net angle contribution at the pole of interest due to all other poles and zeroes of
G(s)H(s). The arrival angle at a zero is given by a similar expression:

b= 182+ 1D +¢ ¢=012...

The angle ¢ is determined by drawing straight lines from all the poles and zeroes to the pole or zero
of interest and then summing the angles made by these lines.

. If a portion of the real axis is part of the root locus and a branch is between two poles, the branch

must break away from the real axis so that the locus ends on a zero as k approaches infinity. The
breakaway points on the real axis are determined by solving

1+ GH=20

for k£ and then finding the roots of the equation dk/ds = 0. Only roots that lie on a branch of
the locus are of interest.

The root locus technique discussed in this chapter provides the analyst or

designer a convenient method for assessing the absolute and relative stability of a
control system. In terms of the root locus diagram, if any of the roots of the
characteristic equation of the closed-loop system lie in the right half plane the
system is unstable. On the other hand, if all the roots lie in the left half plane the
system is stable. Complex roots lying on the imaginary axis yield constant ampli-
tude oscillations. Repeated roots on the imaginary axis result in unstable behavior.

For roots lying in the left side of the root locus plot the question becomes one

of determining the relative stability of the system. A system that is stable in the
absolute sense may not be a very useful control system. We need to know more
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about the relative stability of the system. Relative stability deals with how fast the
system responds to control input and how fast disturbances are suppressed. The
relative stability of the control system is measured by various performance indices
such as time to half amplitude, percent over shoot, rise time, or settling time. These
concepts will be discussed in the next section.

EXAMPLE PROBLEM 7.3. Sketch the root locus plot for the transfer function

k(s + 3)
s(s + 10)(s® + 85 + 20)

G(s)H(s) =

Solution. This transfer function has one finite zero (m = 1) and four poles (n = 4):

Zero: s= -3
poles: s=0,5s=-10,s = —4 >+ 2i

The poles and zeroes of the transfer function can be plotted on the root locus diagram.
The poles and zeroes of G(s)H(s) are denoted by a small x or 0, respectively, on the root
locus plot. Using rule 3 from Table 7.2 we observe that the portion of the real axis that
is part of the locus lies between s = 0 and —3 and from —10 to —oo.

The number of branches of the root locus that terminate at a zero at infinity is
equal to the difference between the number of poles (n) and the number of zeroes (m)
of the transfer function (rule 2). In this case we have four poles and one zero; therefore,
we have three branches of the locus going to zeroes at infinity.

The branches of the locus that go to a zero at infinity do so along straight-line
asymptotes. The intersection of the asymptotes with the real axis and the angle of the
asymptotes follows (see rules 4 and S of Table 7.2):

_ 2 real parts of the poles — X real parts of the zero

[n —m]
_(—0—10—4—4)—(—3)_—15__5
7 41 3
180°[2g + 1
and ¢, = 180729 + 1]
n—m
180°[2g + 1]
or ¢A=—-—3—— andg=0,1,...,n—m— 1,
wheren —m—-1=4-1~-1=2
¢, = 60° 180° 300°
The pole at the origin approaches zero at s = —3, the pole at s = —10 goes to —® on

the real axis, and the complex poles go to zeroes along asymptotes making an angle of
60° and 300° with the real axis as k goes from 0 to . Figure 7.4 is a sketch of the root
locus plot.

7.3.1 Addition of Poles and Zeroes

The root locus method gives a graphic picture of the movement of the poles of the
closed-loop system with the variation of one of the system parameters that needs
to be selected by the designer. Later in this chapter we discuss how the relative
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FIGURE 7.4
Root locus plot for Example Problem 7.3.

stability of the system and its performance can be obtained from the root locus
diagram.

In many cases it is not possible to satisfy all the performance specifications
using a single parameter such as the system gain. This requires the designer to add
some form of compensation to the basic control system. The compensators may be
electrical circuits, mechanical devices, or electromechanical devices that are added
to the system to improve its performance. The compensators may be added to either
the forward or feedback path. The compensator has a transfer function composed
of poles and zeroes. Before discussing various methods of providing compensation
to a control system it would be useful to examine the influence of the addition of
poles and zeroes to the loop transfer function G(s)H(s). We will do this by way of
a simple example.

EXAMPLE PROBLEM 74. Construct a root locus plot from the transfer function
G(s)H(s) given by

k
s(s + p1)

then examine how the locus is affected by the addition of one of the following to the
original transfer function.

G(s)H(s) =

i. simple pole ii. multiple pole iii. simple zero.
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FIGURE 7.5
Sketch of root locus plot for Example Problem 7.4.

Solution. The root locus plot can be easily constructed by the rules outlined in this
chapter. A sketch of the root locus is shown in Figure 7.5. For this particular transfer
function the system is stable for 0 << k& << o. Now if we add a simple pole, s + p,, to
G(s5)H(s) the root locus will bend into the right half plane, which limits the range of k for
which the system is stable. Notice that the plots for p; > p, or p, > p, have the same
shape (see Figure 7.5(b) and (c)). The addition of yet another pole adds another branch
of the locus that goes to zero at infinity, and the system can still become unstable if the
system gain exceeds a certain value as shown in Figure 7.5(d). From this simple analysis
we can conclude that the addition of a pole to a given transfer function causes the root
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locus plot to bend toward the right half portion of the complex plane. Thus, the additon
of a simple pole tends to destabilize the system.

The addition of a simple zero, s + z;, to the original transfer function, G(s)H(s),
will cause the root locus plot to bend further into the left half portion of the complex
plane as illustrated in Figure 7.5(e) and (f). By adding a zero to G(s)H(s), the system
will be more stable than the original system.

The importance of this example is to show that the root locus plot of a control
system can be altered by the addition of poles or zeroes. In practice a designer can use
this idea to reshape the root locus contour so that the desired performance can be
achieved. The compensator basically is a device that provides a transfer function
consisting of poles or zeroes or both that can be chosen to move the root locus contour
of the compensated system to the desired closed-loop pole configuration. Note that the
addition of a compensator in general increases the order of the system.

7.4
FREQUENCY DOMAIN TECHNIQUES

The frequency response of a dynamic system was discussed in Chapter 6. The same
techniques can be applied to the design of feedback control systems. The transfer
function for a closed-loop feedback system can be written as

v o
M) =25 = T+ GOH®) (7.16)

If we excite the system with a sinusoidal input such as
r(t) = A, sin(w?) (7.17)
the steady-state output of the system will have the form
() = Ap sin(wt + @) (7.18)

The magnitude and phase relationship between the input and output signals is
called the frequency response of the system. The ratio of output to input for a
sinusoidal steady state can be obtained by replacing the Laplace transform variable
s with iw:

G(iw)

M(iw) = 1= Gliw)H(iw)

(7.19)

Expressing the previous equation in terms of its magnitude and phase angle yields

MGw) = M(w) {d)(w) (7.20)
_ Gliw)
where M(w) = T Gl HGS) GliwHGw) (7.21)

and Plw) = /Gliw) — /1 + Gliw)H(iw)] (7.22)
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FIGURE 7.6
Various graphical ways of presenting frequency response data.

The frequency response information can be plotted in rectangular, polar, or loga-
rithmic (Bode) plots. Figure 7.6 is a sketch of the various ways of presenting the
frequency response data. The relationship between the frequency- and time-
domain performance of a control system is discussed in the next section.

7.5
TIME-DOMAIN AND FREQUENCY-DOMAIN SPECIFICATIONS

The first step in the design of a feedback control system is to determine a set of
specifications for the desired system performance. In the following section we shall
present both time- and frequency-domain specifications and their relationship to
one another for a second-order system. The transfer function of a second-order
system can be expressed as

e _ ;
R(s) s?+ 2w,s + o?

(7.23)

where ¢ is the damping ratio and w, is the undamped natural frequency of the
system. Figure 7.7 shows the response to a step input of an underdamped second-
order system. The performance of the second-order system is characterized by
the overshoot, delay time, rise time, and settling time of the transient response to
a unit step. The time response of a second-order system to a step input for an
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Time response of a second-order system.

underdamped system; that is, ¢ < 1, is given by Equations (7.24) and (7.25):

—fw, t

cp)y =1+ ——1\/_?—_{_2 sinlw, V1 — %t — ¢) (7.24)
¢ = tan-'<———” 1_; 52) (7.25)

The delay and rise time give a measure of how fast the system responds to a step
input. Delay time ¢, is the time it takes for the response to reach for the first time
50 percent of the final value of the response. The rise time ¢, is the time required
for the response to rise from 10 to 90 percent of the final value. The other two
parameters of interest are the settling time and peak overshoot. Settling time ¢, is
the time it takes for the response to stay within a specified tolerance band of 5
percent of the final value. The peak overshoot is a measure of the oscillations about
the final output. From the standpoint of control system design, we would like to
have a system that responds rapidly with minimum overshoot. Equations (7.24)
and (7.25) can be used to determine the relationships between the time-domain
specifications t,, t,, and the like and the damping ratio { and undamped natural
frequency w,. Table 7.3 is a summary of these relationships.

Figure 7.8 is a sketch of the typical magnitude and phase characteristics of a
feedback control system. As in the time-domain analysis it is desirable to have a set
of specifications to describe the control system performance in the frequency
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TABLE 7.3
Time domain specifications

Delay time ¢, Rise time, ¢,
1+ 0.6{ + 0.15,2 1+ 1.1 + 1.422
1, = ———a)"——— t, =~ ———a)_"—_
Time to peak amplitude, ¢, Settling time, 7,
_ T 30
PToViTE g

Peak overshoot, M,
_clty) = (=)

(=)

X 100%

P

For a unit step
Percent maximum overshoot = 100 exp(—#¢/V1 — {?)

M (w) FIGURE 7.8
Frequency response of a
closed-loop control system.

0.707

domain. In the frequency domain the design specifications are given in terms of the
response peak M., the resonant frequency w,, the system bandwidth wg, and the
gain and phase margins. The maximum value of M(w), called the resonance peak,
is an indication of the relative stability of the control system. If M, is large the
system will have a large peak overshoot to a step input. The resonant frequency, w,,
is the frequency at which the resonance peak occurs. It is related to the frequency
of the oscillations and speed of the transient response. The bandwidth w; is the
band of frequencies from O to the frequency at which the magnitude M(w) drops
to 70 percent of the zero-frequency magnitude. The bandwidth gives an indication
of the transient response of the system. If the bandwidth is large, the system will
respond rapidly, whereas a small bandwidth will result in a sluggish control system.

The gain and phase margins are measures of the relative stability of the system
and are related to the closeness of the poles of the closed-loop system to the iw axis.

For a second-order system the frequency domain characteristics M,, w,, and wp
can be related to the system damping ratio and the undamped natural frequency ,.
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The reiationships will be presented here without proof:

1

M= 7.26

TV = 2 (7:20)
0, = o, V1 =20 (1.27)
wp = 0 (1 = 20 + VaF —ag + 2" (7.28)

The peak response and the peak overshoot of the transient response in the time
domain is given by the following approximation:

O par = 1.17TM, (7.29)

The phase margin of a second-order system can be related to the system
damping ratio as follows:

B 1 1/2
¢ =t [%((44“4 7= 2;2) ] (730

This very formidable equation can be approximated by the simple relationship

{~=001¢  for =07 (7.3hH)

The phase margin ¢ is in degrees.
From the preceding relationships developed for the second-order system the
following observations can be made:

1. The maximum overshoot for a unit step in the time domain is a function of
only ¢

2. The resonance peak of the closed-loop system is a function of only £

3. The maximum peak overshoot and resonance peak are related through the
damping ratio.

4. The rise time increases while the bandwidth decreases for increases in system
damping for a fixed w,. The bandwidth and rise time are inversely proportional
to one another.

5. The bandwidth is directly proportional to w,.

6. The higher the bandwidth, the larger is the resonance peak.

7.5.1. Gain and Phase Margin from Root Locus

The gain and phase margin used to determine the relative stability of a control
system using frequency response techniques also can be determined from the root
locus plot. The gain margin can be estimated by taking the ratio of the gain when
the locus crosses the imaginary axis to the gain selected for the system:

Gain margin

__ Value of system gain k when locus crosses the imaginary axis

Selected value of system gain k (7.32)
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Root locus plot for the transfer function G(s)H(s) = m

The value of w at the intersection on the root locus is the phase crossover frequency.
If the root locus plot has no branches that cross over the imaginary axis the gain
margin is infinite.

The phase margin can be determined for the selected gain by estimating the
frequency on the imaginary axis that satisfies the relationship

|Glw,)H(iw,)| = 1 (7.33)

The frequency can be determined by trial and error. The frequency that satisfies
this relationship is called the gain crossover frequency. The phase margin can be
calculated from the equation

dom = 180° + arg Gliw,)H(iw,). (7.34)
EXAMPLE PROBLEM 7.5. The root locus plot for a system having the following

transfer function is given in Figure 7.9:

k

H) = ——M
GWH(s) s(s + 3)(s + 10)

Determine the following information:

(a) Select the system gain so that the dominant roots have a damping ratio, { = 0.6.
(b) Estimate the settling time.
(c) Find the gain and phase margin for the gain selected in part (a).
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Solution. To estimate the gain for a damping ratio, { = 0.6, the value of 5 on the root
locus that intersects the line of constant damping ratio of 0.6 needs to be determined.
As was shown earlier the damping ratio is constant along radial lines drawn from the
origin of the root locus diagram. The magnitude of the damping ratio is related to the
angle 6 as follows:

{=cos 6
Solving for theta yields
6 = cos”! [{] = cos7! [0.6] = 53°

The intersection of the line of constant damping ratio (§ = 53° = ¢ = 0.6) with the
root locus occurs at s = —1.2 + 1.651. The magnitude of the system gain at this point
can be determined using the magnitude criteria:

|G9H(s)| = 1

k]

or =
[s|]s + 3]|s + 10]

Substituting in the value of s = —1.2 + 1.65i yields

k| _

(VI27+ 1657) (VT8Y + (1.657) (VBRI + (165))

or k| = (2.04) (2.44) (8.95) = 44.55

The settling time z, can be estimated from the approximate formula given in Table 7.3:
30
b e,

where {w, is the magnitude of the real part of the complex root,

lw, = 1.2
Therefore
3.0 3.0
t,=-—=-—7=25
) s

To determine the gain margin from the root locus plot we can use Equation (7.33). We
need to determine the gain for the system when the root locus crosses the imaginary
axis. From the root locus plot we can determine that s = +35.5i at the crossover point.
The gain is determined from the magnitude criteria

.
[s|]s + 3]s + 10|

. S
(5.5)(6.26)(11.41)

where s = +5.51 and

or k = 393.
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The gain margin can be calculated from Equation (7.33):

Value of system gain k when locus crosses imaginary axis

Gain margin =
8! Selected value of system gain k

393

=255 82

The phase margin can be determined by finding the frequency w,, the gain crossover
frequency, so that | G(iw,)H(iw,)| = 1.0.

44.55
wg\/wg + 32 \/Bf, + 107

Solving this equation by trial and error yields w, = 1.3.
The phase margin now can be estimated from Equation (7.34) where the arg
G(iw,) H(iw,) is found in the following way:

arg Gliw)H(iw,) = —Liw, — £L(iw, + 3) — L(iw, + 10)
= —90° — 234 ~ 7.4° = 120.8
P = 180° — arg Gliw,)H(iw,)
= 180° — 120.8° = 59.2°

7.5.2 Higher-Order Systems

Most feedback control systems are usually of a higher order than the second-order
system discussed in the previous sections. However, many higher-order control
systems can be analyzed by approximating the system by a second-order system.
Obviously, when this can be accomplished, the design and analysis of the equivalent
system is greatly simplified.

For a higher-order system to be replaced by an equivalent second-order system,
the transient response of the higher-order system must be dominated by a pair of
complex conjugate poles. These poles, called the dominant poles or roots, are
located closest to the origin in a pole-zero plot. The other poles must be located far
to the left of the dominant poles or near a zero of the system. The transient response
caused by the poles located to the far left of the dominant poles will diminish rapidly
in comparison with the dominant root response. On the other hand, if the pole is
not located to the far left of the dominant poles, then the poles must be near a zero
of the system transfer function. The transient response of a pole located near a zero
is characterized by a very small amplitude motion, which can readily be neglected.

The transfer function of a second-order system can be expressed in terms of the
system damping ratio, ¢, and the undamped natural frequency, w,, as follows:

s _ w,
R(s) s*+ 2lw,s + w?

(7.35)
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Consider the case where the system is underdamped; that is, 0 < { < 1. This
implies that the second-order roots are complex. If the input is a unit step, that is,
R(s) = 1/s, then the output is

2

w
- 3
s(s? + 2{w,s + w}) (7.36)
which can be inverted to the time domain as
1
Cit) =1+ ——e ' sinlw,V1 — 2t — ¢) (7.37)
V-2 ¢
where ¢ =tan ' (V1 — &*/=0). (7.38)

The response is a damped sinusoidal motion.
Now, if we add a simple pole in the form 1/(1 + T¥) to Equation (7.35), the
response to a step input would be given by

T w? e %' sin(lw, V1 — %t — ¢)
Cit)=1-— - e " < 7.39
© [ = 2Tlw, + T} V- 00— ode, + T )
Vi-¢ Tw,V1 -
and ¢ = tan™! vMi— & + tan”! To, V1~ & (7.40)
- 1 ~ Ti{w,
The pole is located at s = —1/T and the smaller T is the farther the pole is from

the imaginary axis. As the simple pole is moved farther to the ieft of the complex
root the response of Equation (7.39) will approach that of Equation (7.37). This
would occur when 7T is small and 1/T > {w,. If we examine Equation (7.39) the
second term vanishes much more quickly than the third term. The mathematical
expression defining the third term approaches that of the second-order expression
when T is small. A similar argument can be made for higher-order systems.

7.6
STEADY-STATE ERROR

The accuracy of a control system is measured by how well it tracks a given
command input. Even if a system has good overall transient response it also must
have good steady-state behavior. The accuracy of the control system is expressed
in terms of the steady-state error to a given commanded input. The usual input
signals used to evaluate the steady-state error are step, ramp, and parabolic input.
Figure 7.10 shows a typical step, ramp, and parabolic input signal.

If we examine Figure 7.2 at the beginning of this chapter, an expression for the
error signal can be developed. The error signal E(s) can be shown to be

_ R(s)
ES) = T GoAG)

where R(s) is the input signal and G(s)H(s) is the loop transfer function. The
steady-state error e is the tracking error as time approaches a large value for a

(7.41)
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Typical input signals.

particular input command. Rather than inverting £(s) back into the time domain
and evaluating e(f) as ¢ goes to infinity we can use the final value theorem. This
theorem states that if the Laplace transform of a function f(z) is F(s) and if the
function s F(s) is analytic on the imaginary axis and right half plane then

Lin(l)it f@ = L_in})it sF(s) (7.42)
The steady-state error can be found by applying the final value theorem:
e, = Limit elt) = Lin})it sE(s) (7.43)

The steady-state error will depend on the input command R(s) and the loop transfer
function G(s)H(s). The steady-state error for the three stipulated input signals is
expressed in terms of error coefficients, which will be defined shortly. First we need
to classify the open-loop transfer function. This is done by determining the order
of the pole in G(s)H(s) at the origin; that is s = 0. The loop transfer function
G(s)H(s) can be written in the pole-zero form as

kK (t+a)s+z) (s + 20

G(s)H(s) = 7.44
(H(S) s'(s + p)s+ p) (s + p) (749
An alternate form of this expression is
Kl1+T,s)(1+T,s)---(1+T_s
G(s)H(s) = ( N 3 ( .5 (7.45)

sS‘A+ T, )1+ T,5) - (1 +7T,5)

which is referred to as the time-constant form of the transfer function. The time
constants are simply

T, = Zl i=1ltom (7.46)
1 .
T, =— j=1lton (7.47)
J pj
I1=
and K=kZ (7.48)
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It is convenient 1o define the error constants in terms of the time constant form of
the loop transfer function. The loop transfer function is classified in terms of the
order of the pole at the origin. The system is referred to as a type O, type 1, type 2,
and so on depending on the value of the exponent of the pole at the origin, /; that
is,! = 0, 1, 2, and so on.

Now let us return to defining the error constants. We first examine the tracking
error to a step input. The step input can be expressed as

r = Au(t)

where A is the amplitude of the step and u(¢) is a unit step. The Laplace transform
of the step input is given by R(s) = A/s. The steady-state error can be found using
Equations (7.41) and (7.45) and the final value theorem:

e,, = Limit e(r) = Lin})it sE(s)

1

s(A/s)

e = LMt o S HG)
= Limit A = A
T T+ GoHG) 1+ Limit G()H(s)
A
or finally =TT K
,I

where K, called the positional error constant, is defined as
K, = Lirr})it G(s)H(s)

When the input signal is a ramp () = At. The Laplace transform of a ramp input
is R(s) = A/s>. The steady-state error can be found as previously:

— . . - 1 3 S(A/SZ)
e = Limit sE(s) = Limit i==~ o0

e Limit —————A
s = l
‘ s—0 s + sG(s)H(s)
or A

e = —

5 K

where K, is called the velocity error constant, is defined as
L= Lin})it sG{s)H(s)

The final input signal is that of a parabolic input or acceleration. The input signal
is given as

r(t) = At?/2
or in the Laplace domain
R(s) = A/s?

where A is acceleration amplitude. The steady-state error for an acceleration input
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TABLE 7.4
Steady-state errors

System type Step input Ramp input Parabolic input

r(f) = Au(t) r(t) = At r(®) = As?/2
0 A 0o 0
1+K,

A
1 0 — o

K,
2 0 0 —A~
K,

is as follows:
sA/s?

e = Limit sE(5) = Limit ;—==rors

e. = Limit——HA -4
* -0 s2 + s2G(s)H(s) K

q

where K, is the acceleration error constant, defined as
K, = Lin(l)it s G(s)H(s)
s
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The steady-state error depends on the system type and input function. A summary

of the steady-state error is given in Table 7.4.

EXAMPLE PROBLEM 7.6. Given the following transfer function, determine the
steady-state error of the system to unit step, ramp, and parabolic inputs:
k(s + 2)

G9H(s) = sis + D(s + 4)(s + 5)

Solution. The transfer function G(s)H(s) is in the pole-zero form. Rewriting the trans-
fer function in the time constant from yields

2k(1 + 0.55)
20s(1 + s)(1 + 0.255)(1 + 0.25)
k (1 + 0.55)
10 s(1 + s)(1 + 0.255)(1 + 0.25)

K(1 + 0.55)
s(1 + (1 + 0.255)(1 + 0.25)

G(s)H(s) =

where K = k/10.

This transfer function is a type 1 system because of the first-order pole at the
origin. From Table 7.4 we see that the steady error is O for a step input, 1/K,, for the
ramp input, and o for the parabolic input. The velocity error constant K, can be found
as follows:

K, = Lin}]it sG(s)H(5)

T K(1 - 0.55)
K, = Limit o 0+ 02551 + 0.25)
. = K = i—

10
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Root locus plot of G(s) H(s) = k(s +2)

s(s + Ds + 4)(s + 5)°

The steady-state error for the ramp input is
e, = 10/k

As the system gain is increased, the steady-state error will decrease. However, for this
particular example, the system gain is limited because too large a gain will cause the
system to be unstable. Figure 7.11 shows the root locus plot for this system.

7.7
CONTROL SYSTEM DESIGN

In this section we will try to provide a simple overview of the design process in
developing a new control system. Figure 7.12 is a simple flow chart indicating the
basic elements in the design of a new product. Design often is divided into three
phases: conceptual design, preliminary design, and detailed design. In conceptual
design, the designer attempts to develop one or more concepts that can provide the
overall system performance required by the customer. In the next phase, the pre-
liminary design phase, additional analysis is performed to optimize the system. In
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FIGURE 7.12
Flowchart of conceptual design process.

the final design phase the engineering team develops the detailed engineering
drawings and stipulates the manufacturing details.

The design process begins with the recognition of a need for a new control
system. This need may originate within the engineering department but is just as
likely to come from the marketing or sales department through feedback from the
company’s customers. Regardless of how or where the idea originates, the recogni-
tion of the need for a new control system starts the engineering design process.




264 cHAPTER 7: Automatic Control Theory—The Classical Approach

Once a product need is established this provides a definition of the purpose or func-
tion of the control system.

Having defined the purpose of the control system, the designer needs to identify
its requirements and specifications. These consist of items such as control system
performance, cost, reliability, maintainability, and other constraints. The perfor-
mance of the system usually is given in terms of time or frequency domain charac-
teristics or a combination of both. Time domain performance specifications include
rise time, setting time, peak overshoot, steady-state error, and the like. On the other
hand, the frequency domain specifications are given in terms of phase margin, gain
margin, and so forth. Additional constraints may be weight and volume require-
ments, which might be critical in an aerospace application.

With the purpose and specifications defined the designer must develop one or
more concepts to achieve the desired control function. The control system concepts
in large part are based on the designer’s creativity and experience. The concepts
are simply ideas of how to implement the desired control function, which can be
presented in the form of a simple block diagram. For example, if one were inter-
ested in designing a simple autopilot to maintain a wing’s level attitude the control
concept could be presented as shown in Figure 7.13.

The next phase of the design process is to evaluate the performance of each
concept against the specifications. This requires the designer to develop the appro-
priate mathematical models for each of the design components, such as controller,
actuators, plant, and sensor. The challenge at this point is to keep the mathematical
model as simple as possible but accurate enough to retain the essential dynamic
characteristics of each component.

Once the mathematical formulation is completed the control system can be
analyzed using the techniques presented in this chapter or the state-space design
methods presented in Chapter 9. These analysis methods allow the designer to
evaluate the control system performance as a function of various control system
design parameters. The performance of the control system concepts now can be
compared with the desired performance. In practice, the designer often is faced
with the problem that the concept does not meet all of the performance
specifications. The designer basically has three options: One is to try to convince
the potential customer that a particular performance specification is unrelated and
not essential for the overall performance of the system if this indeed is the case. The
second option is to select another control concept that can satisfy the specification.
The third is to add some form of compensation to the concept to improve the system
performance so that the specifications are satisfied.

Controller |- Aileron || Aircraft ¢
Command servo dynamics
roll angle
Gyro
FIGURE 7.13

Wing-leveling autopilot.
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7.7.1 Compensation

As stated in the previous section the ultimate test of a design concept is whether it
meets the desired performance specifications. The control system performance is
specified in terms of the transient behavior and the steady-state error. The transient
performance in the time domain can be described in terms of the damping ratio, ¢,
the peak overshoot, and the speed of the response as measured by the rise and
settling time. The relative stability also can be specified in terms of frequency-
domain performance indices such as the resonant peak, M,, and gain and phase
margins. The speed of response is measured by the resonant frequency, ,, and the
system bandwidth, wg.

In general the designer on analyzing a control system concept finds that some
but not all of the performance specifications are met by a particular control con-
cept. Using the root locus analysis technique discussed earlier the designer can
adjust the system gain to vary the control system performance; however, in most
cases the designer cannot meet all the design performance objectives by gain
adjustment alone. When the performance cannot be satisfied the designer can add
an additional component to the control system, called a compensator. The purpose
of the compensator is to improve the overall performance of the control system
concept. Recall that when discussing the root locus techniques we examined the
influence of the addition of either a simple pole, zero, or combination pole and zero
to the root locus plot. We found that the addition of poles and zeroes allowed us to
contour or change the shape of the root locus plot. The addition of some combina-
tion of poles and zeroes to a given control system transfer function represents a
compensator. By selecting the parameter in the compensator the designer can
change the shape of the root locus plot so that the overall performance specification
can be met.

The compensators can be thought of as an additional transfer function G.(s)
that can be added to either the forward or feedback path of the control system. As
illustrated in Figure 7.14, when the compensator is added to the forward path it is
called a cascade or series compensator and when it is placed in the feedback path
it is called feedback or parallel compensator. In general, the compensators are
electrical circuits or mechanical subsystems that provide the designer parameters
that can be adjusted to improve the overall system performance.

7.7.2 Forward-Path Compensation

To examine how a compensator can be used to improve the performance of a
control system we consider the simple control system shown in Figure 7.15. Sup-
pose that the performance requirements are given in terms of the damping ratio
and settling time as follows:

£ =0.707
t, < 3s.



266 CHAPTER 7: Automatic Control Theory—The Classical Approach

Compensator Plant

R{s) C(s)
G(s) Gls)

His)

Feedback elements
(a) Forward-path compensation

Forward-path Forward-path
element element
R(s) Cls)
G,(s) + X Gyls)
Feedback
compensator
H.(s)
Feedback element

H{s})

{b} Inner-loop feedback compensation

FIGURE 7.14
Series and parallel compensation.

Ris) Cls)
A Gls) k

& P sts+ 1)(s + 3)

FIGURE 7.15
Control system with a forward-path compensator.

From the root locus plot shown in Figure 7.16 we can achieve the desired damping
ratio by finding the gain for the point on the locus that interesects the radial line
from the origin that makes an angle of 45° with respect to the negative real axis.
The undamped natural frequency w, is the distance along the radial line of constant
{ from the origin to the root locus. For this case w, = 0.5 rad/s.

The settling time which can be estimated by

,_ 30
5 gw"
for an w, = 0.5 rad/s — the settling time is not less than 3 s. If the root locus plot

could be made to intersect the { = (.707 line at a larger value of w, the settling
time constraint could be met. As we noted earlier in this chapter a simple zero

(7.49)
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Root locus
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Imaginary axis
o
T
-~ ™.

Real axis

FIGURE 7.16

k
Root locus plot of G(s)H(s) =

s(s + D(s + 3)°

added to an open-loop transfer function G(s)H(s) causes the locus to bend more
toward the left in the complex plane. Figure 7.17 is a root locus plot with the
addition of a zero as s = —1.1. With the addition of the zero, the root locus plot
bends toward the left. The value of w, for the damping ratio of 0.707 is now 1.98
rad/s, which yields a settling time less than 3 s.

Unfortunately a simple zero is not very practical. In practice we add a transfer
function of the form
s+ z.

G.(s) =
(s) s+ p.

(7.50)

where z./p. < 1, or the compensator poles is located to the left of the compen-
sator zero. Such a compensator is called a lead compensator. The designer can
adjust the pole and zero location of the compensator to shape the root locus so that
both the damping ratio and settling time specifications can be met. The movement
of the compensator pole and zero is achieved by proper selection of the compo-
nents in the electrical circuit. In summary the lead compensator can be used to
improve the transient response characteristics of the control system.

It is possible to have a control system design with good transient character-
istics but a large steady-state error. When the steady-state error is large a lag
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FIGURE 7.18
\/\/X\/\l t Electrical circuits used as a
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=
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Ris) K ) o2 Cls) FIGURE 7.19
"‘ ks Sis ¥ 2a) A second-order control system.

compensator can be used to improve the steady-state error. The lag compensator
has the following form:
(s +z)
G.(s) = ——= (7.51)
(s + pJ)
where the compensator pole near the origin is located to the right of the compensa-
tor zero (z./p. > 1).
For the case where both the transient and steady response are unsatisfactory a
combination of a lag and lead compensator can be used. An example of a lag-lead
compensator follows:

_s+z) s+ )
(s+ p) (s + p)

Figure 7.18 shows electrical circuits that could be used to create a lead, lag, or
lag-lead compensator.

G.(s) (7.52)

7.7.3 Feedback-Path Compensation

Feedback compensation can be used to improve the damping of the system by
incorporating an inner rate feedback loop. The stabilizing effect of the inner loop
rate feedback can be demonstrated by a simple example. Suppose we have the
second-order system shown in Figure 7.19. The amplifier gain can be adjusted to
vary the system response as shown in the accompanying root locus plot presented
in Figure 7.20. The closed-loop transfer function for this system is given by

k,w,
52+ 2w,s + k,w?

M(s) =

Now if we add an inner rate feedback loop as shown in Figure 7.21, the closed-loop
transfer function can be obtained as follows. The inner loop transfer functions are

2

w
G = __ %Tn
1) s(s + 2{w,)
H(s) = ks
which can be combined as
G (s
M(sh, = l( )

1 + G,(s)H\(s)

wn

s? + 2w, + kwd)s
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_2§wn

Imaginary axis
(=]
3

- Root locus is stable for all =
values of the gain k,.

¢}
Real axis
FIGURE 7.20
Root locus for second order system.
R(s) w2 Cis) FIGURE 7.21
k, S5 + 20 Control system with the
addition of an inner rate
ks feedback loop.

The closed-loop transfer function can be obtained by letting

2
ku w,

Gls), = s+ o, + kwl)s
H,(s) = 1
which can be combined as
. G, (s)
MOor = TG,

k.o,
s+ Qlw, + kods + ko),

If we compare the closed-loop transfer function for the cases with and without rate
feedback we observe that in the closed-loop characteristic equation the damping
term has been increased by k,w?. The gain k, can be used to increase the system
damping.
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7.8
PID CONTROLLER

We have shown examples of various kinds of control concepts. The simplest feed-
back controller is one for which the controlier output is proportional to the error
signal. Such a controlier is called a proportional control. Obviously the controller’s
main advantage is its simplicity. It has the disadvantage that there may be a
steady-state error.

The steady-state error can be eliminated by using an integral controller

n(t) = k,j e(r) dr or n(s) = %e(s) (7.53)

where k; is the integral gain. The advantage of the integral controller is that the
output is proportional to the accumulated error. The disadvantage of the integral
controller is that we make the system less stable by adding the pole at the origin.
Recall that the addition of a pole to the forward-path transfer function was shown
to bend the root locus toward the right half plane.

It is also possible to use a derivative controller defined as follows:

de
dr

The advantage of the derivative controller is that the controller will provide large
corrections before the error becomes large. The major disadvantage of the deriva-
tive controller is that it will not produce a control output if the error is constant.
Another difficulty of the derivative controller is its susceptibility to noise. The
derivative controller in its present form would have difficulty with noise problems.
This can be avoided by using a derivative controller of the form

) =k, or n(s) = kyse(s) (7.54)

s
n(s) = k, i1 e(s) (7.55)

The term 1/(rs + 1) attentuates the high-frequency components in the error sig-
nal, that is, noise, thus avoiding the noise problems.

Each of the controllers—providing proportional, integral, and derivative
control—has its advantages and disadvantages. The disadvanatages of each con-
troller can be eliminated by combining all three controllers into a single PID
controller, or proportional, integral, and derivative, controller.

The selection of the gains for the PID controller can be determined by a
method developed by Ziegler and Nichols, who studied the performance of PID
controllers by examining the integral of the absolute error (IAE):

IAE =f le(?)| dt (7.56)
0

From their analysis they observed that when the error index was a minimum the
control system responded to a step input as shown in Figure 7.22. Note that the
second overshoot is one quarter of the magnitude of the maximum overshoot. They
called this the quarter decay criterion. Based on their analysis they derived a set of
rules for selecting the PID gains. The gains k,, k;, and k, are determined in terms
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Maximum overshoot
1/4 Maximum overshoot

1 "

| -

Response

Time (s)

FIGURE 7.22

The quarter-decay response.
of two parameters, k,,u, called the ultimate gain, and 7, the period of the oscillation
that occurs at the ultimate gain. Table 7.5 gives the values for the gains for propor-
tional (P), proportional-integral (PI), and the proportional-integral-derivative
(PID) controllers.

To apply this technique the root locus plot for the control system with the
integral and derivative gains set to 0 must become marginally stable. That is, as
the proportional gain is increased the locus must intersect the imaginary axis. The
proportional gain, k,, for which this occurs is called the ultimate gain, k, . The
purely imaginary roots, A = *iw, determine the value of T,:

2
T, =2 (7.57)
w
One additional restriction must be met: All other roots of the system must have
negative real parts; that is, they must be in the left-hand portion of the complex s
plane. If these restrictions are satisfied the P, PI, or PID gains easily can be deter-

mined.

EXAMPLE PROBLEM 7.7. Design a PID controller for the control system shown in
Figure 7.23.

TABLE 7.5
Gains for P, P1, and PID controllers

Type of controller k, k; k,
P (proportional controller) k, = 0.5k,
PI (proportional-integral
controller) k, = 0.45k,, k; = 0.45k, /(0.83T,)
PID (proportional-integral- k, = 0.6k, k; = 0.6k, /(0.5T,) k; = 0.6k, (0.125T,)

derivative controller)
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Ris) PID 0.2 C(s)
controller Gpls) = s{s + 1)(s + 1.5)

FIGURE 7.23
PID controller.

Root locus G(s) = 0.2*K,/(s(s + 1)*(s + 1.5)
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FIGURE 7.24
Root locus plot.

Solution. The gains of the PID controller can be estimated using the Ziegler-Nichols
method provided the root locus for the plant becomes marginally stable for some value
of the proportional gain k, when the integral and derivative control gains have been set
to 0. The root locus plot for

0.2k
s(s + (s + 1.5)
is shown in Figure 7.24. The root locus plot meets the requirements for the Ziegler-
Nichols method. Two branches of the locus cross the imaginary axis and all other roots
lie in the left half plane. The ultimate gain k,, is found by finding the gain when the root
locus intersects the imaginary axis. The locus intersects the imaginary axis at s =
+1.25i. The gain at the crossover point can be estimated from the magnitude criteria:
[0.2] k,,
[s|ls + 1]ls + 1.5]

G(s) =

1




274 CHAPTER 7: Automatic Control Theory—The Classical Approach

Closed loop response to a step input, G(s)H(s) = (k, + ki/s + ky*s)/(s(s + s + 1.5)}, k,, = 19.8

1.4

1.2

0.8

Amplitude

0.6

0.4

0.2

FIGURE 7.25
Transient response to a step input.
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Substituting s = 1.25i into the magnitude criteria yields

k

(4

=198

The period of the undamped oscillation 7, is obtained as follows:

=2_77=2_7T=5_03

1.25

20

Knowing k,, and 7, the proportional, integral, and derivative gains k,, k;, and k, can be

evaluated:

k, = 0.6 k,, = (0.6)(19.8) = 11.88
k = 0.6 k, /(0.5T,) = (0.6)(11.88)/[(0.5)(19.8)] = 0.72
ks = 0.6 k,, (0.125T,) = (0.6)(19.8)(0.125)(5.03) = 7.47

The response of control system to a step input is given in Figure 7.25.

7.9

SUMMARY

In this chapter we examined some of the analytical tools available to the control
system designer. The root locus technique allows the designer to examine the
movement of the closed-loop poles of the control system as a function of one or
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more of the design variables. We also examined the relationship between the root
location in the root locus diagram and the time and frequency domain performance
of the system.

The conceptual design of a control system was presented. Once the control
function has been identified, the designer must develop one or more concepts to
meet the performance objectives of the control system. This phase of the design
relies heavily on the designer’s creativity and experience. Having developed some
control system concepts the designer must evaluate the system performance. This
requires mathematically modeling the various elements in the control system and
selecting system parameters and analyzing the system performance using, for ex-
ample, the root locus technique. In general, the designer usvally will find that one
or more of the concepts comes close to meeting the design objectives but that some
of the requirements are not satisfied. In this case the designer must consider adding
some form of compensating elements to the control system. We examined a number
of compensators commonly used to improve control system performance. The type
of compensation that needs to be added to a control system depends on what system
performance specification needs to be improved.

PROBLEMS

Problems that require the use of a computer have a capital letter C after the
problem number.

7.1. Given the characteristic equation

AM+3A2+30+1+k=0

find the range of values of k for which the system is stable.

7.2. Given the fourth-order characteristic equation

AM+6A+ 1A +6A+ k=0

for what values of & will the system be stable?

7.3. Given the following characteristic equation determine the stability of the system
using the Routh criterion. If the system is unstable determine the number of roots
lying in the left portion of the complex plane.

A+ 3+ 52+ 0N +8A2+6A+4=0

7.4. The characteristic equations for several feedback control systems follow. Deter-
mine the range of values of & for which the following systems are stable:
(@ s>+ 3ks?+ (k+2)s+4=0
b) s*+ 45>+ 1352+ 365+ k=0

7.5(C). The loop transfer function G(s)H(s) is
a s(s? + 65 + 18) s(s + 2)(s + 5) ) s(s + 3)(s + 5)
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Imaginary axis

7.6.

7.7.

10 //

5 /

k(s + 3) © k(s + 4)
e e
s+ 4s + 20 (s2+ 25 + 6)(s* + 45 + 8)

(d)

Sketch the root locus plot for variations of k, 0 < k < o, for each transfer func-
tion. Check your results by using an appropriate root locus program.

Given the loop transfer function

. k

G)H(s) = ——————

WHE = 736 + 10)

(a) Sketch the root locus plot for G(s)H(s).

(b) Add a simple pole, (s + 2), to G(s)H(s) and examine the resulting root
locus.

(¢) Add a simple zero, (s + 2), to G(s)H(s) and examine the resulting root
locus.

The root locus plot for the transfer function

k

G(S)H(S) = m

is shown in Figure P7.7.
(a) Estimate the system gain, k, when the system is critically damped.
(b) What is the value of the system gain, k, for which the system neutrally stable?

Root locus

-10 -8 -6 -4 -2 0 2 4 6 8 10

Real axis

FIGURE P7.7
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7.8. The single degree of freedom pitching motion of an airplane was shown to be
represented by a second-order differential equation. If the equation is given as

6 +0.56+20=3,
where the @ and 8, are in radians, estimate the rise time, peak overshoot, and

settling time for step input of the elevator angle of 0.10 rad.

7.9. Determine the frequency domain characteristic for Problem 7.8. In particular
estimate the resonance peak, M,, resonant frequency, w,, bandwidth, wg, and the
phase margin.

7.10(C). The root locus plot for the loop transfer function

k
(s + 8)(s* + 65 + 13)

G(s)H(s) =

is shown in Figure P7.10.

(a) Find the system gain when the damping ratio is { = 0.707.

(b) Estimate the time-domain characteristic for the dominant roots for the gain
determined in part (a).

(¢) Estimate the frequency response characteristics, that is, gain and phase mar-
gin, from the root locus plot for the gain selected in part (a).

Root locus

15 -

Imaginary axis
o
*

-10 -

-15

-15 -10 -5 0 5 10 15

Real axis

FIGURE P7.10
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7.11. Calculate the position, velocity, and acceleration error constants K,,, K, and K,
for the loop transfer function G(s)H(s) that follows:

) 10 s+ 2
@ sts + D(s + 10) @ s(s2 + 45 + 6)
k © 15(s + 2)

TS ER G 6+ 3)

) k
© s(s? + 45 + 100)

7.12. The lead compensator can be constructed from a simple electrical circuit shown
in Figure P7.12. Show that the transfer function for this circuit can be written as

€y (Tls + 1)
Gls) = 22 = g2 "7
) e a(aT,s + 1)

where a = R,/R, + R, and T), = R\C.

|— FIGURE P7.12
¢ Lead circuit.

- ®
o)
»

o——o(b —(

7.13. The lag compensator also can be constructed from a simple electrical circuit as
shown in Figure P7.13. Show that the transfer function for this circuit can be
written as

e, s + 1
Gls) =2 =22 1~
(S) €; (Tz/b)s + 1

where b = R,/(R, + R,)

T2 = RzC
o WWWY FIGURE P7.13
I R, T Lag circuit.
R
e 2 e

7.14(C). The control system shown in Figure P7.14 must meet the following performance
specifications:



7.15.

7.16(C).

7.17(C).
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Damping ratio, { = 0.6
Settling time, #, = 2.0 s
Positional error constant, K, = 10

(@) Assume that no compensation is used and estimate the system performance.
(b) Design a lead compensator to achieve this system performance.

R(s) . " Cls)
o8 s L 0BNs + 2)

FIGURE P7.14

In the control system shown in Figure P7.15 rate feedback is to be used to increase
the system damping. Estimate the gains k, and k, so that the system meets the
following performance specifications:

Damping ratio, { = 0.7
Settling time, = 3.0 s

R(s) 1 C(s)
+

FIGURE P7.15

Given the control system shown in Figure P7.16 where the plant transfer function
G(s) is given by
2.0

O = GT D6 +3)

design a PID controller for this system.

R(s) k; 2.0 Cls)
ko+ 5 +kgs Sts + s + 3)
PID controller Plant
FIGURE P7.16

If the plant transfer function for Problem 7.16 is changed to

7.0
(s + 5P+ 25+ 5)

G(s) =

design a PID controller for this system.
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CHAPTER 8

Application of Classical Control Theory
to Aircraft Autopilot Design

“The application of automatic control systems to aircraft promises to bring
about the most important new advances in aeronautics in the future.”

William Bollay, 14th Wright Brothers Lecture, 1950

8.1
INTRODUCTION

The rapid advancement of aircraft design from the very limited capabilities of the
Wright brothers’ first successful airplane to today’s high performance military,
commercial, and general aviation aircraft required the development of many tech-
nologies: aerodynamics, structures, materials, propulsion, and flight controls. To-
day’s aircraft designs rely heavily on automatic control systems to monitor and
control many of the aircraft’s subsystems.

The development of automatic control systems has played an important role in
the growth of civil and military aviation. Modern aircraft include a variety of
automatic control systems that aid the flight crew in navigation, flight management,
and augmenting the stability characteristics of the airplane. In this chapter we use
control theory to design simple autopilots that can be used by the flight crew to
lessen their workload during cruising and help them land their aircraft during
adverse weather conditions. In addition, we also discuss how automatic control
systems can be used to provide artificial stability to improve the flying qualities of
an airplane.

Table 8.1 lists some of the functions that automatic control systems provide for
flight control. In addition to the automatic flight control system, modern aircraft
use control systems to aid in the navigation of the aircraft.

The development of autopilots closely followed the successful development of
a powered, human-carrying airplane by the Wright brothers. In 1914 the Sperry
brothers demonstrated the first successful autopilot. The autopilot was capable of
maintaining pitch, roll, and heading angles. To demonstrate the effectiveness of
their design, Lawrence Sperry trimmed his airplane for straight and level flight and
then engaged the autopilot. He then proceeded to stand in the cockpit with his
hands raised above his head while his mechanic walked out along the wings in an

281
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TABLE 8.1
Automatic flight control system

Flight control system to reduce pilot workload
Attitude control systems to maintain pitch, roll, or heading

Altitude hold control system to maintain a desired altitude
Speed control system to maintain a constant speed or Mach number
Stability augmentation systems

If an airplane is marginally stable or unstable, automatic control systems can provide
proper flight vehicle stability

Automatic control can be used to ensure an airplane has the appropriate handling qualities;
additional damping is incorporated by using a roll, pitch, or yaw damper

Landing aids
A glide slope control system to guide the airplane down an electronic beam to the runway

A localizer to align the aircraft in the lateral direction with the runway centerline as the
airplane descends down the glide slope

A flare control system that helps the aircraft make the transition from the glide slope
to the runway

FIGURE 8.1
Sperry’s flight demonstration of a three-axis automatic control system (from [8.1]).
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attempt to upset the airplane’s equilibrium. Figure 8.1 shows a photograph of the
remarkable flight. The autopilot provided aileron, rudder, and elevator commands
so that the airplane remained in a wings-level attitude.

8.2
AIRCRAFT TRANSFER FUNCTIONS

The longitudinal and lateral equations of motion were described by a set of linear
differential equations in Chapter 3. A very useful concept in the analysis and design
of control systems is the transfer function. The transfer function gives the relation-
ship between the output of and input to a system. In the case of aircraft dynamics
it specifies the relationship between the motion variables and the control input. The
transfer function is defined as the ratio of the Laplace transform of the output to the
Laplace transform of the input with all the initial conditions set to 0. (i.e., the
system is assumed to be initially in equilibrium). For the reader who is not familiar
with theory of Laplace transformations, a brief review of the basic concepts of
Laplace transformation theory is included in Appendix C at the end of this book.
In the following sections we develop the transfer function based on the longitudinal
and lateral approximations developed in Chapters 4 and 5. We develop these
simpler mathematical models so that we can examine the idea behind various
autopilots without undue mathematical complexity.

8.2.1 Short-Period Dynamics

In Chapter 4 the equations for the short-period motions were developed for the case
where the control was held fixed. The equation with control input from the elevator
in state space form can be written as

Aa Z,Juy 1 ][Aa] [ Zs,/uq ]
= + 3 .
[Aq] [M,, + MiZJuy M, + M.l Aq] "~ [ Ms + M.Z; /u, [As] (8.1)

The control due to the propulsion system is neglected here for simplicity. Taking the
Laplace transform of this equation yields
(s = Zu/uo) Da(s) — Aq(s) = Z; /uy AS(s) (8.2)

—(M, + M,Z,/up) Aa(s) + [s — (M, + M,)] Aqg(s)

= (M, + MZsfu) 65, B

If we divide these equations by Ad,(s) we obtain a set of algebraic equations in
terms of the transfer functions Aa(s)/A8,(s) and Ag(s)/AS.(s):

Aa(s) — Agls)
Ad.(s)  A8.(s)

(s — Zo/uo) = Z; fup (8.4)
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Aa(s) Ag(s) Zs
- 4 + [s ~ + M, = .~ (8.
(Mnt + MaZﬂ/uo) A6e(s) [s (Mq Ma)] ASB(S) MS‘, + Ma U (8 5)
Solving for Aa(s)/AS,(s) and Ag(s)/AS,(s) by Cramer’s rule yields
Zse/ Uy -1
M, + M -é‘ s— M, + M)
Aa(s) Ng,(s) _ % “uy ‘ “ (8.6)
A8, () A,ls) s — Z,/uy -1 '

—(M, + M, Z,Juy) s — (M, + M,)

When expanded, the numerator and denominator are polynomials in the Laplace
variable s. The coefficients of the polynomials are a function of the stabil-
ity derivatives. McRuer, Ashkenas, and Graham [8.2] use a shorthand notation
to express the transfer function polynomials. We will use this convenient nota-
tion to present the transfer function developed here. An example of the notation
follows:

Aals) _ N3(s) A, + B,
As.(s)  A,(s) As®+ Bs+ C

(8.7)

where the coefficients in the numerator and denominator are given in Table 8.2.
The transfer function for the change in pitch rate to the change in elevator angle can
be shown to be

s — Z.,/ug Zse/uo
Zs
~(M, + M,Z,/u) M, + M=%
Ag(s) _ N3 (s) _ ( fia) - M, o -
Ase(s) Asp(s) s — Za/uo -1 .
—(M, + M, Z.Ju)) s — (M, + My
N’
or Ag(s) Ni() A+ B, (8.9)

AS(s) A,(s) As*+ Bs+ C

Again the coefficients of the polynomials are defined in Table 8.2.

TABLE 8.2
Short-period transfer function approximations

AA, 0T A, B,B,, or B, C
A,(s) 1 ~(M, + M, + Z,/up) ZM,Ju, ~ M,
Ng(s) Zs,/uq M;, — qua,/uo

N (s) M;, + M, Z; Ju, M, Z;,fuy — M5, Z, [uy
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8.2.2 Long-Period or Phugoid Dynamics

The state-space equation for the long period or phugoid approximation are as
follows:

X -8 X, Xs,
Au “ Au ; A
= + zZ zZ i .
[AG] _L [AB] o [AST] (8.10)
Uy Uy Uy

The Laplace transformation of the approximate equations for the long period are
(s — X,) Au(s) + g A8(s) = X; A8,(s) + X5 AS,(s) (8.11)

y4 Z
Ze puls) + s ABGs) = — 2 AB(s) — XA () (8.12)
Uy Uy Uy

The transfer function Au(s) /A8, (s) and A8(s)/AS,(s) can be found by setting Ad,(s)
to 0 and solving for the appropriate transfer function as follows:

Au(s) Ad(s)
(s = X.) a SR X (8.13)

Z, Au(s) AO(s) 2,
v Ao | SAsl) . (3.14)

The equations of motion have been reduced to a set of algebraic equations in terms
of the desired transfer function. These equations can be solved to yield the transfer
functions

Xs, 8
— Za,
Auls) _ 1t (8.15)
ASc(s) 5 — Xu g
Z,
—u s
Uy
X5 + gZ; /u
2;((”) _ ST 8 8’/2 0 (8.16)
S x s — 28
Uy
In a similar manner A6(s)/A8(s) can be shown to be
Zﬁe Xu ZBe ZMX&
Ab(s) - _u-o_s * Up - Up
= 8.17
Aﬁe(s) Zug ( )

52— X, 5 — =
Uy
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TABLE 8.3
Long-period transfer function approximations

A,A,,0rA, B,B,, or B, C
A, (s) ! ~X. ~Z.8/u
N;e(s) Xs, gzﬁe/u()
N (s) —Zs fuy X, Zs,fug — Z,X5 /Uy

The transfer functions can be written in a symbolic form in the following manner:

Auls) _ N3 (5) __As+B,
Ad,(s) As) As+Bs+C

(8.18)

A6(s) _ N§ A+ B
As.(s) As) As*+ Bs+ C

(8.19)

where A,, B,, and so forth are defined in Table 8.3. The transfer functions for the
propulsive control, that is, Au(s)/A8;(s) and AB(s)/Ad.(s), have the same form
except that the derivatives with respect to 8, are replaced by derivatives with
respect to &;. Therefore, Table 8.3 can be used for both aerodynamic and propul-
sive control transfer functions provided that the appropriate control derivatives are
used.

8.2.3 Roll Dynamics

The equation of motion for a pure rolling motion, developed in Chapter 5, is
Ap — L, Ap = L; Ag, (8.20)

The transfer function Ap(s)/8,(s) and Ad(s)/AS,(s) can be obtained by taking the
Laplace transform of the roll equation:

(s = L,) Ap(s) = L;, A8,(s) (8.21)
Ap(s) _ L,
or R (8.22)

Pt the roll rate Ap is defined as Ag; therefore,
Ap(s) = sAd(s) (8.23)

Ad(s) L,
AS(s) s(s — L,) (8.24)

or
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8.2.4 Dutch Roll Approximation

The final simplified transfer function we will develop is for the Dutch roll motion.
The approximate equations can be shown to be

AB] _ [Yauo —(1 = Yu) |[AB] | [Ys/uo O ][A8]
[Aé]_lii% N, ][Aél+[:Nq A@][A&] (82

Taking the Laplace transform and rearranging yields
(s — Yﬁ/u()) AB(s) + (1 — Y, /up) Ar(s) = Ya,/uo AS,(s) (8.26)
—Ng AB(s) + (s — N,) Ar(s) = N5 A8,(s) + N; A5,(s)  (8.27)

The transfer functions AB(s)/A8,(s), Ar(s)/AS,(s), AB(s)/A8,(s), and Ar(s)/AS,(s)
can be obtained by setting A8, (s) to 0 and solving for AB(s)/A8,(s) and Ar(s)/A8,(s).
Next set A, (s) equal to 0 and solve for AB(s)/AS,(s) and Ar (s)/A8,(s). The transfer
functions AB(s)/AS,(s) and Ar(s)/A8,(s) are obtained as follows:

_ AB(s) B Ar(s) _
( Yﬁ/uo) AS() + (1 Y/ 0) A5() Ya,/uo (8.28)
A A
~N, Ag((s)) + (s~ N) ’((“2) N, (8.29)
Solving for the transfer function yields
Ya,/"o 1 =Y, /u
AB(S) - Nﬁ, s — Nr (8 30)
Aar(s) A YB/uO 1 - Y,/uo ’
_NB S — N,
S~ YB/ Uy Ys,/ Uy
Ar(s) _ —Ng Ns, 8.31)
AS(s)  |s — Yefuy 1 — Y, /uy '
—Ng s — N,
AB(s) _ NB(s)  Ags + By
or AS(s) DA(s) As’+ Bs+ C (8.32)
Ar(s) _ NB(s)  As + B, (8.33)

AS.(s) Apr(s) As>+ Bs+ C
In a similar manner the aileron transfer function can be shown to be

AB() _ NB()  Ags + B,

Aaa(s) B ADR(S) a ASZ + BS —+ C (834)
Nr
Ar(s)  Ni3(s) = As+ B, 535

AS,(s)  Aprls) As>+ Bs+ C
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TABLE 84
Dutch roll transfer function approximations

A,Bg,or A, B, Bg, or B, C
Aprls) | ~(Yg + uyN)/uy (YgN, — NgY, + Ngug)/u,
NE(s) Y, /uy (Y, N5, — Ys5,N, — N5 ug)fu,
S,(S) Na, (Nzx Y, — YﬁNa,)/’lo
N§ (s) 0 (Y, N5, — tyNs,)/uy
N5 () Ns, ~YgN; Jug

The coefficients of the polynomials in the Dutch roll transfer functions are included
in Table 8.4. The denominator coefficients are in the first row and the numerator
coefficients are defined for each transfer function in the subsequent rows.

In the previous section, transfer functions were derived for both longitudinal
and lateral dynamics based on the approximations to these motions. For a prelim-
inary autopilot design these approximations are appropriate. However, as the au-
topilot concept is refined and developed it is necessary to examine the autopilot
performance using transfer functions based on the complete set of either the
longitudinal or lateral equations. This is particularly important for the lateral
equations. As we showed in Chapter 5 the lateral approximations do not generally
give a very accurate representation of the Dutch roll motion.

The longitudinal and lateral transfer functions for the complete set of equations
are determined in the same manner as the approximate transfer functions derived
here. The transfer functions for the complete set of rigid body equations are given
in Tables 8.5 and 8.6.

8.3
CONTROL SURFACE ACTUATOR

In addition to the various transfer functions that represent the aircraft dynamics,
we need to develop the transfer functions for the other elements that make up the
control system. This would include the servo actuators to deflect the aerodynamic
control surfaces as well as the transfer function for any sensors in the control loop;
for example, an attitude gyro, rate gyro, altimeter, or velocity sensor. The transfer
functions for most sensors can be approximated by a gain, k. In this section we
develop an expression for the transfer function of a simple position control servo
that is used to accurately deflect the aerodynamic control surfaces in an automatic
system.

Control surface servo actuators can be either electrical, hydraulic, pneumatic,
or some combination of the three. The transfer function is similar for each type. We
will develop the control surface servo actuator transfer function for a servo based
on an electric motor.
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TABLE 85

Longitudinal control transfer functions

B

C

D E

Ni M + Z:M,

Ny Z

-M, — uM, - Z, - X,

X(Z M, + M)
+ Zs(M,, — X, M,)
- MS(Xu + Zw)

XsZ, — Zs(X, + M) + Msu,

~X5(Z, + M, + uM,) + Z,X,

Z,M, — uM, — X,Z,
+ X, (M, + uM,, + Z,)

X{(ZM, - Z,M)
+ Z;(M. X, - M,X)
+ My(Z.X, — X,Z)

Xs(eM, — Z,M,)
+ Z; XM, — uyM;X,
XA(Z, M, — uM,,)
— Zs(X M, + gM,)
+ M5 X, — g

X, (Z, M, ~ uM,) gZM, — M,Z)
+ Z (X, M, + gM,)
~ M (X, — g

&Z:M, — M;Z)

gM;Z, — ZsM,)
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motor FIGURE 8.2
Motor with rate feedback.

Is2

rate feedback

The torque produced by an electric motor is proportional to the control voltage
as follows:

T, = k,v, (8.36)

where k,, is a constant. The angular position of the motor shaft can be determined
from the equation

=T, (8.37)

The relationship between the angular position of the motion shaft (output) and the
motor control voltage (input) is given by the transfer function

0 k&

— == 8.38
v Is? (8.38)

c

In general, the motor will incorporate a rate feedback loop as illustrated in Fig-
ure 8.2. The transfer function for the system with rate feedback can be shown to be

9 k
o__ k 3
v, sE,s + 1) (8.39)
where =1 nd k= (8.40)
™= LB ° B )

The motor time constant 7,, is a measure of how fast the motor responds to a change
in control voltage. If 7,, is small, the motor responds rapidly and the transfer
function of the motor with rate feedback can be approximated as

9 _*k (8.41)
v, S

A simple position control servo system can be developed from the control diagram
shown in Figure 8.3. The motor shaft angle, 6, can be replaced by the flap angle,

Ve @__‘ Amplifier Servo1 motor | O
k L
2 Bns

l_— Position feedback

ks

FIGURE 8.3
Simple position control servo for control surface
deflection.
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8, of the control surface. For the positional feedback system the closed loop
transfer function can be shown to have the following form:

o k
-+ = 8.42
v, Ts+1 ( )
where k and 7 are defined in terms of characteristics of the servo,
k=1/k d = ﬁ (8.43)
2 an T Ik, .

The time constant of the control surface servo is typical of the order of 0.1 s. In the
problems that follow we assume this value as representative of typical control
surface servo time constants.

8.4
DISPLACEMENT AUTOPILOT

One of the earliest autopilots to be used for aircraft control is the so-called dis-
placement autopilot. A displacement type autopilot can be used to control the
angular orientation of the airplane. Conceptually, the displacement autopilot works
in the following manner. In a pitch attitude displacement autopilot, the pitch angle
is sensed by a vertical gyro and compared with the desired pitch angle to create an
error angle. The difference or error in pitch attitude is used to produce proportional
displacements of the elevator so that the error signal is reduced. Figure 8.4 is a
block diagram of either a pitch or roll angle displacement autopilot.

The heading angle of the airplane also can be controlled using a similar
scheme. The heading angle is sensed by a directional gyro and the error signal is
used to displace the rudder to reduce the error signal. A displacement heading
autopilot also is shown in Figure 8.5.

In practice, the displacement autopilot is engaged once the airplane has been
trimmed in straight and level flight. To maneuver the airplane while the autopilot

e T Vertical | ® [ Control | % [ Aircraft 0 FIGURE 8-4 '
& gyro e, | servo | 5 | dynamics A roll or pitch displacement
) ¢ autopilot.
e
v Directional | _* | Control 8 Aircraft v
gyro servo dynamics
FIGURE 8.5

A heading displacement autopilot.
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is engaged, the pilot must adjust the commanded signals. For example, the airplane
can be made to climb or descend by changing the pitch command. Turns can be
achieved by introducing the desired bank angle while simultaneously changing the
heading command. In the following sections we examine several displacement
autopilot concepts.

8.4.1 Pitch Displacement Autopilot

The basic components of a pitch attitude control system are shown in Figure 8.4.
For this design the reference pitch angle is compared with the actual angle mea-
sured by a gyro to produce an error signal to activate the control servo. In general
the error signal is amplified and sent to the control surface actuator to deflect the
control surface. Movement of the control surface causes the aircraft to achieve a
new pitch orientation, which is fed back to close the loop.

To illustrate how such an autopilot would be designed, we will examine this
particular pitch displacement autopilot concept for a business jet aircraft. Once we
have decided on a control concept, our next step must be to evaluate the perfor-
mance of the control system. To accomplish this we must define the transfer
functions for each of the elements in the block diagram describing the system. For
this discussion we assume that the transfer functions of both the gyro and amplifier
can be represented by simple gains. The elevator servo transfer function can be
represented as a first-order system:

68 kﬂ
v Ts + 1

where 8., v, k,, and T are the elevator deflection angle, input voltage, elevator servo
gain, and servomotor time constant. Time constants for typical servomotors fall in
arange 0.05-0.25 s. For our discussion we assume a time constant of 0.1 s. Finally,
we need to specify the transfer function for the airplane. The transfer function
relating the pitch attitude to elevator deflection was developed earlier. To keep the
description of this design as simple as possible, we represent the aircraft dynamics
by using the short-period approximation. The short-period transfer function for the
business jet in Appendix B can be shown to be

A0 =20(s + 03)
AS, s(s? + 0.65s + 2.15)

Figure 8.6 is the block diagram representation of the autopilot. The problem
now is one of determining the gain k, so that the control system will have the desired
performance. Selection of the gain k, can be determined using a root locus plot of
the loop transfer function. Figure 8.7 is the root locus plot for the business jet pitch
autopilot. As the gain is increased from 0, the system damping decreases rapidly
and the system becomes unstable. Even for low values of k,, the system damping
would be too low for satisfactory dynamic performance. The reason for the poor
performance of this design is that the airplane has very little natural damping. To
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F) 1
v )
Oc ~k, -2.0[s + 0.3] 6
s + 10 s[s? + 0.65s + 2.15]

Elevator servo Short period dynamics

FIGURE 8.6
A pitch displacement autopilot for a business jet.

8 3 FIGURE 8.7
4 _ Root locus pilot of the system gain for a pitch
] /1 displacement autopilot.
iw 0 W
] N
-4 4
-8 —-L'—r—’V T T

-11 =10 -1 0 1 2

n
ret I—K—I Ca Elevator % é o
m e & —{ 1/s —
P servo ¢
0
Rate
gyro
Vertical
gyro
FIGURE 8.8

A pitch attitude control system employing pitch rate feedback.

improve the design we could increase the damping of the short-period mode by
adding an inner feedback loop. Figure 8.8 is a block diagram of a displacement
autopilot with pitch rate feedback for improved damping. In the inner loop the pitch
rate is measured by a rate gyro and fed back to be added with the error signal
generated by the difference in pitch attitude. Figure 8.9 is a block diagram for the
business jet when pitch rate is incorporated into the design. For this problem we
now have two parameters to select; namely, the gains k, and &,,. The root locus
method can be used to pick both parameters. The procedure essentially is by trial
and error. First, the root locus diagram is determined for the inner loop, a gyro gain
is selected, and then the outer root locus plot is constructed. Several iterations may
be required until the desired overall system performance is achieved.
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—10 | % -20(s+03) |6 6
s+ 10 s2+ 0.66s + 2.15
e 1
]

FIGURE 8.9
A business jet pitch attitude control system with pitch rate feedback.

Elevator Be Aircraft
servo dynamics

FIGURE 8.10
Pitch attitude autopilot with a PID controller.

EXAMPLE PROBLEM 8.1. Use the PID controller for a pitch attitude autopilot as
illustrated in Figure 8.10. The transfer functions for each component are given in
Table 8.7.

Solution. Using the Ziegier and Nichols method discussed in Section 7.8, the PID
gains can be estimated from the ultimate gain k,,, which is the gain for which the sys-
tem is marginally stable when only the proportional control is being used. Figure 8.11
is the root locus sketch of the transfer function:

3.0k,
(s + 10)(s>+2s + 5)

G(s)H(s) =

The root locus crosses the imaginary axis at s = *5.13i. The gain of the system can
be found from the magnitude criteria to be k,, = 88.7. The period, T, = 27/w = 1.22.
Table 8.8 gives the gains for the proportional, proportional-integral and proportional-
integral-derivative controllers. Figure 8.12 shows the response of the pitch attitude

TABLE 8.7
Data for Example Problem 8.1

Control element Parameters Transfer function

PID k, =7 5, k;
k=1 ~ =k, + =+ ks
k, =7 € s

Elevator servo

Aircraft dynamics
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Root locus
20

15

10

Imaginary axis
[=]

-10

-16

-20 -15 -10 -5 0 5 10 15 20

Real axis

FIGURE 8.11
Root locus plot of G(s)H(s).

TABLE 8.8
Gains for P, PI, and PID controllers

P control k, = 0.5k, = 44.35
PI control k, = 0.45k,, = 39.92

k; = 0.45k,,/(0.83T,) = 39.42
PID control k, = 0.6k,, = 53.22

k; = 0.6k,,/(0.5T,) = 87.24

k, = 0.6k,,(0.125T,) = 8.12

autopilot for the three different controllers to a step input. Notice that the proportional
controller has a steady-state error; that is, it does not go to 1 but converges to a value
of approximately 0.7. The magnitude of the steady-state error can be predicted using
the steady-state error constants in Chapter 7:

1
1+ K

P

€ss =

3.0k,
s+ 1252 + 255 + 50

where K, = Limit G(s)H(s) = Limit
s—0 s—0
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Response to a step input of a pitch autopilot with either a P, P1, or PID controller.
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FIGURE 8.12
Concluded.

for a proportional gain k, = 44.35
K, =266

The steady-state error e can then be calculated:

Therefore the response will go to 0.73 instead of 1 due to the steady-state error.

8.4.2 Roll Attitude Autopilot

The roll attitude of an airplane can be controlled by a simple bank angle autopilot
as illustrated in Figure 8.13. Conceptually the roll angle of the airplane can be
maintained at whatever angle one desires. In practice we would typically design the
autopilot to maintain a wings level attitude or ¢ = 0. The autopilot is composed of
a comparator, aileron actuator, aircraft equation of motion (i.e., transfer function),
and an attitude gyro to measure the airplane’s roll angle.
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Error FIGURE 8.13
b < signal [ aijeron | % Roll ¢ Simple roll attitude control
actuator dynamics system.
Attitude
gyro

EXAMPLE PROBLEM 8.2. Design a roll attitude control system to maintain a wings
level attitude for a vehicle having the following characteristics:

L;, =20/ L,=—05/s

The system performance is to have a damping ratio, { = 0.707, and an undamped
natural frequency, @, = 10 rad/s. A potential concept of a roll attitude control system
is shown in the block diagram in Figure 8.14.

Solution. Once we have decided on one or more concepts our next step is to evaluate
the performance of the proposed control system. To accomplish this we need to develop
the appropriate mathematical model for each system component. For this example we
assume that the servo actuator and sensor can be represented by gains &, and k,, for the
actuator and sensor, respectively. The equation of motion for an airplane constrained
to a pure rolling motion was developed in Chapter 5 and transfer function A¢(s) /A8, (s)
was developed earlier in this chapter. The roll angle to aileron input transfer function
for an airplane can be shown to be

Ab(s) _ L,
A8, (s) s(s — L))
For this example we consider the sensor to be a perfect device; the feedback path

then can be represented as a unity feedback (see Figure 8.15). The forward path
transfer function is obtained by combining the elements in the forward path:

A3,(s) Ad(s)

Gls) =
¥ 380
L,
= f %
“sts — L,)
& e 5 , ¢ FIGURE 8.14
__°-®_¢4 Actuator | ° dC::;:if:s Roll attitude control concept.
a
P8,
Sensor
S
FIGURE 8.15

Simplified roll control system.
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The feedback transfer function is idealized as a perfect sensor:
H(s) =1

Finally the loop transfer function, G(s)H(s), can be determined by combining the
forward and feedback path transfer functions:

k

G(S)H (S) = m
where k = k,L 5,
k

G(s)H(s) = ;ZS—“‘O_S)

The desired damping ratio of { = 0.707 can be achieved with the present control
system. The gain for the system is determined by drawing a line from the origin at 45°
as indicated in the root locus plot. Recall that the damping ratio was shown to be equal
to the following expression:

{ =cosé

where 8 is measured from the positive real axis in the counterclockwise direction. Any
root intersecting this line has a damping ratio of 0.707. The gain at this point can be
determined from the magnitude criteria as follows:

L
[s| |s + 0.5]

where s = —0.25 + 0.251.
Substituting s into the magnitude equation and determining the magnitude of each
component yields a value for £:

k = 0.0139

For this example we see that it is possible to select a gain so that the damping ratio
requirement is satisfied; however, the undamped natural frequency is much lower than
specified:

w, = 0.35 rad/s

Recall that the undamped natural frequency is equal to the radial distance from the
origin to the point on the locus as itlustrated in the root locus sketch. The problem with
this system is the low roll damping. If the roll root, L, were greater in the negative
sense, the vertical asymptotes of the root locus would shift to the left. This is noted in
the root locus sketch (Figure 8.16) by the dotted root locus contour.

L,, the roll damping root, was shown to be a function of the wing span; therefore,
we could make L, more negative by increasing the wing span of the vehicle. This may
be impractical and so we need to look at providing increased damping by means of a
stability augmentation system. This can be accomplished by incorporating a rate
feedback loop as illustrated in Figure 8.17.

The inner loop transfer function can be expressed as follows:

Ap(s) _ Ls,
Ad(s) (s— L)




Imaginary axis

Root locus

0.8

0.4 -

/

0.2

45° ~

-0.6

-0.4 -0.2 0 0.2

Real axis

0.4 0.6 0.8 1

@np, > @np,

Py

Dotted line is root
locus if pole is moved
farther to the left.

=} -:————-/————
]
]
)
]
1
H

FIGURE 8.16
Root locus plot of G(s)H(s) = k/s(s + 0.5).

Dashed line is
original root locus.

301




302 cHAPTER 8: Classical Control Theory, Aircraft Autopilot Design
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FIGURE 8.17
Rate feedback block diagram.

for the aircraft dynamics, &, for the aileron servo, and k,, = 1 for the rate gyro. The
inner loop transfer functions are

k
Gl = s +ILO.5
where ky, = k,Ls,
Hs) = 1
The inner loop can be replaced by the transfer function
G(s
MO =773 G<(s))lILLH(s)[L
_ ki
s+ 05 + k.

The inner loop gain can be selected to move the augmented roll root farther out along
the negative real axis. If the inner loop root is located at s = —14.14 the root locus will
be shifted to the left so that both the desired damping and undamped natural frequency,
w,, can be achieved. This means that the inner loop gain k; must equal 13.64. The loop
transfer function G(s)H(s)o, for the outer loop can be expressed as

k,(13.64)

GWH() = 1D

with the augmentation, provided by the inner loop damping the specifications for ,
and { are both satisfied. The amplifier gain k, can be shown to equal 7.33. Figure 8.18
shows the time history response of the control system with rate feedback to an initial
disturbance in the bank angle of 15°. The control system rapidly brings the vehicle back
to a wings level attitude. This simple example illustrates the challenges the designer
must face in satisfying all the design specifications. In this particular case we needed
to add a compensator to the initial concept in the form of a rate feedback loop to meet
both the damping ratio and undamped natural frequency specifications.

8.4.3 Altitude Hold Control System

The altitude of an airplane can be maintained by an altitude hold autopilot. A
simplified altitude hold autopilot is shown in Figure 8.19. Basically the autopilot is
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FIGURE 8.19

Altitude hold control system.

constructed to minimize the deviation between the actual altitude and the desired
altitude.

To analyze how such an autopilot would function we examine an idealized
case. We make the following assumptions: First, the airplane’s speed will be con-
trolled by a separate control system; second, we neglect any lateral dynamic
effects. With these restrictions we are assuming that the only motion possible is in
the vertical plane. The transfer functions necessary for performing this analysis are
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the elevator servo and aircraft dynamics. The elevator transfer function can be
represented as a first-order lag as used previously:

6,k

e s+ 10
The aircraft dynamics will be represented by the short period approximation
developed in Section 8.3.

To examine the altitude hold control system we need to find the transfer
function Ak/A8,. This can be obtained by examining Figure 8.20, which shows the
kinematic relationship between the airplane’s rate of climb, pitch angle, and angle
of attack. From Figure 8.20 we can write the following relationship:

Ah = u, sin(A8 — Ac)
For small angles this can be reduced to
Ah = uy (A0 — Aa)
Now we can find Ah/AS, as follows:
sAR(s) = u,[A0(s) — Aa(s)]

or Ah(s) = ?[Ae(s) ~ Aa(s)]

V = uq for small angles

FIGURE 8.20
Kinematic relationship for determining vertical rate of climb.
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and on dividing by AS, we obtain the desired transfer function relationship:
Ah(s) _ U [AB(S) B Aa(s)]
Ad.(s) s LAS(s) AS.(s)

The transfer function AB(s)/A8,(s) can be obtained from Ag(s)/AS,(s) in the follow-
ing way:

Ag = Ab
therefore, Ag(s) = s Ab(s)
Ad(s) _ 1 Ag(s)
A8,(s) s AS,(s)
_ As + B,
s(As? + Bs + O)
The transfer function Aa(s)/Ad,(s) was developed earlier as
Aa(s) __As+ B,
AS(s) As*+ Bs+ C

where the coefficients in both the transfer function Af(s)/A8,(s) and Aa(s)/Ad,(s)
are given the Table 8.3.

or

EXAMPLE PROBLEMS83. A STOL transport has been modified to include direct-lift
control surfaces. Unlike conventional high-lift flaps, the direct-lift flaps can be rotated
up and down to increase or decrease the lift force on the wing. In this example, we are
going to design an altitude hold control system that uses the direct-lift control surfaces.
To simplify our analysis we assume that the airplane’s velocity and pitch attitude are
controlled by separate autopilots. The aerodynamic characteristics of the STOL air-
plane and the desired performance expected of the altitude autopilot follow:

Z, fts? Zg ft/s u, ft/s

—560 -50 400

Autopilot performance specifications are a settling time, 1, < 2.5 s, and a damping
ratio, { = 0.6.

Solution. One potential concept for controlling the altitude of the airplane is given in
Figure 8.21. The transfer functions for each element of the control system is described
next. The amplifier transfer function is a gain, k,, the direct-lift servo is modeled as a
first-order lag, and the altitude sensor is assumed to be a perfect sensor, which gives
us a unity feedback system:

€

2=k,

eS

éf_ —10
e, s+ 10

The transfer function for the aircraft dynamics can be obtained from the equation of
motion in the vertical direction. Recall that we have assumed that the speed and pitch
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" craft
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FIGURE 8.21
Altitude control concept.

attitude of the airplane are held at some desired values by separate autopilots. The
equation of motion in the vertical direction is given by

. . L dw

2 Forces in vertical direction = m o
dw
or W+ Z=m—
dr

Expressing the variables in terms of a reference value and a perturbation yields
d
W+Z(,+AZ=ma(wo+Aw)

but W + Z; = 0 and w, = 0, for level equilibrium flight therefore,
AZ = m Aw

The change in the aerodynamic force AZ is assumed to be only a function of Aw and
A8;, that is,

Z
2z =% ay + 2 ps

Substituting into the differential equation yields
Aw = Z, Aw + Zs A5,

0Z/d CYARL
where L L L

m m

Recall that Z, and Z, are related in the following manner:

z - dZ/dw _1 AZ/d(w/ug) _ iZa
m U m Uy

The transfer function Ah/A8; now can be obtained:

Aw(s) _ Zs,
Ad(s) s-—-Z,

but & = —Aw; therefore,

Ah(s) _ _1 Zs,
As(s)  s(s—Z,)
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FIGURE 8.22
Root locus plot of G(s)H(s), altitude hold control system.

Substituting the aerodynamic data for the STOL transport yields

Ah(s) _ 50
A (s) (s + 1.4)

The forward path transfer function is

k
s(s + 1L.4)(s + 10)

where k = k,(—10)(~50) = 500 k,.

The root locus plot of G(s)H(s) is shown in Figure 8.22. Although the desired
damping ratio { = 0.6 can be achieved, the settling time is greater than 2.5 s. The
closed-loop system response to a unit step change in altitude is shown in Figure 8.23.
To improve the system performance we need to include some form of compensation.
A lead circuit in the forward path can be used to improve the system performance.
Figure 8.24 shows the root locus plot of G(s)H(s) with the addition of a lead circuit

G(s) =

st+a
= <
s+ b a<b
The zero of the lead circuit was positioned just to the left of the pole ats = —1.4. With

the addition of the lead circuit the root locus plot is shifted to the left compared to the
uncompensated system. For the compensated system we can meet both the damping
ratio and settling time specification (Figure 8.25).
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FIGURE 8.23
Closed-loop response to a step input altitude hold control system.
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FIGURE 8.24
Root locus plot of compensated altitude hold control system.
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FIGURE 8.25
Closed-loop response to a step input for an altitude hold control system with a
compensator.

8.4.4 Velocity Hold Control System

The forward speed of an airplane can be controlled by changing the thrust pro-
duced by the propulsion system. The function of the speed control system is to
maintain some desired flight speed. This is accomplished by changing the engine
throttle setting to increase or decrease the engine thrust. Figure 8.26 is a simplified
concept for a speed control system described in [8.3]. The components that make
up the system include a compensator, engine throttle, aircraft dynamics, and a
feedback path consisting of the velocity and acceleration feedback.

Alrer Fo d Engine Au
rwar ngi . .
path 1 throttle R En,gme 1 dA:grrr?ifct:s
compensator control 9 4
Feedback
elements
FIGURE 8.26

A block diagram for a speed control system.
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EXAMPLE PROBLEM 84. Examine the performance characteristics of a speed con-
trol autopilot similar to the one shown in Figure 8.26 for the STOL transport included
in Appendix B. The transfer functions for the throttle servo, engine lag, forward path
compensation, and feedback elements follow:

10
Girouels) = T+ 10
1
G(s)eng'me lag = 5+ 0.1
k(s + 0.1
Gy = 1 + 0.1/s = s +O1)
5
H(s) = 10s + 1

Solution. The aircraft dynamics can be approximated by using the long-period or
phugoid approximation developed earlier in this chapter:

ft/s?
X5, = 0038~  Z; =0
deg
Substituting these values into the aircraft transfer function yields
Au 0.038s
Ad; 52+ 0.039s + 0.039s + 0.053
Root locus
c
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b
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a
e 5
3
=
g 0 ¢ X
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E 5
-10
-15
-15 -10 -5 0 5 10 15
Real axis

FIGURE 8.27

Root locus plot G(s)H(s) = 3.8k,(s + 0.1)

(s + 10)(s? + 0.0395 + 0.053).
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For this autopilot both the change in velocity and the acceleration are used in the
feedback path. The feedback path transfer function is assumed to be of the form that
follows:

H(s) = 10s + 1
The loop transfer function, G(s)H(s), follows:

3.8k,(s + 0.1)
(s + 10)(s2 + 0.039s + 0.053)

The root locus plot of the loop transfer function is shown in Figure 8.27.

Figure 8.28 shows the response of the speed control system to a unit step for
several different values of the amplifier gain, k,. The three gains are indicated on
Figure 8.27. Note that for a gain corresponding to a damping ratio of 0.707 the
response is very fast but there is a steady-state error. On the other hand, the steady-
state error can be reduced by increasing the gain. However, larger gains mean a lower
damping ratio and the response has a larger overshoot. To improve the performance of
this system an additional compensator should be considered.

G(s)H(s) =

8.5
STABILITY AUGMENTATION

Another application of automatic devices is to provide artificial stability for an
airplane that has undesirable flying characteristics. Such control systems are com-
monly called stability augmentation systems (SAS).

As we showed earlier, the inherent stability of an airplane depends on the
aerodynamic stability derivatives. The magnitude of the derivatives affects both the
damping and frequency of the longitudinal and lateral motions of an airplane.
Furthermore, it was shown that the stability derivatives were a function of the
airplane’s aerodynamic and geometric characteristics. For a particular flight
regime it would be possible to design an airplane to possess desirable flying quali-
ties. For example, we know that the longitudinal stability coefficients are a function
of the horizontal tail volume ratio. Therefore we could select a tail size and or
location so that C,, and C,, provide the proper damping and frequency for the
short-period mode. However, for an airplane that will fly throughout an extended
flight envelope, one can expect the stability to vary significantly, owing primarily
to changes in the vehicle’s configuration (lowering of flaps and landing gear) or
Mach and Reynolds number effects on the stability coefficients. Because the stabil-
ity derivatives vary over the flight envelope, the handling qualities also will change.
Obviously, we would like to provide the flight crew with an airplane that has
desirable handling qualities over its entire operational envelope. This is accom-
plished by employing stability augmentation systems.

EXAMPLE PROBLEM 85. To help understand how a stability augmentation system
works, we shall consider the case of an airplane having poor short-period dynamic
characteristics. In our analysis we assume that the aircraft has only one degree of
freedom-—a pitching motion about the center of gravity. The equation of motion for a
constrained pitching motion as developed in Chapter 4 is

6~ (M, + MO+ M0 = M3
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The damping ratio and undamped natural frequency are given by

Uy ST
{SP = _(C’"q + C”la)p 21 /(zwnsp)
5S¢
2 = —C &__
Wpsp mq 21y

If the aerodynamic and inertial characteristics of a business jet during cruise are such
that the preceding equations have the numerical values

B+ 0.0716 + 5.490 = —6.718,
then the damping ratio and frequency are given by
L, = 0.015 W,y = 2.34 rad/s

For these short-period characteristics the airplane has poor flying qualities. On exam-
ining the flying quality specification, we see that to provide level 1 flying qualities the
short-period damping must be increased so that £, > 0.3.

One means of improving the damping of the system is to provide rate feedback, as
illustrated in Figure 8.29. This type of system is called a pitch rate damper. The
stability augmentation system provides artificial damping without interfering with the
pilot’s control input. This is accomplished by producing an elevator deflection in
proportion to the pitch rate and adding it to the pilot’s control input:

8 =28, +kb

where 8, is that part of the elevator deflection created by the pilot. A rate gyro is used
to measure the pitch rate and creates an electrical signal that is used to provide elevator
deflections. If we substitute the expression for the elevator angle back into the equation
of motion, we obtain

6 + (0.071 + 6.71k)6 + 5.499 = —6.713,,
Comparing this equation with the standard form of a second-order system yields
2¢w, = (0.071 + 6.71k) wl =549

The short-period damping ratio is now a function of the gyro gain k and can be
selected so that the damping ratio will provide level 1 handling qualities. For example,
if k is chosen to be 0.2, then the damping ratio £ = 0.

and

. ’ \\
[7] f :
Desired 8 €p S 6 )
. Control ! Aircraft '
+ : '
+ . Pilot systems : + dynamics Il
(USRS :
f !
I I
I i
| Rate )
| gyro |
| ]
: Stability augmentation systemJl
FIGURE 8.29

Stability augmentation system using pitch rate feedback.
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8.6
INSTRUMENT LANDING

With the advent of the instrument landing system (ILS), aircraft became able to
operate safely in weather conditions with restricted visibility. The instrument land-
ing system is composed of ground-based signal transmitters and onboard receiving
equipment. The ground-based equipment includes radio transmitters for the local-
izer, glide path, and marker beacons. The equipment on the airplane consists of
receivers for detecting the signals and indicators to display the information.

The basic function of the ILS is to provide pilots with information that will
permit them to guide the airplane down through the clouds to a point where the pilot
re-establishes visual sighting of the runway. In a completely automatic landing, the
autopilot guides the airplane all the way down to touchdown and roll out.

Before addressing the autoland system, we briefly review the basic ideas behind
the ILS equipment. To guide the airplane down toward the runway, the guidance
must be lateral and vertical. The localizer beam is used to position the aircraft on
a trajectory so that it will intercept the centerline of the runway. The transmitter
radiates at a frequency in a band of 108—112 MHz. The purpose of this beam is to
locate the airplane relative to a centerline of the runway. This is accomplished by
creating azimuth guidance signals that are detected by the onboard localizer re-
ceiver. The azimuth guidance signal is created by superimposing a 90-Hz signal
directed toward the left and a 150-Hz signal directed to the right on the carrier
signal. Figure 8.30 shows an instrument landing localizer signal. When the aircraft
is flying directly along the projected extension of the runway centerline, both
superimposed signals are detected with equal strength. However, when the aircraft
deviates say to the right of centerline, the 150-Hz signal is stronger. The receiver
in the cockpit detects the difference and directs the pilot to fly the aircraft to the left
by way of a vertical bar on the ILS indicator that shows the airplane to the right of
the runway. If the airplane deviates to the left, the indicator will deflect the bar to
the left of the runway marker.

The glide path or glide slope beam is located near the runway threshold and
radiates at a frequency in the range 329.3-335.0 MHz. Its purpose is to guide the
aircraft down a predetermined descent path. The glide slope is typically an angle

Localizer centerline
maximum signal

strength \

90-Hz beam

% Localizer
P& transmitter

Runway

FIGURE 8.30
A localizer beam system.
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of 2.5-3° to the horizontal. Figure 8.31 shows a schematic of the glide path beam.
Note that the glide path angle has been exaggerated in this sketch. As in the case
of the localizer, two signals are superimposed on the carrier frequency to create an
error signal if the aircraft is either high or low with respect to the glide path. This
usually is indicated by a horizontal bar on the ILS indicator that moves up or down
with respect to the glide path indicator. The marker beacons are used to locate the
aircraft relative to the runway. Two markers are used. One, located 4 nautical miles
from the runway, is called the outer marker. The second, or inner, marker is located
3500 ft from the runway threshold. The beams are directed vertically into the
descent path at a frequency of 75 MHz. The signals are coded, and when the
airplane flies overhead the signals are detected by an onboard receiver. The pilot
is alerted to the passage over a marker beacon by both an audio signal and visual
signal. The audio signal is heard over the aircraft’s communication system and the
visual signal is presented by way of a colored indicator light on the instrument
panel.

In flying the airplane in poor visibility, the pilot uses the ILS equipment in the
following manner. The pilot descends from cruise altitude under direction of
ground control to an altitude of approximately 1200 ft above the ground. The pilot
then is vectored so that the aircraft intercepts the localizer at a distance of at least
6 nautical miles from the runway. The pilot positions the airplane using the localizer
display so that it is on a heading toward the runway centerline. When the aircraft
approaches the outer marker, the glide path signal is intercepted. The aircraft is
placed in its final approach configuration and the pilot flies down the glide path
slope. The pilot follows the beams by maneuvering the airplane so that the vertical
and horizontal bars on the ILS indicator show no deviation from the desired flight
path. The ILS system does not guide the aircraft all the way to touchdown. At some
point during the approach the pilot must look away froru the instruments and
outside the window to establish a visual reference for the final portion of the

\< Glide path

Glide slope beam
centerlineg, maximum
signal strength

Outer marker Inner marker

FIGURE 8.31
A glide slope beam system.
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FIGURE 8.32
An airplane displaced from the glide path.

landing. The pilot may take 5 or 6 seconds to establish an outside visual reference.
Obviously the pilot must do this at sufficient altitude and distance from the runway
so that if the runway is not visible the pilot can abort the landing. This gives rise
to a “decision height,” which is a predetermined height above the runway that the
pilot cannot go beyond without visually sighting the runway.

The ILS as outlined in the previous paragraphs is an integral part of a fully
automatic landing system. To be able to land an airplane with no visual reference
to the runway requires an automatic landing system that can intercept the localizer
and glide path signals, then guide the airplane down the glide path to some pre-
selected altitude at which the aircraft’s descent rate is reduced and the airplane
executes a flare maneuver so that it touches down with an acceptable sink rate. The
autoland system comprises a number of automatic control systems, which include
a localizer and glide path coupler, attitude and airspeed control, and an automatic
flare control system.

Figure 8.32 shows an airplane descending toward the runway. The airplane
shown is below the intended glide path. The deviation d of the airplane from the
glide path is the normal distance of the airplane above or below the desired glide
path. The angle I is the difference between the actual and desired glide path angle
and R is the radial distance of the airplane from the glide slope transmitter. To
maintain the airplane along the glide path, one must make I" equal 0. Figure 8.33
is a conceptual design of an autopilot that will keep the airplane on the glide path.
The transfer functions for d and I are obtained from the geometry and are noted
in Figure 8.32.

As the airplane descends along the glide path, its pitch attitude and speed must
be controlled. This again is accomplished by means of a pitch displacement and
speed control autopilot. The pitch displacement autopilot would be conceptually
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coupler aircraft pitch [ 57.3s R
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FIGURE 8.33

An automatic glide path control system.

the same as the one discussed earlier in this chapter. Figure 8.34 shows an auto-
matic control system that could be used to maintain a constant speed along the
flight path. The difference in flight speed is used to produce a proportional dis-
placement of the engine throttle so that the speed difference is reduced. The
component of the system labeled compensation is a device incorporated into the
design so that the closed-loop system can meet the desired performance speci-
fications. Finally, as the airplane gets very close to the runway threshold, the glide
path control system is disengaged and a flare maneuver is executed. Figure 8.35
illustrates the flare maneuver just prior to touchdown. The flare maneuver is needed

eU er
Compensation r——

Uref Throttle Engine Srpm Aircraft

servo | | lag dynamics

Speed plus
acceleration
feedback

FIGURE 8.34
An automatic speed control system.
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FIGURE 8.35
A flare maneuver.
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FIGURE 8.36

An automatic flare control system.

to decrease the vertical descent rate to a level consistent with the ability of the
landing gear to dissipate the energy of the impact at landing. An automatic flare
control system is shown in Figure 8.36. A detailed discussion of the autoland system
is provided by Blakelock [8.3].

8.7
SUMMARY

In this chapter we examined briefly the use of an automatic control system that can
be used to reduce the pilot’s workload, guide the airplane to a safe landing in poor
visibility, and provide stability augmentation to improve the flying qualities of
airplanes with poor stability characteristics. Additional applications of automatic
control technology include load alleviation and flutter suppression.

Load alleviation can be achieved by using active wing controls to reduce the
wing-bending moments. By reducing the wing design loads through active controls,
the designer can increase the wing span or reduce the structural weight of the wing.
Increasing the span for a given wing area improves the aerodynamic efficiency of
the wing; that is, it increases the lift-to-drag ratio. The improvement in aerody-
namic efficiency and the potential for lower wing weight result in better cruise fuel
efficiency.

Stability augmentation systems also can be used to improve airplane perfor-
mance without degrading the vehicle’s flying qualities. If the horizontal and vertical
tail control surfaces are used in an active control system, the tail area can be
reduced. Reducing the static stability results in smaller trim drag forces. The
combination of smaller tail areas and reduced static stability yields a lower drag
contribution from the tail surfaces, which will improve the performance character-
istics of the airplane.

Another area in which active control can play an important role is in suppress-
ing flutter. Flutter is an unstable structural motion that can lead to structural failure
of any of the major components of an airplane: wing, tail, fuselage, or control
surfaces. Flutter is caused by the interaction between structural vibration and the
aerodynamic forces acting on the surface undergoing flutter. During flutter the
aerodynamic surface extracts energy from the airstream to feed this undesirable
motion. An automatic control system incorporating active controls can be designed
to prevent flutter from occurring by controlling the structural vibration.
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PROBLEMS

Problems that require the use of a computer have the capital letter C after the problem

number.

8.1(0).

8.2(C).

8.3(0).

8.4(C).

A roll control system is shown in Figure P8.1. Sketch the root locus diagram for this

system.
(@) Determine the value of the gain, k, so that control system has a damping ratio
of { = 0.707.

(b) What is the steady-state error for a step and ramp input?

(c) Sketch the response of the control system to a 5° step change in bank angle
command.

(d) Repeat this problem using control synthesis software such as MATLAB.

b, K, 1.0 ¢

s+10 s(s+1)

FIGURE P8.1

Use a rate feedback inner loop to improve the transient response of the control
system in Problem 8.1. The system damping ratio is to remain at { = 0.707.

For the pitch rate feedback control system shown in Figure P8.3, determine the gain
necessary to improve the system characteristics so that the control system has the
following performance: { = 0.3, w, = 2.0 rad/s. Assume that the aircraft charac-
teristics are the same as given in Figure 8.9 in Section 8.4.
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FIGURE P8.3

A simplified pitch control system is shown in Figure P8.4. Design a PID controller
for this system and plot the response of the system to a 5° step change in the
commanded pitch attitude.

% PD || Elovator | | Aircraft
controller servo dynamics

FIGURE P8.4
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8.5(C).

8.6(C).

k.
PID ky + =t ks
s
10
Elevator servo Ty ¥ 10
. : _3
Aircraft dynamic T 35 140

The Wright Flyer was statically and dynamically unstable. However, because the
Wright brothers incorporated sufficient control authority into their design they
were able to fly their airplane successfully. Although the airplane was difficult to fly,
the combination of the pilot and airplane could be a stable system. In [8.5] the
closed-loop pilot is represented as a pure gain, k,, and the pitch attitude to canard
deflection is given as follows:

9 11.0(s + 0.5)(s + 3.0)
8. (5240725 + 1.44)(s + 595 — 11.9)

Determine the root locus plot of the closed-loop system shown in Figure P8.5. For
what range of pilot gain is the system stable?

Pilot Airframe

8¢

k, = 0

d

Visual feedback

FIGURE P8.5

The block diagram for a pitch attitude control system for a spacecraft is shown in
Figure P8.6a. Control of the spacecraft is achieved through thrusters located on the
side of the spacecraft as illustrated in Figure P8.6b.

(@) Determine the root locus plot for the control system if the rate loop is discon-
nected. Comment on the potential performance of this system for controlling
the pitch attitude.

(b) Determine the rate gain k,, and the outer loop gyro gain k, so that the system
has a damping ratio { = 0.707 and a settling time, t, = 1.5 s.

e e T w6 o

s s

(a)

FIGURE P8.6
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' T FIGURE P8.6 (continued)

e

A wind-tunnel model is constrained so that it can rotate only about the z axis; that
is, pure yawing motion. The equation of motion for a constrained yawing motion
was shown in Chapter 5 to be as follows:

Ay — N, Agr + Ny Ay = N; A8,

where Ng = 2.057% N, = —0.5s7' and N;, = —10 s~2 Design a heading control
system so that the model has the following closed-loop performance characteristics:

=106
=25
Assume that the rudder servo transfer function can be represented as

Aﬁ,: k
e s+ 10

Every pilot or airline passenger has encountered a rough flight due to atmospheric
turbulence. The bumpy ride is due to the airplane encountering a vertical gust field.
When an airplane encounters a vertical gust the effective angle of attack of the wing
is changed, causing the airplane to accelerate in the vertical direction. This un-
wanted motion can be eliminated by means of a gust alleviation system. If the wing
lift can be controlled, the acceleration due to the gust can be attenuated. One means
of controlling the wing lift is by using direct lift controls. Basically, direct lift
control surfaces are wing flaps that can be rotated up or down to either decrease or
increase the wing lift. Consider a wind-tunnel model constrained to motion in only
the vertical direction; that is, pure plunging motion. Also assume that the model is
equipped with direct lift flaps. See Example Problem 8.3. Design a control system
for the wind-tunnel model so that the vertical velocity is held near 0. Assume the
direct lift actuator can be represented by the transfer function

2 k

e s+ 10

Design a control system for the wind tunnel model of Problem 8.8 to maintain a
constant vertical position in the wind tunnel.
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CHAPTER 9

Modern Control Theory

9.1
INTRODUCTION

In Chapters 7 and 8, the design of feedback control systems was accomplished using
the root locus technique and Bode methods developed by Evans and Bode, respec-
tively. These techniques are very useful in designing many practical control
systems. However, the design of a control system using either of the techniques
essentially is by trial and error. The major advantage of these design procedures is
their simplicity and ease of use. This advantage disappears quickly as the complex-
ity of the system increases.

With the rapid development of high-speed computers during the recent
decades, a new approach to control system design has evolved. This new approach,
commonly called modern control theory, permits a more systematic approach to
control system design. In modern control theory, the control system is specified as
a system of first-order differential equations. By formulating the problem in this
manner, the control system designer can fully exploit the digital computer for
solving complex control problems. Another advantage of modern control theory is
that optimization techniques can be applied to design optimal control systems. To
comprehend this theory fully one needs to have a good understanding of matrix
algebra; a brief discussion of matrix algebra is included in Appendix C.

It is not possible in a single chapter to present a thorough discussion of modern
control theory. Our purpose is to expose the reader to some of the concepts of
modern control theory and then apply the procedures to the design of aircraft
autopilots. It is hoped that this brief discussion will provide the reader with an
appreciation of modern control theory and its application to the design of aircraft
flight control systems. Additional background material on modern control theory
can be found in the references included at the end of this chapter [9.1-9.5].

323
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9.2
STATE-SPACE MODELING

The state-space approach to control system analysis and design is a time-domain
method. As was shown in Chapters 4 and 5, the equations of motion can be written
easily in the state-space form. The application of state variable techniques to
control problems is called modern control theory. The state equations are simply
first-order differential equations that govern the dynamics of the system being
analyzed. It should be noted that any higher-order differential equation can be
decomposed into a set of first-order differential equations. This will be shown later
by an illustration.

In the mathematical sense, the state variables and state equation completely
describe the system. The definition of state variables is as follows. The state vari-
ables of a system are a minimum set of variables x(z) - - - x,(¢) that, when known
at time ¢, and along with the input, are sufficient to determine the state of the system
at any other time ¢ > ¢,. State variables should not be confused with the output of
the system. An output variable is one that can be measured, but state variables do
not always satisfy this condition. The output, as we will see shortly, is defined as
a function of the state variables.

Once a physical system has been reduced to a set of differential equations, the
equation can be rewritten in a convenient matrix form:

% = Ax + B .1)

The output of the system is expressed in terms of the state and control inputs as
follows:

y = Cx + Dy 9.2)
The state, control, and output vectors are defined as follows:
[, (1)
x5(1)
X = : State vector (n X 1) (9.3)
| x, (1) ]
[8,(1)]
8,(1)
n= : Control or input vector (p X 1) (9.4)
[ 5,(1)
[ vi(1)]
ya(t)
y=1{ : Output vector (g X 1) (9.5)
[ ,(0) |
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The matrices A, B, C, and D are defined in the following manner:

[a,,

ay)

| 41

a

a,,

Can 1

a‘IP

Plant matrix (n X n) (9.6)

Control or input matrix (n X p) (9.7)

(g Xn 9.83)

(g X p (9.9)

Figure 9.1 is a block diagram representation of the state equation given by Equa-
tions (9.1) and (9.2).

The state equations are a set of first-order differential equations. The matrices
A and B may be either constant or functions of time. For the application we are
considering, namely, aircraft equations of motion, the matrices are composed of an
array of constants. The constants making up either the A or B matrix are the
stability and control derivatives of the airplane. It should be noted that if the
governing differential equations are of higher order they can be reduced to a system
of first-order differential equations.

FIGURE 9.1
The linear state equations.
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For example, suppose that the physical system being modeled can be described
by an nth-order differential equation:
d"e(r) N d"le(r) N d*2c(r) de(r)

dtn a; dtnﬁl a; dt,,12 +-e a, —dt— + anc(t) = r(t) (910)

The variables ¢(r) and r(z) are the output and input variables, respectively. This
differential equation can be reduced to a set of first-order differential equations by
defining the state variables as follows:

x,(1) = c(®)
_de(n)
x(t) = dr
) (9.11)
d"e(r)
x,(1) = P
The state equations can now be written as
X(t) = xot)
%) = x5(0)
; (9.12)

500) = @) — anrial®) — - - — ax®) + 1)

The last equation is obtained by solving for the highest-order derivative in the
original differential equation. Rewriting the equation in the state vector form yields

X = Ax + Bq (9.13)
[0 1 0 0 0O ... 0]
0 0 I 0 0 0
0 0 0 1 0 0
where A= - . : . - - (9.14)
0 0 0 0 0 ;
|—a, —a,., T4, —Q,_; TQ,, - T4
[ 07]
0
0
B=1o (9.15)
[ 1]
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and the output equation is

y = Cx (9.16)
where C=[1 0 0 --- 0] 9.17)

For this particular differential equation the output vector is not a function of
the control vector, therefore, the D matrix is a null matrix; that is, a matrix
consisting of only zeroes. For the problems we consider in this chapter the D matrix
will be a null matrix.

In most cases the physical system being analyzed is described by a number
of differential equations. The state-space formulation can be applied to a set of
equations and will be illustrated by an example.

EXAMPLE PROBLEM 9.1. Rewrite the following differential equations in state-space
form:

% +5 % +4c, = n
%+%+c1+3c2—-r2
Solution. Let the states be
Xy = ¢
= da
SRR
X3 = €y

Taking the derivative of the states yields

dCl
B TI

d2C| dCl
=~ ="5——dc+r
TS d P
X, = ~5x, —4x; +

dCz dCl
BZ=—F—=———=—c — 3+
3T 4 ar | 2 2
.X.f3=_xZ_xl—3X3+r2

These equations can now be put into the state-space form, X = Ax + By

% 0 1 0 |Ix 00

,
Hl=10 -5 —4]|lx|+l1 0 [r‘]
% -1 -1 =3} x 0 1(L"
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where the plant and control matrices are

0 | 0 0 0
A=]0 -5 -4 and B=1]1 0
-1 -1 -3 0 1

and the state and control vectors are

Xy

X=\|XxX n= r
X3
The output equation
y = Cx + Dy

can be expressed as follows:
wl 1 oo olf™
»] "o o 1Jf™"
X3

where D is a null matrix. It also should be noted that a transfer function can be
rewritten in the state variable form.

The solution of the state equations will be discussed in the next several sections,
Both analytical and numerical solutions of the state equations will be presented.

9.2.1 State Transition Matrix

The state transition matrix is defined as a matrix that satisfies the linear homoge-
neous state equation; that is,

X = Ax Homogeneous state equation (9.18)
x,(0)

x(0) = | - Initial state at time ¢ = 0 (9.19)
x,(0)

x(1) = P(t) x(0) (9.20)

where ®(¢) is the state transition matrix.

State transition matrix by the Laplace transformation technique
We begin with
x,(0)
x=Ax and x(0)=| - (9.21)
x,(0)
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Taking the Laplace transformation of this equation yields
sx(s) — x(0) = Ax(s) (9.22)
or x(s) = [sI — A] 'x(0) (9.23)

The term [sI — A]™', called the resolvent, is the Laplace transform of the state
transition matrix:

®(s) = [sI — A]™! {9.24)
The state transition matrix is obtained by taking the inverse Laplace transform of
D(s):
D) = L[P(s)] = LI - A)7'] (9.25)
Once the state transition matrix, @(¢), is known the homogenous solution can be
found using Equation (9.20).
State Transition Matrix by the Matrix Exponential Method

An alternate definition of the state transition matrix can be determined by
expressing the solution of the homogeneous equation in terms of an infinite series
with undetermined coefficients. The solution of

x(t) = Ax(t) (9.26)
is given as x(r) = ®(Hx(0) (9.27)
where D) =1T+ar+a’+---+as"+-.. (9.28)

and x{(0) is the initial value of the state vector at time ¢ = (. Substituting the
solution into the homogeneous equation yields

d%[d)(t)x(O)] = (a, + 28,0 + 32,2 + - - + nag"! + - x(0)

= (A + Aa;t + Aayt® + Aa,r® + - - - (9.29)
+ Aa,""' + - )x(0)

Equating the coefficients of like powers of ¢ yields

a =A
1 1
a = 5 Aa, = EAZ
1 I,
a = 3 A32 = 3-" A (9.30)
1
a, = —A,
n!

or @0 =1+ At + %Azﬁ + §1;A3t3 booos ’%A”t" 4.0 (931)
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The matrix series is similar to the scalar series representation of an exponential and

is called a matrix exponential:

1 1
Af 242
e ~I+At+2!At+3!

or ®(r) = e

The matrix exponential is defined in terms of the plant matrix A.

Properties of the state transition matrix

Some of the properties of the state transition matrix follow:

1. ®0) = e* =1

2. [@(]' = [@(-n)]

3. ®(r, + 1) = A0t = Mt = O(1)D(1,) = PL,)P(1,).
4. [®(t)) = P®(ki), where k is an integer.

1
A+ —A"+ .-
n!

(9.32)

(9.33)

(9.34)
(9.35)
(9.36)
(9.37)

Once the state transition matrix has been found, the solution to the nonhomoge-

neous equation can be determined as follows:
X = Ax + Bq
Taking the Laplace transform of the above equation yields
sx(s) — x(0) = Ax(s) + By(s)
solving for x(s) yields
x(s) = [sI — A} 'x(0) + [sI — A1 'Bxq(s)
x(t) = £7'[sT — A] 'x(0) + £7'[(sI — A) 'Bn(s)]

1
or x(1) = ®()x(0) + f ®O(+ — 7)Bn(7) dr
(4]
EXAMPLE PROBLEM 9.2. Given the following state equations,
=1 A
= + u
Xa -1 =3]lx 2
y=0 1][*']
X2

The initial conditions for the system are

ol =[]

Determine the response of the system if « is a unit step function.

(9.38)

(9.39)

(9.40)
(9.41)

(9.42)
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Solution. First we will need to determine the state transition matrix ®(z). The Laplace
transform of the state transition matrix yields

D) = (s — A)™!

w0 =([5 2|2 —13]>_l

s -1 !
Q(S)Z[Z s+3]

s+ 3 1

2435+ 14+ 35+

or (I>(s)=s 3; 2 s 3s+2
- N

52+ 35 +2 s2+3s+2

Using partial fraction expansion, the elements of the transition matrix can be written
as

21 11
s+ 1 s+2 s+1 s+ 2
P =1, 2 -1 2

+ +
s+1 s+2 s+1 s+2

The state transition matrix now can be obtained by taking the inverse Laplace trans-
form of ®(s):

Qe — 6-21 e—n — e—21
—2e™ — e ¥ —e' + 2e7¥

Knowing the state transition matrix we now can determine the response from the
equation

() = [

3
x(1) = ®(x(0) + f ®(¢ — 1) Budr
0
-t _ a2 2AUff (e~ t-7 — a—20-7)
x(1) = e_ e e {0(6-2(— e _(—)df
—e '+ 2e7¥ 2fy (2e72077 — e~ (") g
The integrals in the second term can be solved as follows. Consider the integral
t ! H
2f [ — e 2] dr = 2e"J e dr — 2e‘2‘J e dr
0 0 0
! 2r

- Qe ) e
o 2

t
= e’'e’

0

e 1

= 2¢[ef — 1] — 27| — — =

e [e ] e [2 2]
=1=-2e"+e¥

The other integral can be shown to have the following solution:

t
2 f (e — ") dp = 2e~t — 2%
0
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Substituting the integral solution back into x(r) and combining terms yields

X(t) _ [l ;—leﬂ:l

The output of the system is given by
y=0Cx

e*l

or y=1[3 1][‘ ;,, :|=3—Ze'

9.2.2 Numerical Solution of State Equations

The complete solution of the state equations was shown to be
x(f) = ®(H)x(0) + j D(+ — 1) By(r) dr (9.43)
0

The solution of Equation (9.43) can be obtained numerically by replacing the
continuous system by a discrete time system. Takahashi, Rabins, and Auslander
[9.4] present a numerical algorithm based on a technique developed by Paynter
[9.6]. For this example a sampling interval Ar is specified so that

kAt <t=(k+1)At
The Equation (9.43) can be rewritten as

At
X, = e*x, + eAA'f e *By(r) dr (9.44)

0

If we assume the control input m(7) is constant over the time interval Af then the
integral can be evaluated.

Ar
j e Bn(r) dr = (I — e **)A 'By, (9.45)

0

Substituting the solution of the integral back into Equation (9.44) yields
X = erx, + [e* — I]A "By, (9.46)
This equation can be simplified further by letting
M = er¥ (9.47)
N = (" -1DA'B (9.48)
The solution vector can now be expressed as

X+ = Mx, + Nm, (9.49)
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Equation (9.49) can be used to determine the time domain solution; for example,
x; = Mx, + N7y,
X, = Mx, + Ny
x; = Mx, + Ny, (9.50)

xk+'1 = Mx, + Nm,

On combining these equations one obtains
k—1

x, = M*x, + 2,) M*~' I N, (9.51)

Once a satisfactory time interval is selected the matrices M and N need be calcu-
lated only one time. These matrices can be evaluated by the matrix expansion

1

M=eAA’=I+AAt+2'A2At2--« (9.52)
1 1
N = A¢ (I + —2—'A At + §A2 A2+ - -)B (9.53)

The number of terms required in the series expansion depends on the time interval
At. An algorithm developed by Paynter [9.6] can be used to determine the number
of terms in the series expansion. This algorithm is presented in Table 9.1.

EXAMPLE PROBLEM 9.3. Use the numerical algorithm described in this section to
determine the solution to the state equation given in Example Problem 9.2. The equa-

tions follow:
2 I 1][x.] N [o .
.X.fz -2 -3 Xy 2
y=13 1]["']
X2
xl(O)] _[o
XZ(O) 1
Solution. Assume that u is a unit step input.
In this example we assume that Az = 0.05 s. Having specified the time increment

we must determine the number of terms needed in the M and N matrices. The parame-
ter ¢ is found using the equation

g = max |A; At]| = 0.15

starting with p = 2 we see if the inequality

1
—'(nq)” e™ =< 0.001
p!
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TABLE 9.1
Algorithm for the computation of M and N matrices by Paynter

1.
2.

Select a time interval, At.
Estimate the parameter, ¢, from the equation

g = max|A; At|

where A, are the elements of the plant matrix A.

. Determine the integer value of p, the number of terms in the M and N matrix expansion, from

the equation

1
— (ng)e™ = 0.001
p!

where n is the order of the system. This equation is solved by trial and error. Starting with a value
of p = 2, keep selecting a higher value of p until this equation is satisfied.

iy

Once p is known, calculate M and N from Equation (9.52) and (9.53).

is satisfied. For example, for p = 2
|
—(ng)* e" = 0.06
p!

which does not satisfy the inequality. A new value of p is selected and the process is
continued until a value of p is found that meets the inequality relationship. For this
example p = 4 was found to meet the requirement. Next we evaluate the matrices M
and N by retaining only the first four terms in each series:

1 1
M:I+AA1+5A2At2+§A3Az3

1

1
N:At[I+ZAAt+3!

KA A At‘][B]

Evaluating the M and N matrices for the selected Ar yields

B 0.996  0.0464
—0.0928 0.8584

0.0024
N =
[0.0928]
The matrices M and N are fixed and the solution can be calculated by using the
equations
x[(k + 1) Af] = Mx(k Ar) + Nu(k Ar)

in a recursive manner for & = 0 to nk where nk At is the final time selected for the
solution. Figure 9.2 is a plot of the output vector for the exact and numerical solution:

B x,(k Ar)
y(k Ar) = [3 1][x2(k At):l

and the exact solution is given by

!

y=3—2e"

The exact and numerical solutions are indistinguishable from one another.
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FIGURE 9.2
Numerical solution of state-space equation.

93
CANONICAL TRANSFORMATIONS

In formulating a physical system into the state-space representation we must select
a set of state variables to describe the system. The set of state variables we select
may not be the most convenient from the standpoint of the mathematical opera-
tions we need to perform to determine the solution of the state equations. It is
possible to define a transformation matrix, P, that will transform the original state
equations into a more convenient form.

To examine the characteristics of a given state equation it is useful to have the
state equations in a canonical form where the plant matrix is a diagonal matrix.
Consider a system that can be modeled by this state equation:

% = Ax + By (9.54)
y = Cx (9.55)

where the plant matrix A is not a diagonal matrix. Defining a new state vector z so
that x and z are related by way of a transformation matrix P,

x =Pz (9.56)
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Rewriting the state equation in terms of the new state vector z yields

z =P 'APz + P 'By (9.57)

which can be written as
i = Az + By (9.58)
y = Cz (9.59)

where A is a diagonal or nearly diagonal matrix. The matrices A, B, and C are
defined as

A = P 'AP (9.60)
B=P'B (9.61)
C=CP (9.62)

The transformed state equation has the same form as the original equation. If the
transformation matrix P is chosen so that A is a diagonalized matrix then the
equations are in the canonical form.

The transformation matrix P is determined from the eigenvectors of the plant
matrix A. As has been shown earlier the eigenvalues of A are determined by solving
the following equation:

IAT—A| =0 (9.63)
which yields the characteristic equation
A+ a A+ a, AP+ adta =0 (9.64)

The roots of the characteristic equation are the eigenvalues of the system. The
eigenvectors can be determined by solving the equations

AL — AP, =0 where i=1,2,3,...n (9.65)

The transformation matrix P is formed from the eigenvectors of the plant matrix.
The eigenvectors form the columns of the transformation matrix as

P=[P PP P] (9.66)

9.3.1 Real Distinct Eigenvalues

For these nonrepeated real eigenvalues, the transformation matrix P depends on
the eigenvalues of the plant matrix A. If the eigenvalues of A are real and distinct,
the transformation matrix P is made up of the eigenvectors of A as follows:

P=[PPP---P,] (9.67)

We illustrate how the transformation is determined by the following example
problem.
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EXAMPLE PROBLEM 94. Given the following state equations, determine the trans-
formation matrix P so that the new state equations are in the state canonical form:

=18 Al (o
oo o]
o) =[']

Solution. First find the eigenvalues of A:

IAL-A| =0
0 0
Lo 315 Al
A -1
‘2 ra+3] =0
or AA+30+2=0=A=-2 and A= —]
The eigenvector for A = —1 is found using Equation (9.65):
AI— AP =0
(P i R A B
0 -1 =2 =3]1/1Py
—P,— P, =0
2P, + 2P, =0

Both equations yield the same relationship between P, and P,;. We will arbitrarily
select

P| y = 1
then Py = -1
The eigenvector for A = —1 is
1
= [— 1 ]
In a similar manner we can obtain the eigenvector for A = —2. Solving Equation (9.65)

yields the following equations:

(& S)-1% AP -

or —2P, — P, =0
2P, + 1P,, = 0
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Again we will specify P, = 1 and then solve for P,;. The eigenvector P, becomes

= [—lz]

The transformation matrix P now can be constructed by stacking the eigenvectors as

follows:
P=[PP]

1 1
or P—[_1 _2]

To determine the new state equation we need the inverse of P:

e )

The diagonal matrix A is defined in terms of P and A:
A =P AP

T T A A
or A= [_0] ~02]

where the eigenvalues are on the diagonal.

In a similar manner B and C can be computed
B=P'B

2

-]
I

C=cCp
C=[3 1][—11 _]2}
C=[2 1]

The new state equations are
2| -1 01[z 2
= +
[zzﬂ [0 —2][@] [—2][“]
y=1I2 IJH
22

21(0)_ I
[zz(ox ~ PO

)L
Zz(o)4 B ~1
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This example demonstrates an important property of eigenvalues; namely, that the
eigenvalues and the corresponding characteristic equations are invariant under a non-
singular transformation. The eigenvalues of the A matrix and A are the same.

In this example the transformed plant matrix is a purely diagonal matrix having the
eigenvalues of the original A matrix along the diagonal. For this particular case, the
state transition matrix can be shown to be the following:

e 0
A
®() = eM [ 0 e"z']

or o) = [eo e‘_)z,]

The solution of the transformed state equations would be similar to Equation (9.42):

2(1) = ®(1)2(0) + f Ot — 1) By(r) dr
[z;(t)] _ [e—f 0 ][ i ] . [ Ji 266 dr ]
2(1) 1o exf] -1 ._J'o' 26-2-7) dr
]

N

The output of the system is given by

y=Cz
2_ —t
or y=1[2 1][ _le ]
y =3~ 2"

9.3.2 Repeated Eigenvalues

Where the eigenvalues are repeated, the procedure outlined for the distinct eigen-
values produces a singular transformation matrix. The eigenvectors for the repeated
roots are the same; therefore, two or more columns of the transformation matrix
are identical, which results in a nonsingular matrix. For repeated eigenvalues
an almost diagonal matrix, called a Jordan matrix, can be obtained. The Jordan
matrix is

A 1 0 0 O
0 A 1 0 O

A=10 0 A 0 O (9.68)
0 0 0 A O

0 0 0 0 A

Notice that the diagonal immediately above the repeated eigenvalues is composed
of ones. The eigenvectors associated with the distinct eigenvalues are determined
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as before. For the repeated eigenvalues the eigenvectors are determined using the

following relationships:

(M- AP =0
(A1 — AP, = —P, (9.69)
NI — AP, = —-P,,
EXAMPLE PROBLEM 9.5. Given the state-space equations
X = Ax + By
[0 -1 -3
where A=|-6 0o -2
| 5 -2 -4
[0
B=]1
R

determine the transformation matrix P so that the new state equations are in the Jordan

canonical form.

Solution. The transformation matrix P is determined from the eigenvectors of the A

matrix:
[AT—A| =0
Al 3
6 A 2 | =A+4+50+2
-5 2 A+4
The roots of the characteristic equationare A = —2, A = —1,and A = —1. We have
arepeated eigenvalue A = —1. The eigenvectors for the repeated roots are determined
using equation (9.69):
AL —AP =0
(LI = AP, = =P,

The eigenvector P, is determined from the following equations:

=P+ Py + 3P =0

6P, — Py + 2P, =0

—SP, + 2Py + 3P, = 0

From the first two equations we can eliminate P,,:

5P, + 5P, =0

Let P;, = 1then P;; = —1.
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From the first equation
_Pn + le + 3P31 =0
or P,y =P, - 3P, =4

The eigenvector P, is as follows:

P =4
-1

The second eigenvector for A = —1 is determined from the equation (\;,I — A)P,
= _P|Z

|
|
—

—Py + Py + 3P, =
6P12—P22+2P32= ‘—4
—5P;; + 2P, + 3P;, =

|

Eliminating P,, from the first two equations yields
5P, + 5P;; = =5

Let P\, = 1, therefore Py, = —2. Substituting Py, and Pj, into the first equation yields
P. 22°

P22=_1+P12_3P32=6

The second eigenvector is

P2 = 6
-2
The eigenvector for the distinct eigenvalue A = —2 is found in the usual way:
1
P,=| 275
—0.25
The transformation matrix P is formed by stacking the eigenvectors:
P =[P P, P;]
1 1 1
or P=1 4 6 2.75
-1 -2 -025

9.3.3 Complex Eigenvalues

In many engineering problems the eigenvalues may be complex. If the complex
eigenvalues are not of multiple order then the procedure outlined earlier for distinct
eigenvalues can be used to determine the transformation matrix, P. This however,
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will result in a complex matrix. An alternate way of treating the complex eigen-
values is to define the diagonal matrix as follows:

A, O 0 0 o 07
0 A 0 O
0 A, O 0
A= 0 0 A, 0 (9.70)
) 0 A, .
| 0 0 0 o A, ]
where A, A,, and A; are real distinct eigenvalues and A,, A,, and A, are the
0,

complex eigenvalues. The matrices A, = “1| has the real part of the

—(l)l (o3}
eigenvalue on the diagonal and the imaginary part on the off-diagonal. The matrix
for two distinct eigenvalues and two pairs of distinct complex eigenvalues follows:

A, 0 0 0 0 07
0 A O 0 0 0
0 0 o w 0 0

A= ! : 71
0 0 -w, o0 0 0O ©.71)
0 0 0 0 oo o
L O 0 O O —(1)2 O’zJ

EXAMPLE PROBLEM 9.6. Given the state equation
x(t) = Ax(1) + Bq(o)

[0 1 o0
where A=10 0 1
| -5 -7 -3

[0

B=|0

| 1

find the transformation x = Pz that transforms A into a canonical form.

Solution. The eigenvalues of A are complex:

AT -A| =0
A -1 0
0 A —1]=0
5 7 A+3

A3+ TA+5=0
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The roots of the characteristic equation are
A= -1, A=—-1%2

The eigenvectors can be found by solving the equation

M- AP =0
For A = —1
~Py — Py =0
Py — Py =0
5P, + 7P, + 2P, =0
If in the first equation we let Py, = 1, we find that P;; = —1. From the second
equation we can determine Py, = —P,; = 1. Therefore the first eigenvector is
1
P] = —1
1
The third equation can be used to check if an error has been made.
The eigenvector for the complex root A = —1 + 2i can be found in a similar

manner. The equations are
(=1 + 2Py, — Py, =0
(-1 + 2Py, — P, =0
5P, + TPy + (2 + 20)P3, = 0

Again we let the first element of the eigenvector be 1, P;; = 1, then Py, = —1 + 2i.
From the second equation

P32 = (“1 + 2i)P22

Py, =-3—-4
Therefore, the eigenvector for A = —1 + 2iis
R
| —3 — 4
The eigenvector for the complex conjugate eigenvalue A = .—1 — 2i will be the com-

plex conjugate of P,:

(1)

P=]-1-2i
| -3 + 4i |
Now the new plant matrix can be determined
A =P AP
-1.0 (¢] 0
A= 0 -1+ 2 0

0 Y —-1—2i
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When the eigenvalues are complex an alternate way to express the A matrix is as

follows:
AN O 0
A=]10 o o
0 —w o

where g, is the real part and , is the imaginary part of the complex root. The elements
of transformation matrix P for the complex eigenvalues can be expressed as

Pi=a+ip (9.72)
P,=a—iB8
The complex eigenvector can be expressed in terms of the real and imaginary parts as
follows:
P=[a p] (9.73)

For this example we have one real eigenvector and one complex eigenvector and its
conjugate. The transformation matrix can be expressed for this example as

P=[P, a B (9.74)

where P, is the eigenvector for the real root and « and B are determined from the
complex eigenvector as follows:

1 0
P,=|-1]+1i] 2
| -3 —4
1 1 o0
Therefore P=}-1 -1 2
|1 -3 -4
The diagonalized matrix A is
-1 0 0
A=PAP=| 0 -1 2
0 -2 -~

94
CONTROLLABILITY AND OBSERVABILITY

In the following sections we examine the application of state feedback design and
optimal control theory to aircraft control problems. Two concepts that play an
important role in modern control theory are controllability and observability.
Controllability is concerned with whether the states of the dynamic system are
affected by the control input. A system is said to be completely controllable if some
control transfers any initial state x,() to any final state x,(¢) in some finite time. If
one or more of the states are unaffected by the control, the system is not completely
controllable.
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A mathematical definition of controllability for a linear dynamical system can
be expressed as follows. If the dynamic system can be described by the state
equation

X = Ax + By (9.75)

where x and m are the state and control vectors of order n and m, respectively, then
the necessary and sufficient condition for the system to be completely controllable
is that the rank of the controllability matrix V is equal to the number of states. The
matrix V is constructed from the A and B matrices in the following way:

V = [B, AB, A’B, . . ., A"'B] (9.76)

The rank of a matrix is defined as the largest nonzero determinant. Although this
definition is abstract, the test for controllability easily can be applied.

Observability deals with whether the states of the system can be identified from
the output of the system. A system is said to be completely observable if every state
x can be determined by the measurement of the output y(¢) over a finite time
interval. If one or more states cannot be identified from the output of the system,
the system is not observable. A mathematical test for observability of an nth-order
dynamic system governed by the equations

X = Ax + Bm (9.77)
y = Cx + Dq (9.78)

is given as follows. The necessary and sufficient condition for a system to be
completely observable is that the observability matrix U, defined as

U = [CLAC, ... (AT 'C7] (9.79)

is of the rank n.

The mathematical definitions of controllability and observability easily are
calculated but are somewhat abstract. An alternate way of looking at either control-
lability or observability is to transform the state equations to a canonical form. If
the state equations are transformed so that the new plant matrix is a diagonal
matrix the equations governing the system have been decoupled. The control ma-
trix for the modified state system can be examined to determine if the system is
completely state controllable. Because the equations have been decoupled, if any
row of the control matrix, ﬁ, is all zeroes then that particular state is uncontrol-
lable. In a similar manner one can determine whether the system is observable by
examining the new output matrix, C. If any column of the output matrix is all
zeroes then the corresponding state is not observable in the output vector.

EXAMPLE PROBLEM 9.7. Determine whether the system that follows is state control-
lable and observable. The A, B, and C matrices of the state and output equation are
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Solution. The controllability matrix, V, is defined for this problem as

V =[B AB]

AB = [_06 _]5][?] - [—15]
V- [(1) —15]

The rank of V is of the same as the order of the system. Therefore the system is

state controllable.
The observability matrix, U, for this example is

U=[CT ATCT]
FT 0 —-61}f1 _ 0
Ac “[1 —5][0]_[1]
1 O
U:[o 1]

The rank of the observability matrix also is of the same as the order of the system.
Therefore the system is state observable.

An alternate way of examining the concept of controllability and observability is
to transform the equation to a new state as shown in Example Problem 9.4. The new
state equations are decoupled, and if a row of the new control matrix is O then that
particular state is not controllable. For this example the new state equations were found

R e

i= Az + By
v=1I1 1][1‘]

5]
y = Cz

The control matrix B of the decoupled state system has no zero rows, therefore each
state is completely controllable. On the other hand, if the output matrix has a column
of zeroes then that particular state is not observable in the output vector. Again for this
example both z; and z, are observed in the output, therefore the system is completely
state observable.

EXAMPLE PROBLEM 9.8. Consider the system represented by the following equa-

T AR

Determine whether the system is state controllable.
Solution. For a second-order system the controllability matrix is defined as

V =[B AB]
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The matrix product AB follows:

w-0 20112

The controllability matrix now can be expressed as

V= [—11 _22]

The determinant of V is 0, which means the rank of the matrix is less than the order
of the system. Therefore the system is not state controllable.

If we select a new state variable so that the plant matrix is diagonalized we can
determine if the system is controllable by inspection. Using the methods discussed
earlier the state equation can be transformed 1o the following:

4 -1 0 0

2y 0 -2 2 1
The new state equations are decoupled. Notice that state z; can not be controlied,
therefore the system is not state controllable.

9.5
STATE FEEDBACK DESIGN

State feedback can be used to design a control system with a specific eigenvalue
structure. Consider the system represented by the state equations

% = Ax + By (9.80)
y = Cx (9.81)

It can be shown that if the system is state controllable, then it is possible to define
a linear control law to achieve any closed loop eigenvalue structure. For the case of
a single input system the control law is given by

n=kx+ 7 (9.82)

where 7’ is the control input without state feedback and k is a column matrix or
vector of the feedback gains. Figure 9.3 shows a block diagram representation of
the system.

n n \

FIGURE 9.3
A linear system with state feedback.
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If we combine Equations (9.80) and (9.82) the closed-loop system is given by

% = (A — BK))x + By’ (9.83)

or % = A*x + By’ (9.84)

where A* is the augmented matrix. For the case in which the A matrix may have
had undesirable eigenvalues the augmented matrix A* can be made to have specific
eigenvalues by properly selecting the feedback gains. Application of this technique
to multiple input systems is discussed later in this section.

The application of state feedback as presented here requires that the states be
state controllable. As stated earlier, a system is said to be completely controllable
if the control can be used to move the system from its initial state at t = ¢, to the
desired state at t = r,. Another way of stating this concept is to say that every state
is affected by the control input signal.

EXAMPLE PROBLEM 99. The state equations for a system follow:

X = Ax + By
y = Cx

-3 8

where A—[O 0]
0
»-[3]

C=[1 0]

Use state feedback so that the closed-loop system has the following characteristics:

®, = 25 rad/s
£ =0.707

Solution. First we must test to see if the system is state controllable. This is accom-
plished by examining the controllability matrix, V. If the controllability matrix, V, has
arank that is on the same order as the system then the system is state controllable. The
controllability matrix, V, for this problem follows:

V =[B AB]
-3 8110 32
AB:[O 0][4]:[0]
0 32
V:[4 0]
det[V] = —128

The rank of V is 2, which is on the same order as the system, therefore, the system is
state controllable.
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The desired characteristic equation for the closed-loop system can be written as
A+ 2w + 0l =0

which yields upon substitution of the numerical values of { and w, for this problem the
following equation:

A2+ 35350 +625=0
The augmented matrix with state feedback A* follows: .
A* = A — BK”

Substituting the matrices A and B and the gain vector k into the preceding equation

and expanding yields
-3 8 0
* = —
A [0 0] [4]["‘ -

[-3 8
—4k, —4k,

The eigenvalues of the augment matrix can be determined in the usual manner:

AL — A% =0
»ol -3 8|,
0 A —~4k,  —4k,
A3 -8 | o
4k, A+dk,
or A2+ (3 + k) + 12k, + 32k, = 0

The augmented system can be made to have the desired performance by adjusting the
gains k; and k, so that the augmented characteristic equation is as desired. The two
characteristic equations are the same if the coefficient of like powers of A are the same.
Equating coefficients of the polynomial yields
3 + 4k, = 3535
12k, + 32k, = 625

Solving these equations yields the state feedback gains for the closed loop system.

k] = 16.5
kz = 8.09
Figure 9.4 shows the response of the closed loop system to an initial displacement from

the equilibrium state. With state feedback the system quickly returns to the equilibrium
state.

9.5.1 Numerical Method for Determining Feedback Gains

As shown in the previous section, it is possible to use state feedback to locate the
eigenvalues so that the system has the desired performance. In this section we
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FIGURE 9.4
Response of augmented system to initial condition disturbance.

examine an analytical technique for determining the gains for a given eigenvalue
structure. Friedland [9.5] presents a numerical algorithm developed by Bass and
Gura[9.7] to find the state feedback gains. This method will be discussed here. The
method will be demonstrated for placement of the eigenvalues for a single input-
output system. For this particular case the state equations take the form

X = Ax + By (9.85)
where B is a column matrix
b,
B=| - (9.86)
by

and the control law is expressed as follows
n=—k'x (9.87)

where Kk is a vector of the unknown gains for a single input-output system.
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If the original system is in what is called the companion form the plant matrix
will look like this:

—-a, —a, —a; —a,
1 0 0 0
0 1 0 0
A= .. (9.88)
) e 10

where the terms a; are the coefficients in the differential equation. The control
matrix in the companion form reduces to the simplified form that follows. Note that
several arrangements are called the companion form:

1
0
B=i- (9.89)
0
If we substitute the control law into the state equations we obtain the following:
x = (A — BK)x (9.90)
or A* = A — BK’ (9.91)

where A* is the matrix of the system with the desired eigenvalues.
The eigenvalues of the derived system can be expressed as follows:

A"+ @A+ -+ g, (9.92)

where a, and the like are the coefficients of the desired characteristic equation. The
augmented matrix A* can be found by performing the following matrix operations.

The coefficients of the augmented matrix can be adjusted by way of the gains
to give the desired plant matrix.

[ —a, -k, —a, —k --- —a, — k]
1 0 0
0 1 . 0
A* = . . (9.93)
[ o 0 1 0o |
—a,— k= —aqpr i=1,...,n (9.94)
k=(@—a) (9.95)
a, a,
. 9.96
and a=\ - and a= ( )
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where a and a are the coefficients of the companion form of the plant matrix and
desired characteristic equation, respectively. The Bass-Gura method easily can be
used to determine the gains for a particular eigenvalue structure. The plant matrix
in general may not be in the companion form. In the next section we will examine
how the Bass-Gura method can be extended to plant matrices not in the companion
form.

If the system is not in the companion form we can find a transformation to
accomplish this:

k = [(VW)]'[a — a] (9.97)

where V = controllability test matrix
W = a triangular matrix

1 a, R
0 1 R
w=|. (9.98)

a = coefficients of desired closed-loop characteristic equation
a = coefficients of open-loop plant matrix characteristic equation.

EXAMPLE PROBLEM 9.10. Given the open-loop system having the following plant
and control matrix

(-1 1 0

A=10 -4 5
| 0 -1 -6
K

B=|0
| 10

C=[t 0 0]

use state feedback to locate the closed loop eigenvalues at A = —3, —2 * 2i using the

Bass-Gura method.

Solution. The characteristic equation for the plant matrix
AI- Al =0=A3+ 11A2+39A+29=0

or AM+arl+ar+a;,=0

where the coefficients ¢, = 11, a, = 39, and a; = 29. The characteristic equation for
the desired closed-loop system is given by

AP+ T7AT + 204 + 24

0
M+ali+prt+a=0

where a, = 7, a, = 20, and a, = 24. The feedback gains can be calculated from the
equation

k =[(VW)]"'[a - a]
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The controllability matrix, V, is determined from
V=[B AB A’B]

[0 0 50

v=]10 50 -500

| 10 —60 310

1 a a 1 11 39
W=[0 1 afl=]0 1 1
[0 0 1 0 0 1
[ 002 002 0.02]]
[(VWH] ' =| ~0.10 0.02 0.00

| 0.10 000 0.00
k = [(VW)]"'[a — a]

002 -0.02 o.oﬂ 7 11
k=|-010 002 o0o00|{]20]-1]39
| 0.10  0.00 0.00]] |24 29
(0.20
k=1 002
L—0.40

The response of the closed loop system to an initial displacement is shown in
Figure 9.5. The system returns to the equilibrium state rapidly.

9.5.2 Multiple Input-Output System

In the previous section we examined the use of state feedback control for placement
of the closed-loop eigenvalues. For a single-input system a unique set of gains can
be found by solving the state feedback problem. A single-input system is a special-
ized case of the more general multi-input system (see Figure 9.6). For a multi-input
system having p controls the state feedback control law is given by the following
expression:

n = —Kx (9.99)

where the gain matrix K is n X p. We now have a situation where there are n X p
gains, but we still only have n eigenvalues to be specified. Therefore we have p times
as many gains as necessary for eigenvalue placement. At first this may seem to be
a problem but actually the additional gains can be used to provide the designer with
greater flexibility in configuring the control system.

The number of gains can be reduced to n, that is, the number of closed-loop
eigenvalues, by defining the gain matrix as follows:

K = gk’ (9.100)

where g is a p X 1 vector of constants chosen by the designer and kis ann X 1
vector of gains that can be determined by the desired eigenvalue placement.
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Response of closed-loop system to an initial condition disturbance.
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FIGURE 9.6
Sketch of a multiple input-output system.
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9.5.3 Eigenvalue Placement

In this chapter we discussed the use of state feedback to locate the eigenvalues or
poles of the closed-loop system. The methods presented here allow us to position
the closed-loop eigenvalues at any location we desire. The question that must now
be asked is this: Is there a preferred location? Several factors should guide us on
locating the closed-loop eigenvalues. The factors include actuator saturation, actu-
ator size, unmodeled structural dynamics, and noise.

The control law for a single input system is proportional to the gains times the
states

n = —k'x (9.101)

The larger the gains the bigger the control action becomes for a given state vector.
The gains increase the further we move the closed-loop poles from the open-loop
poles. This clearly is demonstrated by examining the Bass-Gura formula:

k = [(VW)] '[a — a] (9.102)

For a given state vector the control input can become very large if the gains are too
high. This may mean that the control input might exceed a servo actuator’s capabil-
ity to respond due to physical limitations. In such a case the actuator is said to be
saturated. If saturation occurs through most of the control process the system will
not perform as expected. This could be fixed by replacing the servo actuator with
a more powerful one.

Recall that when setting up the state equations that model a physical system we
often times ignore the structural dynamics equations. For example, in the aircraft
equations of motion we treat the airplane as a rigid body, thus neglecting the
structural modes. Therefore we want to avoid increasing the closed-loop frequency
response so that we will not excite an unmodeled structural mode.

9.6
STATE VARIABLE RECONSTRUCTION:
THE STATE OBSERVER

The state feedback design discussed in the previous section requires the measure-
ment of each state variable. In some systems this is not possible, owing either to the
complexity of the system or to the expense required to measure certain states. If the
states cannot be measured for these reasons the control law cannot be imple-
mented. An alternate approach for designing the controller when all the states are
not available is to use an approximation to the state vector. The approximation to
the unavailable states is obtained by a subsystem called an observer. The design of
a state feedback control system when some of the states are inaccessible can be
divided into two phases. In the first phase, the control system is designed as though
all the states were known; for example, the method discussed in the previous
section. The second part of the design deals with determining the design of the
system that estimates the unavailable states. Figure 9.7 shows a lipear system with
state feedback and a state observer.
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n Yy
P 1 . [Xx=Ax+By IL [¢ |
State
observer
FIGURE 9.7

A linear system with state feedback and a state observer.

The designer can select the eigenvalues of the state observer. In choosing the
eigenvalues, it should be obvious that one would want the observer to respond faster
than the observed system. This means that the eigenvalues of the observer should
be more negative than those of the observed system. In practice, the observer
eigenvalues are chosen so that they are only slightly more negative than the
observed system eigenvalues. If the observer eigenvalues were chosen to be ex-
tremely large negative values the observer would have extremely rapid response.
Such an observer would be highly sensitive to noise. Hence, it has been found that
good closed-loop response with an observer is best achieved by selecting eigen-
values of the observer that make the observer only slightly more responsive than
the observed system.

A state observer can be designed in a number of ways. The basic idea is to make
the estimated state x, to be very close to the actual state x. Because x is unknown
there is no direct way of comparing the estimated state to the actual state of the
system. However, we do know the output of the system and we can compare it with
the estimated output of the observer. In the following analysis we will examine how
one can design a state observer for a single input and output system. The output
vector y in this case is a scalar. The estimated output can be expressed in terms of
the estimated states as follows:

y. = Cx, (9.103)

where Cis a 1 X n row matrix.
The observer can be constructed as a state feedback problem as illustrated in
Figure 9.8. The problem now is one of determining the observer feedback gains k,

FIGURE 9.8
Design for a state observer multi-input and -output system.
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so that y, approaches y as rapidly as possible. The dynamic characteristics of the
observer can be expressed as

x, = (A — kC)x. + By + k,y (9.104)
but y = Cx (9.105)
or x, = (A — k.O)x, + By + k,Cx (9.106)

If we subtract Equation (9.106) from the state equation for the actual system, we
obtain

x—x,= (A - kC)x - x,) (9.107)
The characteristic equation for the observer can be determined by solving
[ATI - (A —k,C)| =0 (9.108)

The gain matrix of the observer is selected so that Equation (9.108) decays rap-
idly to O.

The approach outlined here can be extended to a multi-input and -output
system in a manner similar to that outlined in section 9.5.2.

EXAMPLE PROBLEM 9.11. For Example Problem 9.9 assume that all the states are
not available for feedback control. Because some of the states are not available we need
to design a state observer to generate estimates of the system states. This problem is
solved by first determining the state feedback gains to meet the desired closed-loop
performance as if all the states were available for feedback. Once this has been
accomplished a state observer is designed to generate estimates of the system states.
The estimated states then will be used in the state feedback control system.

Solution. Having determined the state feedback gains in Example Problem 9.9 we next
turn our attention to design the state observer. Before attempting to design an observer
we will first determine whether the system is observable. This is accomplished by
examining the observability matrix, U. If the system is observable then the rank of the
observability matrix U is the same as the order of the system. The observability matrix
for this example problem is as follows:

U =[CT A'CT]

wer= [0 o flo] - V]
v= L(l) _83]

det U = é _83| =38

The rank of U is 2, which is the same as the order of the system, therefore the system
is state observable.
The observer is determined by solving Equation (9.108):

[AE— (A ~ k,C)| =0
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Substituting in the appropriate matrices and performing the indicated matrix opera-

tions yields

A+3+k, -8
k A

ey

or A2+ (3 + kA + 8k, =0

-0

The dynamics of the observer must be faster than the system being controlled. For this
example we assume that the observer roots are four times as large as the desired closed
loop performance.

The roots for the closed loop system were

Aa = —17.68 = 17.68i
therefore the observer roots are selected as
Alogy = —70.72 = 70.72i
The characteristic equation desired for the observer is given as
(A = AigdA = Apy) = 0
or A2 4+ 141.44A + 10,003 = 0

This allows us to select the observer gains by equating the desired observer character-
istic equation to the observation characteristic equation in terms of observer gains:

3+ k, = 141.44 = k, = 138.4
8k,, = 10,003 = k,, = 1250

Figure 9.9 is a sketch of closed loop system incorporating state feedback and a state

observer.
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FIGURE 9.9

Sketch of closed-loop system with state observer (shown within the dashed lines).
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9.7
OPTIMAL STATE-SPACE CONTROL SYSTEM DESIGN

The control system can be written in the state-space form:
x = Ax + Bm (9.109)

For the optimal control problem, given an initial state x(r,) we want to find a
control vector m that drives the state x(z,) to the desired final state x,(f,) in such a
way that a selected performance index of the form

Y
J = J g(x, m, 1) dt (9.110)
‘o
is minimized. The functional form of the performance index can be expressed in a
variety of forms. The most useful form is a quadratic index:

i
J=J’ x"Qx dr (9.111)
0

where Q is a weighting matrix. For many practical control problems it is desirable
to include a penalty for physical constraints such as expenditure of control energy.
The performance index can be rewritten as

Y
J = f (x"Qx + 1|TR1]) dr (9.112)
0

Using the quadratic performance index just defined it can be shown that for a linear
feedback control the optimal control law for a single input system is

n = —kK'x (9.113)

where K is a matrix of unknown gains. This problem is often referred to as the linear
regulator problem.

If we apply the principles of the calculus of variations to the minimization of
the performance index, we obtain the Riccati equation. A complete development of
the Riccati equation can be found in [9.4] and [9.8]. The Riccati equation is a set
of nonlinear differential equations that must be solved for the Riccati gains S(#):

ds() o r

e SHBR'B'S(s) — S(HA — A’S(r) — Q (9.114)
The Riccati matrix, S, is a symmetric positive definite matrix. The time-varying
gains are related to the Riccati gains in the following manner:

k(r) = R7'B'S(») (9.115)

For the case in which the final time t, approaches infinity the Riccati gain matrix
becomes a constant matrix and Equation 9.114 reduces to

SBR'B’'S —SA —A'S—-Q=0 (9.116)
In this form the Riccati equation is a set of nonlinear algebraic equations in terms

of the Riccati gains. Except for the simplest of examples the solution to Equation
(9.116) requires sophisticated computer codes.
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EXAMPLE PROBLEM 9.12. Find the control law that minimizes the performance
index

J=f (x} + x3 + ud dr
o

HENEHZ

Solution. First we need to determine the weighting matrices Q and R. The perfor-
mance index is expressed as

for the system

J= J x"Qx + n"Ry) dr
1]
The first part of the integrand can be expanded in the following manner.
On Cuilx
xX'Qx =[x, «x ][
b Oy Onllx
=x}Qn + 10,0y + X%, Q2 + X350

But that part of the integrand related to the state variables is given as x + x3, therefore
0., = Oy = 1and Q;; = Qy; = 0. In a similar manner one can show that R = {11
The weighting matrices Q and R follow:

o-ls |

R =[1]
The reduced Riccati equations can be rearranged as follows:
ATS + SA —SBR'B’'S + Q=0

We will perform the indicated matrix operations for first two terms in the Riccati

equation:
0 Of[S, S 0 0
ATS — [ ][ 11 12] = [ :l
1 0fLSu Sn S Su

SA=[S” S.z][o 1]=[0 s.,]
Sy S$»]l0 0 0 Sy

The third term SBR™!B7S will be calculated in steps:

[s,, s, ][0
SBR'B’S = | ‘2][ ]R"BTS
_SZI S22 1
'S.z] _
= R I'B’S
_S22
:
= S”][o 118
L S22
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10 5y,

[0 sn]s

:[0 512][511 Slz]
0 s22 S2I S22

:[512521 S.zsn]

SZZ S2l S%Z

Note that in this problem R™' = 1. Substituting matrices into the Riccati equation

yields
[o o] N [0 sn] B [sns21 s,zszz] . [1 o} _ [o o}
Sll SlZ 0 S2l S22S2I S%Z 0 1 0 O

Combining the matrices yields

[—5,252] +1 S — 81282 ] _ [0 0]
Si= 818y S+ Sy — Sh+1 00
We now must solve the nonlinear algebraic equations for the unknown Riccati gains:
8538 +1=0
S — 8525, =0
S+ 8 —ShL+1=0
From symmetry S = Sy
~$L+1=0=8,=*VI==*]
285, - 8L +1=0
For §), = 1,
~55, +3=0=58,=*V3
S — 818y =0=8, = *V3

The Riccati matrix S follows:

[ 3
L1 V3
The control law n = —Kk"x, where
k= R'B’S
k=t 1 5| -0 VA

The control law can now be written

~K'x = 1 \/5]["‘]
X2

= =X — \/5)(2

For a higher-order system numerical techniques are required. The MATLAB control
system toolbox has numerical algorithms for solving optimal control problems.

I

n
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9.8
SUMMARY

In this chapter we examined another approach to control system analysis and design
called modern control theory. This theory is based on the state-space formulation
of the differential equations that govern the system. We showed that higher-order
differential equations can be reduced to a system of first-order differential equa-
tions; that is, the state-space approach. These equations can be solved easily using
a computer.

Once the system has been formulated in the state-space format we can use state
feedback to locate the closed-loop eigenvalues so that the system meets whatever
performance requirements are desired. When some of the states are not available
for feedback we can design a state observer to estimate or predict the states. The
estimated states then can be used in place of the actual states in the feedback
system.

Finally, a short presentation of optimal control was presented. Optimal control
allows the designer to specify constraints on maximum allowable excursion of the
states and control input. This is accomplished by specifying weighting matrices for
the states and control in an integral performance index. The optimal control gains
are determined by solving the steady-state Riccati equation.

Modern control theory provides the control system designer with a set of very
powerful tools for designing control systems.

PROBLEMS

Problems that require the use of a computer have the capital letter C after the problem
number.

9.1. For the differential equations that follow, rewrite the equations in the state-space
formulation. Each part—(a), (b), and (c)—is to be treated as a separate problem.
Also identify the output equation.

(a) %+2{wn%+w:c=r

(b)%+g;7§‘+2gdﬁt+c=2%?+3r

© %’+33—?+2%‘tf+5a:—6&
(:j—(:+4a—15—?1—€=—35e

Hint: For problem (b), assume that one of the states includes the derivative dr/dt.

9.2. The transfer functions for a feedback control system follow. Determine the state-
space equations for the closed-loop system.

k
(a) G(s) = 6T 2653 H(s) =1
b) G(s) = k H(s) = 1

s(s? + 8s + 10)



9.3.

9.4.

9.5(C).
9.6(C).

9.7.

9.8.

9.9(O).
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Given the second-order differential equation

d2c(r) de(t)
+
dr? 3 de

+ 2¢(?) = r(®

having the initial conditions ¢(0) = 1 and d¢/d#(0) = 0, write the equation in
state vector form.

(a) Find the state transition matrix.

(b) Determine the solution if #(¢) is a unit step function.

Given the linear time-invariant dynamical system that is governed by the equa-

tions
Bl _ (1 O||x 1
[xz]_[l 1][x2]+[1][”]
x,(0) _ 0
where [xz(O)] = [1]

determine the state transition matrix and the response of the system if the input
signal is a unit step function.

Use the numerical algorithm discussed in Section 9.2 to solve Problem 9.3.

Use the numerical algorithm discussed in Section 9.2 to solve Problem 9.4.

a=[2 ]

(a) Determine the eigenvalues of A.
(b) Determine the transformation matrix P that can be used to diagonalize the A
matrix

Given the following matrix

A = P'AP

A= [_04 —12]

(a) Determine the eigenvalues of A.
(b) Determine the transformation matrix P that can be used to diagonalize the A
matrix

Given the following matrix

A = PIAP

The state-space equations are given as follows:

£, 12 —1[x 1
Xz = 0 1 0 Xy + 0 |u
% 1 -4 2 || x 0

Determine the transformation, P, that transforms the state equations so that the
new plant matrix is a diagonal matrix.
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9.10(C). Given the following matrix determine the transformation P that transforms the A
matrix into a diagonalized matrix A.

[0 1 0
A=lo o 1
-6 —11 —6
-1 0 o0
A=]l0 -2 0
[0 0o -3

9.11. Given the fo!'nwing matrix determine the transformation matrix P, that trans-
forms the A .-.atrix into a diagonal matrix A.

-

-2+ 2i 0
A=
[ 0 -2 = 2i]
What form would P take to obtain A in the following forms?

NEr

w0
-2 2

or A= [_2 _2]

9.12. When a new state vector is selected so that the transformed equation has a
diagonalized plant matrix

A 0 0
A=]0 Ao 0
0 0 A

show that the state transition matrix ®(¢) can be expressed as

e 00
P =eM=] 0 et 0
0 0 eM
2,2 3,3
1 H art M M at — att a't
The series expansion for e is given as e =1+ ar + =TS + ETS
att?
+ .
4!

9.13. When the eigenvalues are repeated, the A matrix takes on the following

A 00
A= 0 )\2 0
0 0 A
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Show that the state transition matrix for this case is

e 0 0
B() =M= 0 M reM
0 0 e
9.14(C). Given the state equations
'x.:] 0 1 O X O
.X.fz = 0 0 1 X5 + 0 ["7]
X3 -3 -6 —-4]| x; 1

determine whether the system is completely controllable.

9.15. If the output matrix for Problem 9.9 is
y=0 -1 1)| x,

determine the following:
(a) Is the system controllable?
(b) Is the system observable?

9.16. Given the system governed by the following state equations

ol-1% LE0] Lo [0 =L
that can be decoupled by defining a new state variable z() so that
x(t) = P z(t)
or i(H) = Az + By

where A = P"'AP and B = P™'B, the A matrix is a diagonal matrix and P is a
transformation matrix.
(a) Show that the transformation matrix P is as follows:

e[ )
(b) Determine the state transition matrix @ (#)* for the new state equations
i) = Az + By
(c) Determine the state transition matrix ®(z) for the original state equations
x() = Ax + By
from ®(r)*.
(d) The free response x(t) = ?

9.17. A single-axis, attitude control system for a satellite can be modeled as follows:

HE B HE

(=]

T

~ | s
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where 6, g, T, €, and I are defined as follows:
6 = the pitch angle of the satellite
g = the pitch rate of the satellite
T = the thrust of the control thrusters
€ = the distance of the thrusters from the satellite’s center of gravity
I = the mass moment of inertia about the axis of rotation.

If /1 = 50 determine the state feedback gains so that the closed-loop system has
the following performance:

w, = 20 rad/s
{ = 0.707

9.18(C). An open-loop control system has the following state-space model:

[0 1 o0
A=|-1 0o 2
| -4 —2 -2
[0
B=|2
1

(a) Determine the characteristic equations and eigenvalues for the open-loop

system.
(b) Use the Bass-Gura method to locate the closed-loop eigenvalues at A; = =35,
Apy = —2 % 3i
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CHAPTER 10

Application of Modern Control Theory
to Aircraft Autopilot Design

“While the Wright brothers are justly famed for their priority in many fields of
aviation, their most notable contribution was the implicit appreciation that the
secret to the control of flight was feedback.”

Duane McRuer and Dunstan Graham [10.1]

10.1
INTRODUCTION

In this final chapter we apply modern control theory to the design of aircraft
autopilots. This is accomplished through a series of example problems to illustrate
the control techniques presented in Chapter 9. State feedback is used to provide a
stability augmentation system (SAS) to improve an aircraft’s longitudinal and
lateral flying qualities. In addition, an altitude hold autopilot is designed using state
feedback.

Next we discuss the design of a state observer. Recall that a state observer or
estimator is required to implement a state feedback control law if some of the states
are unavailable. Obviously a state that is not measured cannot be used in the state
feedback controller. The observer provides estimates of the states so the controller
can be implemented. Finally we examine several examples where we apply optimal
control theory.

10.2
STABILITY AUGMENTATION

State feedback control can be used to improve the stability characteristics of
airplanes that lack good flying qualities. As shown in Chapter 9 the eigenvalues of
a system can be changed by using state feedback. The longitudinal eigenvalues are
the short- and long-period roots. If the longitudinal eigenvalues do not meet the
handling quality specifications discussed in Chapter 4 the airplane would be con-
sidered difficult to fly and deemed unacceptable by the pilots.

367
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10.2.1 Longitudinal Stability Augmentation

Starting with the longitudinal state equations given in Chapter 4, we develop a set
of linear algebraic equations in terms of the unknown feedback gains. The state
equations for the longitudinal motion have been simplified by neglecting the affect
of the control on the X-force equation and the stability derivative M,,. The state
equations are given below:

An X, X, 0 —g|lAu 0
Aw Z, Z, u 0] Aw Zs
=" * + AS 10.1
Ag M, M, M, 0||Aq M; [a3.] (10.1)
Ab 0 0 1 O0][aé 0
or x = Ax + By (10.2)

where A and B are the stability and control matrices just shown and x and 7 are
the state and control vectors.

The eigenvalues of the A matrix are the short- and long-period roots. If these
roots are unacceptable to the pilot, a stability augmentation system will be re-
quired. State feedback design can be used to provide the stability augmentation
system. In state feedback design we assume a linear control law that is proportional
to the states; that is,

n=—-kKx+n, (10.3)

where k7 is the transpose of the feedback gain vector and 7, is the pilot input.
Substituting the control law into the state equation yields

x = (A — Bk)x + By, (10.4)
or X = A¥x + Bn, (10.5)

where A* is the augmented matrix, expressed as
A* = A — Bk’ (10.6)
The augmented matrix for the longitudinal system of equations is

X, X, 0 —-g
Z, — Zsky, Z,— Zsk, ug— Zsky, —Zsk,
M, — Msk, M, — Mgk, M, — Msk, —Msk,
0 0 1 0

A* = (10.7)

The characteristic equation for the augmented matrix is obtained by solving the
equation

[AT— A*| =0 (10.8)
which yields a quartic characteristic equation,

AAM*+ B+ CA’+ DA+ E=0 (10.9)
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where the coefficients are defined as follows:
A=10 ]
B =Zsk, + Msk; — (X, + Z, + M)
C = Z: Xk, + uoMs — X, Zs — Z;M )k,
+ (ZsM,, — XM, — Z, Mgk, + Msk,
+ XM, +XZ +ZM, —uM,—X,Z,
D= (uX M5 — gMs — X, Z;M )k, + (X.ZsM, — uy X, M)k,
+ X, Z,Ms — X, Z:M,, — X, Z,Ms + X, ZsM )k,
+ (ZsM,, — XM, — Z M)k, + gM, — X, Z,M,
+ u XM, + X, ZM, — uy X, M,
E = (8Z,Ms — gZ:M )k, + (8Z;M, — gZ, M5k,
+ (X, ZMs — X, Z:M, — X, Z,Ms + X,Z:M)k,
+ gZ M, — gZ M,

(10.10)

J

The characteristic equation of the augmented system is a function of the known
stability derivatives and the unknown feedback gains. The feedback gains can be
determined once the desired longitudinal characteristics are specified. For example,
if the desired characteristic roots are

Al.2 = - spwn‘ * iwnp v 1 Cgp (10.11)
and *® |
‘t3,4 {p wnp -— iwnp v 1 C; ( 10. 1 2)

then the desired characteristic equation is
A=A+ A+ A+ ) +H A+ A+ (A + A, + /\4)]/\2(10 13)
— M A + A) + A, + A)A + AALA, =0 )

By equating the coefficients of like powers of A for the augmented and desired
characteristic equations one obtains a set of four linear algebraic equations in terms
of the unknown gains. These equations can be solved for the feedback gains.
EXAMPLE PROBLEM 10.1. An airplane is found to have poor short-period flying
qualities in a particular flight regime. To improve the flying qualities, a stability
augmentation system using state feedback is to be employed. Determine the feedback

gains so that the airplane’s short-period characteristics are A, = —2.1 = 2.14i. As-
sume that the original short-period dynamics are given by

Aa| [ -0.334 1.0 Aa 4 —0.027 [A5,]
Aq =252 —0.387]| Aq —2.6 ¢
Solution. The augmented matrix A* can be obtained from Equation (10.6):
A* = A — BK’

A¥ — —0.334 + 0.027k;, 1.0 + 0.027k,
—2.52 + 2.6k —0.387 + 2.6k,
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The eigenvalues of the augmented matrix A* are determined from the characteristic
equation, which is obtained from

A — A*| =0

A+ 0334 - 0.027, —1.0 - 0.027, | _ 0

or 2.52 — 2.6k, A+ 0387 — 2.6k|

Expanding the determinant yields the characteristic equation of the augmented system
in terms of the unknown feedback gains, k, and k;:

A2+ (0.721 — 0.027k;, — 2.6k)A + 2.65 — 2.61k, — 0.8k, = 0
The desired characteristic equation is given as
A2+ 420 +9 =0

Comparing like powers of A we obtain a set of algebraic equations for the unknown
feedback gains:

0.721 — 0.027k, — 2.6k, = 4.2 2,65 — 2.61k, — 0.8k, =9
Solving for the gains yields
k= —-2.03 k, = —1.318
and the state feedback control is given as
Ad, = 2.03 Aa + 1.318 Agq

Figure 10.1 shows the response of the airplane with and without the stability augmen-
tation system. An initial angle of attack disturbance of 5° is used to excite the airplane.
Without the stability augmentation, the airplane responds in its natural short-period
motion. However, when the state feedback stability augmentation system is active the
disturbance is quickly damped out.

In Example Problem 10.1 the state feedback gains for the second-order system are
relatively easy to determine. Through some simple algebraic manipulations and calcu-
lations we can estimate the state feedback gains. On the other hand, when the order of

6 FIGURE 10.1
! Basi Longitudinal response of an
4 e asic . . .
P airplane airplane with and without state
PR feedback.
o 4" unum o,
(deg) 0 ®oed’ o Cam0
=] a
-2 %o a” Augmented
) ° airplane
_4 T T T T T T N
0 2 4 6 8

Time (secs)
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the system is greater than 2 the algebraic manipulations and calculations can become
quite tedious. For higher-order systems, numerical techniques usually are used to find
the state feedback gains.

As mentioned, numerous computer software codes are available to solve control
problems and in particular to determine the state feedback gains. In the following
example problem we rely on the Bass-Gura method to determine state feedback gains
for improving the longitudinal dynamics using the complete or fourth-order model of
longitudinal equations. To solve this problem using the Bass-Gura method we use
matrix software that is readily available for most personal computers.

EXAMPLE PROBLEM 10.2. The longitudinal equations for an airplane having poor
handling qualities follow. Use state feedback to provide stability augmentation so that
the augmented aircraft has the following short- and long-period (phugoid) character-
istics:

LY -0.01 0. 0 —322||Au 0
Aw -040 -08 180 0 |lAw -10
= +
Ag 0 —0003 -05 0 ||Aqg —p.g80d
Ab 0 0 1 0 |}ae 0
Lp =06 ®,, = 3.0 rad/s
& = 0.05 w,, = 0.1 rad/s

Solution. As the order of the system increases beyond 3, simple hand calculations
similar to Example Problem 10.1 become quite difficult. As stated earlier, software
packages are available for solving state feedback design problems. Later in this chapter
we use such programs to solve selected problems; however, for this example problem
we use the Bass-Gura method, which lends itself to simple matrix manipulations, The
state feedback gains can be estimated using the Bass-Gura technique described in
Chapter 9. The feedback gains are found by solving the following equations:

k =[(VW)"]"'[a - a]

where V is the controllability matrix, W is a transformation matrix, and a and a are
vectors made up of the coefficients of the characteristic equation of the augmented or
closed-loop system (A — BK”) and the characteristic equation of the open-loop plant
matrix A.

The characteristic equation for the augmented or closed-loop system is determined
by deciding on what closed-loop performance is desired. For this particular problem
the desired eigenvalues are specified in terms of the short- and long-period damping
ratio and undamped natural frequency. The desired characteristic equation can be
written in terms of the damping and frequency as follows:

A? + 2w, A + @]

sp Asp:

YA + 2w, A+ wl) =0

Substituting the numerical values of {;, w,
and expanding yields

. {» and w, into the preceding equation

sp

(A2 + 3.6A + 9)(A? + 0.01A + 0.01) =0
or A* 4+ 3.61A°% + 9.05A% + 0.126A + 0.09 = 0
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The vector a is created from the coefficients of the desired characteristic equation:

A4+E|A3+52A2+53A+E4=0

a, 3.61

_ & |o90s

or 2=1a,1" o126
a,| Loo9

The characteristic equation of the open-loop system is obtained by solving the equation
AT -—A| =0
which yields
AY 4+ 1.31A% + 099342 + 0.0294) + 0.0386 = 0
The vector a is created from the coefficients of the open-loop characteristic equation:

M+ al+aA’+aA +a, =0

a, 1.31
or a=|%|= 0.993

as 0.0294

a, 0.0386

Continuing with the solution, we need to determine the controllability matrix, V. In
Chapter 9 we showed that the controllability matrix is defined in terms of the plant and
control matrices. For the fourth-order system under consideration here, the control-
lability matrix is

V=[B AB A’B A’B]

The elements of the V matrix can be readily calculated by performing the appropriate
matrix multiplications:

—0.01 0.1 0 —-3221] O -1.0
AB = -040 -08 180 0 —10 | _ |49
0 —-0.003 -05 0 —-2.8 1.43
0 0 1.0 0 0 -2.8
-001 0. 0 -322][-10
—-040 -038 180 0 —496
°B = =
A A[AB] 0 —-0.003 -0.5 0 1.43
0 0 1.0 0 -2.8
40.57
654.6
B =
A'B 0.773
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—-0.01 0.1 0  -—32.2{|40.57
~-040 -08 180 0 654.6
3B = A[A? =
A [a%B] 0 —0.003 -0.5 0 0.773
0 0 1.0 0 1.43
19.008
—400.77
3 =
A'B -2.35
0.773

Substituting the column matrices into the definition of V yields

0 —1.0 40.57 19.008
—10 496 654.6 —400.77
-2.8 143 0773 -235

0 -28 143 0.773

V =

The transformation matrix W is required if the plant matrix A is not in the companion
form. For this particular problem the A matrix is not in companion form; therefore, the
transformation matrix must be developed. As was shown in Chapter 9 the transforma-
tion matrix is defined in terms of the coefficients of the characteristic equation of the

plant matrix. For this particular example of a fourth-order system the W matrix is
defined as

1 a a a 1 131 0993 0.029

W = 0 1 a af _ 0 1 1.31  0.993
0 0 1 gq 0 0 1 1.31
0 0 0 1 0 o 0 1

Now we are in a position to calculate [(VW)7]"". This will be accomplished in the
following steps:

[ 0 —1 4057 19.008 1[1 1.31 0993 0.0294
vw = | 7100 —496 6546 —400781/]0 1.0 131 0993
-28 143 07713 -2351lo o 10 131
| 0 -28 143 0773 llo o 0 1.0
[ o -10 3923 7127
-10.0 -509.1 =501 —36.1
vw = | 100 —509

—28 -224 -0.134 0
| O —-2.8 —-224 —0.13]

The transpose of the matrix VW is obtained by interchanging the rows and columns:

0 -10.0 28 0
-1.0 -509 -2234 -28
393 -51 -013 224
712 -36.1 0.0 —0.13

(VW) =
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The inverse of the matrix [(VW)]7)™' follows:

0.0008 —0.0010 0.0004  0.0138

0.0014 —-0.0019 0.0025 -—0.0014
—0.3622 0.0068 —0.0089 0.0050

0.0321 —0.0135 -—-0.4446 0.2451

(vwl)~' =

The state feedback gains can now be calculated from the equation

k=(VW])'"(a—a)
[ 0.0008 —0.0010 0.0004 0.0138 3.61 1.31
0.0014 -0.0019 0.0025 —0.0014|[ |9.05 0.993

—0.3622 0.6068 —0.0089 0.0050 0.126 0.0294
| 0.0321  —0.0135 -04446 0.2451 0.09 0.0386

[—0.0055
—-0.0120
—0.7785
| ~0.0656

Having determined the feedback gains we can now define the control law. The
stability augmentation control law is

Au
A8, = —k'x = —[—0.0055 —0.0120 —0.7785 —0.0656] i’;

A8
= 0.0055 Au + 0.0120 Aw + 0.7785 Agq + 0.0656 A8

10.2.2 Lateral Stability Augmentation

The lateral eigenvalues of an airplane also can be modified using state feedback.
The lateral state equations are expressed in state-space form as follows

A Y, 0 —u gllAv Y;, Y5,
Ap L, L, L Of||4p L; L, [A&,
= + a r
AF N, N, N, o0f|Ar N5 N;|LAs, (10.14)
Ad 0 1 0 0]lag 0 0

or in shorthand mathematical form
x = Ax + By (10.15)

Note that the control vector is made up of two control inputs; namely, the aileron
and rudder deflector angle. The control matrix B no longer is just a column matrix
but a 4 X 2 rectangular matrix.

When we have a multiple input system the state feedback gain vector becomes
a gain matrix of order n X m where n is the order of the system and m is the number
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of control input signals. Placing the eigenvalues at some desired location allows the
designer to identify n of the gains; however, we still have n X (m — 1) gains that
must be selected. There are techniques that can be used to handle the multiple input
system but these techniques are beyond the scope of this book.

One technique for handling the multiple input system was discussed in Chap-
ter 9. Basically this technique reduces the gain matrix to a gain vector. Oehman
and Suddath [10.2] use this approach to apply state feedback control for lateral
stability augmentation. The control law can be expressed in terms of a constant row
matrix, g, the gain vector, k, and the pilot’s control input, 7,:

n=-gkx + 7, (10.16)

The procedure is identical to that for the longitudinal equations. The constant
vector g establishes the relationship between the aileron and rudder for augmenta-
tion. Either g, or g, is equal to 1, and the ratio g,/g, = AS,/AS, is specified by
control deflection limits.

Substituting the control vector into the state equation yields

x = (A — Bgk")x + By, (10.17)

or X = A*x + By, (10.18)
where A* is the augmented matrix, expressed as

A* = A — Bgk” (10.19)

EXAMPLE PROBLEM 103. Use state feedback to improve the Dutch roll characteris-
tics of an airplane. For this example we use a 2-degrees-of-freedom model to approx-
imate the Dutch roll motion. The equations used to approximate the Dutch roll motion

follow:
[AB] _ [YB/“O -a —Y,/uo)][Aﬁ] N [0 YB,/uo][Aaa]
Ar NB N, Ar Naﬂ N&r A8,

Assume that the stability derivatives have the following numerical values.

Yy = ~195fts? Y, = 4.8 ftls

Y, = 13 ft/s N;, = —0.082 1/¢?
Ng = 151/ Ns, = —0.008 1/s?
N, = =211/ uy = 400 ft/s

The desired damping ratio for the Dutch roll motion is {pr = 0.3 and the undamped
natural frequency is w, = 1.0 rad/s.

Substituting the numerical values of the stability derivatives into the Dutch roll
equations yields

AB] _[-0.049 —0.9971[AB N 0 0.012 ] As,
Ar] L 15 ~o021 ]| Ar —0.008 —0.082 [ A8,
Solution. For a multiple-input system the control law is modified as follows:

n = —gk'x
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AS,
where n= AS

The elements of the constant vector g represent a weighting of the relative authority of
the ailerons and rudder for augmentation. For this problem we assume that g, = 1 and
g, = AS,/8, is taken as the ratio of the maximum control deflection angles. With this
assumption the maximum authority of the rudder and aileron would be achieved
simultaneously. We assume that g, = AS,/A8, = 0.25 for this problem. Substituting
the control law into the state equation yields

x = (A — Bgk")x
The augmented matrix A* is given as
A* = A — Bgk”
The characteristic equation of the augmented system can now be determined:
JAL — A*| =0

or

A 0] _[-0049 -0997] 0 0.012 1 k]

0 A 1.5 -0.21 -0.008 —0.082[l0.25]"" ™
A+ 0.049 + 0.003k,  0.997 + 0.003k,

—1.5 — 0.0285k, A + 0.21 — 0.285k,

=0

Expanding this determinant yields the characteristic equation of the augmented matrix
in terms of the unknown gains k, and k,:

A% + (0.259 + 0.003k, — 0.0285k,)A + 1.51 + 0.029, + 0.0031k, =

The desired characteristic equation can be expressed in terms of the Dutch roll damping
ratio and frequency:

A+ 2fp@

eh T 05, =0
Substituting in the values for {pg and w,, yields
AL+ 06A+10=0

Equating the coefficients of the two polynomials yields a set of linear algebraic equa-
tions in terms of the unknown gains:

0.003 —0.0285|| k] | 0.341
0.029 0.0031 {|k, -0.51

Solving for the gains yields
—16.1
k= [— 13.7]
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Substituting the gain vector back into the control law yields

n = —gk’x
A6a - _ 8 AB
or [Aa,] - [82][k| kZ][Ar
Ad, = —g ki AB — gk Ar
A8, = — g,k AB — g2k Ar

For the selected values of g and the feedback gains determined here, we have the
following control law:

A8,
Ad,

16.1 AB + 13.7 Ar
40 AB + 342 Ar

This problem could have been solved using the Bass-Gura method once the g matrix
was selected. The augmented system for a single- and multiple-input system follow:

A* = A — BK” Single-input system
A* = A — Bgk”  Multiple-input system

For a multiple-input system the control matrix B is n X m where n is the order of the
system and m is the number of control input signals. The constant matrix gis n X I,
therefore the matrix product Bg is n X 1. The Bass-Gura method can be used if we
replace the control matrix by B where

B =Bg

The constant vector reduces the problem to determining » gains instead of n X m gains.
Now let us apply the Bass-Gura method to this problem. First we determine the
modified control matrix B:

= 0 0.012 1
B=Bg= [—0.008 —0.082] [0.25]
— 0.003
B= [—0.0285]
The vector a is determined from the desired characteristic equation

A2+ 060 +10=0

or A+ EIA + Ez =0
theref, I
ereiore a 1.0

The vector a is determined from the characteristic equation of the plant matrix A. The
characteristic equation for the A matrix can be calculated easily:

A% 4+ 0.259A + 1.5058 =0
or AM+ar+a,=0

0.259
therefore a= [1.506]
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The controllability matrix is defined in terms of B and A:

V =[B AB]
3 0.003 0.028
—-0.0285 0.011

Because the plant matrix is not in companion form we need to determine the transfor-

mation matrix W:
el |1 0259
W= [0 1] B [0 1 ]

Finally the feedback gains can be calculated by
k = [(VW)']"'[a - a]

371 34.05
-1 —
where [vwy [—34.70 3.58]
~16.0
and k= [—13.7]

Figure 10.2 is a plot of the Dutch roll motion for an initial displacement in 8 for an
airplane with and without a stability augmentation system working.

Response to an initial disturbance
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Without state feedback
3 |
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FIGURE 10.2
Dutch roll response with and without state feedback.
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10.3
AUTOPILOT DESIGN

The stability augmentation system discussed in the previous section is an autopilot.
The function of an SAS autopilot is to provide good handling qualities for the
airplane so that the pilots do not find the airplane difficult to fly. Other types of
autopilots discussed in Chapter 8 were used to lessen the flight crew’s workload
during cruise and help them land the airplane during adverse weather conditions.
We examined autopilots to maintain the airplane’s orientation, speed, and altitude.

The state feedback design approach can be used to design autopilots to perform
the same functions. In the following example problem we demonstrate how the
state feedback design approach can be used to design an altitude hold autopilot.

EXAMPLE PROBLEM 104. Use state feedback to design an autopilot to maintain a
constant altitude. To simplify this problem we will assume that the forward speed of
the airplane, uy, is held fixed by a separate velocity control system and furthermore we
neglect the control surface actuator dynamics. If the actuator dynamics were included
the order of the system would be increased by 1. This assumption was made solely for
the purposes of keeping the system as simple as possible. The airplane selected for this
example is the STOL transport used in Example Problem 8.3.

The state equation for the airplane can be represented by the short-period approx-
imation. The kinematic equation representing the change in vertical height in terms of
the angles Aa and A6, developed in Chapter 8 is:

Ah = uy(A8 — Aa)

If we add the vertical velocity equation to the short-period equations we obtain the
following fourth-order system:

Ad Z,/ug 1 0 0}||Aa Zs /ug
Ag M, + M,Z /u||M, + M; O 0l||Aq M,
| = +
A6 0 1 0 0} A6 0 (48]
AR —u 0 u, O)1Ar 0

Substituting the numerical values of the stability derivatives for the STOL transport
yields

Ad —1.397 1 0 0]|Ax —0.124
Ag -547 =327 0 0}lAg —13.2
Ad 0 1 0 oflae 0 (48]
Ah —400 0 400 0]|Ah 0

In state feedback design the designer can specify the desired location of the eigenvalues.
For this example we choose to locate the eigenvalues at

M= —10 + 35i
/\3,4 = -2.0=x 1.0

Solution. The state feedback gains can be again determined using the Bass-Gura
method. The gains are determined by the matrix equation

k =[VW']"'[a - a]
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where V is the controllability matrix, W is a transformation matrix, and a and a are
vectors made up of the coefficients of the characteristic equations for the closed-loop
system A* = (A — BK") and the characteristic equation for open-loop plant matrix A,
respectively. The eigenvalues for the desired closed-loop system can be multiplied
together to give the closed-loop characteristic equation

A= 2)A =)A= A)A —Ar) =0

Substituting the desired eigenvalues into the above equation and performing the indi-
cated multiplication yields the following characteristic equation:

A* 4+ 6.0A% + 26.25A% + 631 + 6625 =0
The vector a is composed of the coefficients of the desired characteristic equation:

A4+21_]A3+52A2+53A +E4:0

a, 6.0
— a 26.25

where a= ;z = 63.0
a, 66.25

The characteristic equation for the A matrix is found by solving for the eigenvalues of
the A matrix:

|AI - A] =0
which was solved on the computer

A* + 4.667A3 + 10.04A2+ 0A +0 =0

or Mt g+’ +aA+a, =0
a 4.667
a, 10.04
thereft = =
erefore a a 0.0
a, 0.0

The next step is to determine the controllability matrix V. The controllability matrix
is defined in terms of the plant matrix A and control matrix B. For this example it is

V=[B AB AB AB]

The elements of the V matrix can be calculated readily by simple matrix multiplication:

-1.397 1.00 0 0f]-0.124 —13.03
AB = ~-547 =327 0 0f]—-1320] | 43.84
0 1.00 0 0 —13.20
—400 0 400 O 0 49.6
—-1.397 1.00 0 0)|—-13.03
—547 —-327 0 O0f| 43.84
A’B = A[AB] =
[AB] 0 1.0 0 0fj—13.20
—4.00 0 400 O] 49.6
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62.04
-72.11
2 —3
A'B 43.84
—69.29
~1397 10 0 0][62.04
-547 -327 0 oll-7211
’B = A[A’B] =
A (A'B] 0 10 0 0]] 4384
—400 0 400 0}|-69.29
[ —-158.8
-103.6
A’B =
B -72.1
—7279.4
| —0.12 -13.03 62.04 —1588
Vo —1320 43.84 -72.11 -—103.6
0 —13.20 4384 -721
| 0 49.60 —69.29 -7279.4

The rank of the V matrix is 4; therefore the system is completely state controllable. Our
next step is to determine the transformation matrix W, which for this particular prob-
lem is

1 a a a 1 466 1004 0.0

W = 01 a a - 0 1 4.66 10.04
0 0 1 a 0 0 1 4.66
0 0 0 1 0 0 0 1

We can now calculate the state feedback gains
=[(VW)']'[a - a]

where

| —0.12 13.03 6204 —1588][1 466 1004 O
VW = ~13.20 43.84 —72.11 —1036[]0 1 466 10.04
0 —13.20 4384 -72.1(l0 o© 1 4.66
0 4960 —6929 7279 10 0O 0 1

[-0.12 —-13.6 0.1 -0.5

_|-132 -177 -03 0.6

0 -132 -177 03

L 0 496 161.8 —7,104

The transpose of the matrix VW is obtained by interchanging the rows and columns
of VW:

-0.12 -13.2 0 0
—-13.6 —17.7 —132 496
T =
VW) 0.1 -03 -—17.7 1618

-0.5 0.6 -0.3 -17,104
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The inverse of the matrix (VW) follows:

0.0978 —0.0741 0.0553  0.0007
—0.0767 0.0007 -0.0005 0.000
0.0018 —0.0003 -0.0563 -—0.0013
0.000 0.000 0.000 —0.0001
The state feedback gains are

(YW1 ! =

k =[(VW)']"'[a — a]

[ 0.0978 —0.0741 0.0553  0.0007 6.0 4.67
| -00767 00007 -0.0005 0.000 205 _ 110.04
00018 —0.0003 —0.0563 —0.0013 63.0 0.00
Lo.ooo 0000 0000 —0.0001[ | |66.25 0.00

[ 2.445

_|-0.124

~3.636

[ —0.009

The control law developed to maintain a constant altitude was evaluated using a
numerical simulation. The autopilot was given an initial altitude excursion of 100 ft

100

60

® \

Change in altitude (ft)

20

)

-20

0 0.5 1 1.5 2 25 3 35 4 4.5 5
Time (secs)

FIGURE 10.3

Response of the STOL transport to a 100-ft initial displacement from the
designated altitude.
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from the desired attitude. Figure 10.3 shows the response to the change in altitude. The
autopilot quickly brings the airplane back to the designated altitude.

104
STATE OBSERVER

In Example Problems 10.1 and 10.2 we determined the state feedback gains to
relocate the longitudinal eigenvalues so that the airplane would have better han-
dling qualities. The state feedback design approach assumes that all the states are
available for feedback. By available we mean that the states must be able to be
measured by sensors onboard the aircraft. This may not always be the case. One
could imagine that one or more states may not be easily measured and therefore
would not be available for feedback. If all the states cannot be measured the control
law developed in these examples could not be implemented. Obviously if state
feedback were used to locate the eigenvalues at some desired location so the system
would have certain time domain performance, then all the states would have to be
used to accomplishing this task. A state observer could be used to provide estimates
of the states that cannot be measured.

Recall in Chapter 9 that the state observed can be constructed if the output is
observable. In the following example problems we design a state observer to predict
the states of the system. The predicted states then could be used to implement the
state feedback control law [10.3-10.6].

EXAMPLE PROBLEM 105. In Example Problem 10.1 we designed a state feedback
control law, n = —Kx, to improve the handling qualities of the airplane. Through state
feedback we were able to relocate the eigenvalues (short-period roots) of the airplane.
To implement the stability augmentation system all the states must be available. In this
problem we assume that the states are not measured by onboard sensors and therefore
are unavailable for feedback. To overcome this difficulty we design a state observer to
provide predictions of the necessary states. The predicted states then can be used in
conjunction with the state feedback control law determined in Example Problem 190.1.

Solution. The characteristic equation of the observer can be determined by expanding
the following equation:

AL-(A-kC)| =0

where A and C are the plant and output matrices and k, is the observer gain vector. For
this problem the output matrix is given by

C=[1 0]

Substituting the appropriate matrices into the preceding equation and expanding

yields
A O —-0.334 1.0 k
- +1 I ol =0
‘[0 A] [ —2.52 —0.387] [k,z][ ]\
A+ 0334 + &, -1.0

252+ k, A+0.387
A2 + (0.721 + k,)A + 2.65 + 0387 k,, + k., = 0

-0
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As stated in Chapter 9 the observer roots should be more responsive than the roots of
the state feedback system. We assume for this example problem that the observer roots
are four times as responsive as the state feedback roots. From a mathematical stand-
point the observer roots can be located anywhere in the left-hand portion of the
complex plane, provided they are to the left of the desired closed-loop system roots.
However, practical constraints similar to those discussed in Chapter 9 for the state
feedback root location also apply to the placement of the observer roots. In Example
Problem 10.1 the roots for the state feedback system were located at Age =
—2.1 * 2.14i. The desired observer characteristic equation is obtained by

(A = Aop,) (A — Agp,) =0
(A + 8.4 + 8.56i) (A + 8.4 — 8.56i) = 0
A2+ 168 + 1438 =0

By equating the desired observer characteristic equation with the one as a function of
the observer gains we obtain a set of equations for the unknown observer gains.

0.721 + k,, = 16.8
2.65 + 0387 k,, + k, = 143.8
Solving for each k, yields
k, = 16.08

k,, = 1349

€2

i

In Example Problem 10.5, the observer gains were easily obtained for the second-
order system through simple algebraic manipulations. However, as the order of the
system increases the analysis becomes quite tedious. Numerical techniques such as the
Bass-Gura method can be used to solve for the observer gains for higher-order systems.

Friedland [10.7] shows that the state observer gains can be determined by the
Bass-Gura method. The observer gains are obtained from the equation

k.= [(UW)]'(@ — a) (10.20)

where U is the observability matrix, W is a transformation matrix defined earlier, and
& and a are vectors of the coefficients of the desired observer characteristic equation
and the plant matrix, respectively.

EXAMPLE PROBLEM 10.6. Solve Example Problem 10.5 using the Bass-Gura
method.

Solution. In Example Problem 10.5 the desired observer characteristic equation was
shown to be

AT+ 16.8A + 1438 =0

therefore 4= [Z;] - [1]46388]

The characteristic equation of the plant matrix A can be shown to be
AT+ 07211 + 265 =0

[a,] [0.721]
or a= =
a, 2.65
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The observability matrix for a second-order system is given by

U=[CT ACT]
-]
wer= [T Zomalle) =17
(1 -
U= Jl) 0.1334]

The transformation matrix W is defined in terms of the coefficient of the plant matrix:

T oa] 1 o721
w‘[o 1]_[0 1 ]

The observer gains can now be estimated from Equation (10.20):
k. = [(UW)'] (@& — a)

1 —-0.334]||1 0.721
where UW—[0 ] ][0 1 ]
_ 1 0.387
0 1
1 0
T=
W) [0.387 1]
"

State observer within dashed line.

FIGURE 104
State feedback controller with an observer (within the dashed line).
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The inverse of (UW) is

[owy ) = [—0.]387 (1)]

Therefore the observer gains are
wo | t o[ es]_ [o7a
< L0387 1][[1438 2.65
_ 1 0| 16.079
—0.387 1]|141.13

_[16.08
134.9

Figure 10.4 is a block diagram of a system using state feedback and an observer.

10.5
OPTIMAL CONTROL

In the previous sections we examined the use of state feedback control for the
placement of the closed-loop eigenvalues. By placing the eigenvalues in the left half
portion of the complex plane we can be sure that the system is stable. However, as
we move the eigenvalues farther to the left in the complex plane the gains may
become large, resulting in excessive control deflection. For some systems the de-
signer may not have a good idea or feel for the best location of the closed-loop
eigenvalues.

Optimal control theory can be used to overcome these difficulties. In the fol-
lowing example we apply optimal control theory to provide an optimal controller
for maintaining a desired roll angle while placing constraints on the maximum
permissible roll angle and aileron deflection, respectively [10.8—10.10}. This prob-
lem is simple enough that we can solve the steady-state Riccati equations by hand.
However, for higher-order systems computer methods are required. A second ex-
ample of a higher-order system is examined using the software package MATLAB.

EXAMPLE PROBLEM 10.7. Most guided missiles require that the roll attitude of the
missile be kept at a fixed orientation throughout its flight so that the guidance system
can function properly. A roll autopilot is needed to maintain the desired roll orienta-
tion. Figure 10.5 is a sketch of a wing-controlled missile.

All movable FIGURE 10.5
wing surfaces A wing-controlled missile.
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Solution. In this example we design a feedback control system that will keep the roll
orientation near 0° while not exceeding a given limit on the aileron deflection angle.
The following equations of motion for the rolling motion of the missile were developed
in Chapter 5:

oL oL .
Ip=—p+ — =
P = SpP 28, 6, o=p

Rewriting these equations as

P=Lpp+L8.,80 ¢=P
aL/o dL/d6
L,,=——{ £ and L&,=—f ’

the equations can easily be written in the state variable form as follows:

HE AR

where

or X = Ax + By
0 1

h A=

where [0 Lp]

o i)

The quadratic performance index that is to be minimized is

=[G - G ()]

where ¢, = the maximum desired roll angle
Pmax = the maximum desired roll rate
8nax = Maximum aileron deflection.

Comparing the performance index given here with the general form allows us to
specify the matrices Q and R:

3 0
max
Q 1
0 p2
1
R=%

The optimum control law is determined by solving the steady-state Riccati matrix
equation:

ATS+SA -SBR'B' S+ Q=0
for the values of the S matrix. The optimal control law is given by
n = -k'x
where k™ = R!B’S
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Substituting the matrices A, B, Q, and R into the Ricatti equation yields a set of
nonlinear algebraic equations for the unknown elements of the S matrix:*

1
- S%2L2a5v2nax =0

max

Su + Slsz - 5125221«25,, 6r2nax =0

1
2512 + 2S22Lp + ;‘2—_ - S%sza Szmax = 0

max

For the case in which the missile has the aerodynamic characteristics

L, = —2rad/s

L = 9000 s?
Drax = 10° = 0.174 rad
DPmax = 300°/s = 5.23 rad/s

8pae = +30° = +0.524 rad

the nonlinear Ricatti equations can be solved for the elements of the Ricatti matrix S:

g [ 1135 00012
0.0012  0.00005

The control law gains can now be calculated from the equation
k7 = R7'B’S

and the control law is found to be 8, = —3.0¢ — 0.103p.

In Example Problem 10.6 it was possible to solve the Ricatti equation through
simple algebraic calculations. For more complex problems the Ricatti equation must be
solved by numerical algorithms incorporated into computer software.

A computer software package to solve for the optimal gains can be found in
MATLAB. A program called Igr solves the Ricatti equations for the continuous linear-
quadratic regulator problem. The Igr program is one of a collection of control system
analysis and design algorithms found in the MATLAB control system toolbox.

To use this program the user must supply the plant matrix A, the control matrix
B, and the weighting matrices Q and R that are in the performance index, J:

J = f (x"Qx + »"Rn) dr
o

As a final example problem, we will determine the optimal control law to maintain
a fixed altitude.

EXAMPLE PROBLEM 10.8. Determine the optimal control law for Example Prob-
lem 10.4 if we place constraints on the angle of attack, altitude excursion, and control

* Remember that the S matrix is symmetric, so it is necessary to solve only the equation generated for
the elements along and above the diagonal of the matrix.
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deflection. The weighting matrices are assumed to have the following form:

[~ =

2
G) o0 o
Qax

[=]
(=]

r 2
1
R =
()]
where Aa,,,, = 5° = 0.087 rad

Ahy,,, = 100 ft
As 10° = 0.175 rad

€ max

Solution. The equations for the STOL transport follow:

Ad -1397 1 0 oljae —0.124

Ag -547 -327 0 0f|lAq —-13.2

. = +

A 0 1 0 ollae o [[A%]
h —400 0 400 0 0

The MATLAB program Igr was used to determine the Riccati matrix. Figure 10.6
is a listing of the MATLAB instructions used to solve this problem. The Ricatti matrix
was found to be

75.6886 —0.9547 -—74.8768 —0.0865

—0.9547 0.7648 4.9711 0.0052
—-74.8768 49711 106.1849 0.1208

—0.0865  0.0052 0.1208 0.0002

A=[-1397 1 0 0;-5.47 -3.27 0 0;01 0 0;,-400 0 400 0]
B =[-0.124; -13.2; 0;0]

Q=[13212 0000 00 0;0 0 0 0;0 0 0 0.0001]

R = [32.84]

[K,S,E] = Iqr{A,B,Q,R)

FIGURE 10.6
Listing of MATLAB instruction.
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Once the Ricatti matrix has been determined the optimal control gains can be

determined by the equation
k" = R™!B’S
where

R = [82_]= 00306

75.6886 —0.9547 —74.8768 —0.0865

K" = [0.0306][—0.124 —132 0 0]

~0.9547 0.7648 49711  0.0052

~74.8768 4.9711 106.1849 0.1208
-0.0865 0.0052 0.1208  0.0002

= [0.098 —0.0304 —1.715 —0.0017]
The optimal control law can now be written
n = —k'x
or A8, = —0.098Aa + 0.0304Aq + 1.715A0 + 0.0017Ah

Figure 10.7 shows the response of the airplane to an initial displacement of 100 ft
from the desired altitude. The control system is observed to rapidly bring the aircraft

Altitude response
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FIGURE 10.7
Response of the STOL aircraft to a 100-ft deviation from the desired altitude.
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back to the desired altitude while keeping the angle of attack and control deflection under
Aay,., and A8, _, respectively.

max®

10.6
SUMMARY

Modern control theory provides the control systems engineer with a valuable
design tool. Unlike the classical control methods presented in Chapter 7, modern
control theory is ideally suited for synthesis of a control system with multiple inputs
and for determining optimal control strategies.

In state feedback design the designer can place the closed-loop system poles at
any location in the complex plane. In principle this technique permits the designer
to completely specify the dynamic performance of the system. From a mathemat-
ical standpoint the poles can be placed anywhere. However, practical consider-
ations such as signal noise and control actuator saturation place limitations on pole
placement.

To use a state feedback design the system had to be state controllable and all
the states must be accessible to measurement. If any state is unavailable for feed-
back the design cannot be implemented. This limitation can be overcome by the use
of a state observer. The state observer provides estimates of the system states.
Therefore the state observer can provide information on the unavailable states so
that the state feedback design can be implemented.

PROBLEMS

Problems that require the use of a computer have the capital letter C after the problem
number.

10.1. A wind-tunnel model is mounted on a bearing system so that the model is free
to pitch about its center of gravity. No other motion is possible. Design a control
system to maintain the model at some reference pitch attitude. The equation of
motion for the model is

[o7] = Lo, 8] [ e

where M, = —1 s72
M,=-3s"!
Ms = —4 S-z
Use state feedback to locate the closed-loop eigenvalues at A, = —1 * 2i.

10.2. The longitudinal motion of an airplane is approximated by the differential equa-
tions

w=—2.0w + 1796 — 278
9 = —0.25w — 150 — 458
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10.3(C).

104

10.5(C).

10.6(C).

(a) Rewrite the equations in state-space form
X = Ax + By

(b) Find the eigenvalues of A.
(¢) Determine a state feedback control law
n = —k'x

so that the augmented system has a damping ratio { = 0.5 and the undamped
natural frequency w, = 20 rad/s.

An airplane is found to have poor lateral handling qualities. Use state feedback
to provide stability augmentation. The lateral equations of motion and the de-
sired lateral eigenvalues follow. The lateral state equations are

AB -0.05 —-0.003 -098 .2{[AB 0 0
Ap| | -1.0 —-075 1.0 0]|Ap + |17 -02 A8,
Ay 0.3 -03 —0.15 0}|Ar 03 —0.6] A3,
Ad 0 1 0 0||lAe 0 0
The desired lateral eigenvalues are
Ao = —1.5
/\spiml = 005

Apg = —0.35 £ 1.5

Assume the relative authority of the ailerons and rudder are g, = 1.0 and
g = 6, /8, = 0.33.

Assume that states in Problem 10.1 are unavailable for state feedback. Design a
state observer to estimate the states. Assume the state observer eigenvalues are
three times as fast as the desired closed-loop eigenvalues; that is, Aog = 3AgE.

Design a state observer to estimate the states for the airplane described in
Problem 10.2. Assume that observer roots are twice as fast as the closed-loop
eigenvalues of the augmented system; that is, Agg = 2A where A, = —10
+ 1731

Use state feedback to design an altitude hold control system. Assume the forward
speed is held constant and the longitudinal equation can be modeled using the
short-period approximation. The short-period equations are

Ad -15 1 04§ Aa -0.2
Ag|=]-40 =10 0|l Aq| + ] -8.0]as
Af 0 1 0]} a6 0

Assume the Ah = uy(A8 — Aa) where u, = 200 ft/s. Determine the state-
feedback gain if the closed-loop eigenvalues are located at

A=—15=*251
A= -075=* 1.0i



10.7.

10.8.

10.9(C).

10.10(C).
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Use state feedback to design a control system to maintain a wings level attitude.
Assume the aircraft can be modeled by the following state equations:

(3] -1 olla) - [5 )

where L;, = 2.0/s?and L, = —0.5/s.
The closed loop system should have the following performace

¢ =0.707
w, = 10 rad/s

Design an optimal control law for Problem 10.1. Assume these constraints on the
pitch angle and elevator angle:

Abp = =10° = 0.175 rad

AS,,,. = *15 = 0.26 rad

The weighting function for the performance index J are

1
Aorznax
0 0

1
R=[8§]

Design an automatic control system to maintain zero vertical acceleration.
The equations of motion governing the aircraft’s motion are

Q= 0

Ad=éAa—Aq
Uo

Ag = M, Aa + M, Aq + M; A8,

Find the nonlinear algebraic equations that must be solved to determine the gains
for the control law 7 = —Kkx, that satisfies the performance index

- [12)+ () ()]s

where 8,,, = maximum control deflection
.., = maximum angle to attack
Gmax = Maximum pitch rate.

The rolling motion of an aerospace vehicle is given by these state equations:
5, -1/r 0 0{{8, 1/r
pl=1|Ls L, Ollp]|+] 0 |6]
¢ 0o 1 0}l ¢ 0

where §,, p, ¢, and 8, are the aileron deflection angle, roll rate, roll angle, and
voltage input to the aileron actuator motor. Note that in this problem the aileron
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angle is considered a state and the control voltage, 8,, is the input. Determine the
optimal control law that minimizes the performance index, J, as follows:

J = J (x"Qx + n"Ry)dr
0
1
r) 0 0
where Q=] 0 0 O
1
0 0 ——
[ 1
R
For this problem assume the following:
T=0.1s
LB,, = 30/52
L, = —1.0rad/s
8y = *25°=0.436rad
Gmax = * 45° = 0.787 rad
8, ... = 10 volts
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APPENDIX A

Atmospheric Tables
(ICAO Standard Atmosphere)

TABLE A.1
Geometric altitude (metric units)

H;,m Hm T° K P, N'm? P/P, p, kg/m~3 p/po a, m/s v, m*/s
0 0 288.150 1.01325 +5 1.00000 +0 1.2250 +0 1.0000 +1 340.294 1.4607 -5
1,000 1,000 281.651 89876 +4 887009 —1 1.1117 +0 9.0748 -1 336.435 1.5813 -5
2,000 1,999 275.154 79501 +4 784618 —1 1.0066 +0 82168 —1 332532 1.7147 -5
3,000 2,999 268.659 7.0121 +4 692042 —1 9.0925 -1 7.4225 —1 328583 1.8628 -5
4,000 3,997 262.166 6.1660 +4 6.08541 —1 8.1935 —1 6.6885 —1 324589 20275 -5
5,000 4,996 255.676 5.4048 +4 533415 -1 73643 —1 6.0117 —1 320545 22110 -5
6,000 5,994 249,187 4.7217 +4 4.66001 —~1 6.6011 —1 53887 —1 316452 24162 -5
7,000 6,992 242700 4.1105 +4 4.05677 —1 59002 —1 48165 —1 312306 26461 -5
8,000 7990 236.215 3.5651 +4 351854 —1 52579 -1 42921 —1 308.105 29044 -5
9,000 8,987 229.733 3.0800 +4 3.03979 —1 46706 -1 3.8128 —1 303.848 3.1957 -5
10,000 9,984 223.252 26500 +4 261533 —1 4.1351 -1 3.3756 -1 299.532 3.5251 -5
11,000 10,981 216774 22700 +4 224031 —1 36480 -1 29780 —1i 295.154 3.8988 -5
12,000 11,977 216.650 19399 +4 191457 -1 3.1194 —1 2.5464 —1 295.069 4.5574 -5
13,000 12,973 216.650 14170 +4 1.63628 —1 26660 ~1 2.1763 —1 295.069 5.3325 -5
14,000 13,969 216.650 1.4170 +4 139851 —1 22786 -1 18600 —1 295069 6.2391 -5
15,000 14,965 216.650 1.2112 +4 1.19534 —1 19475 —1 1.5898 -1 295.069 7.2995 -5
16,000 15960 216.650 1.0353 +4 1.02174 -1 1.6647 —1 13589 -1 295069 8.5397 -5
17,000 16,955 216.650 8.8496 +3 8.73399 -2 1.4230 —1 1.1616 —1 295069 9.9902 -5
18,000 17,949 216.650 7.5652 +3 7.46629 —2 12165 —1 99304 -2 295069 1.1686 —4
19,000 18,943 216.650 6.4674 +3 6.38291 —2 1.0400 —1 8.4894 -2 295009 13670 —4
20,000 19,937 216.650 5.5293 +3 545700 —2 8.8910 -2 7.2579 -2 295.069 1.5989 —4
21,000 20,931 217.581 4.7274 +3 4.66709 —2 7.5715 —2 6.1808 2 295.703 1.8843 —4
22,000 21,924 218.574 4.0420 +3 3.99456 —2 6.4510 —2 5.2661 -2 296.377 2.2201 -4
23,000 22917 219.567 3.4562 +3 342153 —2 55006 —2 4.4903 -2 297.049 2.6135 —4
24,000 23,910 220.560 29554 +3 293288 —2 4.6938 —2 3.8317 -2 297.720 3.0743 —4
25,000 24,902 221.552 26077 +3 251588 —2 4.0084 —2 3.2722 -2 298389 3.6135 -4
26,000 25,894 222544 2.1632 +3 2.15976 —2 34257 -2 27965 -2 299.056 4.2439 -4
27.000 26,886 223.536 1.8555 +3 1.85539 —2 29298 -2 23917 -2 299.722 49805 -4
28,000 27.877 224527 1.5949 +3 1.59506 -2 25076 -2 20470 -2 300.386 5.8405 -4
29.000 28,868 225.518 1.3737 +3 137224 —2 21478 -2 1.7533 -2 301.048 6.8438 —4
30,000 29,859 226509 1.1855 +3 1.18138 -2 1.8410 -2 1.5029 -2 301.709 8.0134 -4
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TABLE A2

Geometric altitude (English units)

Hg, ft H, ft T, °R P, Ib/ft? P/P, p, slug/ft=3 plpo a, ft/s v, ft¥/s

0 0 518.670 2.1162 +3 1.00000 +0 2.3769 -3 1.0000 +0 1116.45 1.5723 -4
2,500 2,500 509.756 1.9319 +3 9.12910 —1 2.2079 -3 9.2887 —1 1106.81 1.6700 -4
5,000 4,999 500.843 1.7609 +3 8.32085 —1 2.0482 -3 8.6170 —1 1097.10 1.7755 -4
7,500 7.497 491.933 1.6023 +3 7.57172 —1 1.8975 -3 7.9832 —1 1087.29 1.8896 —4
10,000 9,995 483.025 1.4556 +3 6.87832 —1 1.7556 -3 7.3859 —1 1077.40 2.0132 -4
12,500 12,493 474.120 1.3200 +3 6.23741 —1 1.6219 -3 6.8235 —1 1067.43 2.1472 —4
15,000 14,989 465.216 1.1948 +3 5.64587 ~1 1.4962 -3 6.2946 —1 1057.36 22927 -4
17,500 17,485 456.315 1.0794 +3 5.10072 —1 1.3781 -3 5.7977 -1 1047.19 2.4509 -4
20,000 19,981 447415 9.7327 +2 459912 —1 1.2673 -3 5.3316 —1 1036.93 2.6233 —4
22,500 22,476 438.518 8.7576 +2 413834 —1 1.1634 -3 4.8947 —1 1026.57 28113 -4
25,000 24,970 429.623 7.8633 +2 371577 -1 1.0663 -3 44859 —1 1016.10 3.0167 -4
27,500 27,464 420.730 7.0447 +2 3.32892 —1 9.7544 —4 4.1039 —1 1005.53 3.2416 —4
30,000 29,957 411.839 6.2962 +2 2.97544 -1 8.9068 —4 3.7473 -1 994.85 34882 —4
32,500 32,449 402.950 5.6144 +2 2.65305 —1 8.1169 —4 3415 -1 984.05 3.7591 -4
35,000 34,941 394.064 49934 +2 2.35962 —1 7.3820 -4 3.1058 —1 973.14 40573 —4
37,500 37,4325 389.970 44312 +2 2.09396 —1 6.6196 —4 2.7850 —1 968.08 4.48535 —4
40,000 39,923 389.970 3.9312 +2 1.85769 -1 5.8727 —4 24708 —1 968.08 5.0560 —4
42,500 42,4135 389.970 3.4878 +2 1.64816 -1 52103 —4 2.1921 ~1 968.08 5.69855 —4
45,000 44,903 389.970 3.0945 +2 1.46227 —1 4.6227 4 1.9449 —1 968.08 6.4228 -4
47,500  47,392.5 389.970 2.7456 +2 1.29742 —1 4.1015 -4 1.7256 —1 968.08 7.2391 —4
50,000 49,880 389.970 2.4361 +2 1.15116 —1 3.6391 —4 1.5311 —1 968.08 8.1587 —4



L6E

Hg,ft  Hft T,°R P, Ib/te? P/P, p, shug/n—> P/po a, fus v, ft¥s

52,500 52,3685 389.970 21615 +2 102143 -1 32290 -4 13585 —1  968.08  9.19505 —4
55,000 54,855  389.970 19180 +2  9.06336 -2  2.8652 —4 12055 —1  968.08 10363 -3
57,500 573415 389.970 17019 +2  8.04248 —2 25424 —4 10697 —1  968.08 11678 -3
60,000 59,828  389.970 15103 +2  7.13664 —2 22561 —4 9.4919 -2  968.08 13160 -3
62,500 62,3135 389.970 13402 +2 633315 =2 2.0021 —4 84232 -2  968.08 1483 -3
65000 64,798  389.970  1.1893 +2  5.62015 -2 17767 —4 74749 -2  968.08 16711 -3
67,500 67,282.5  390.8835  1.0555 +2  4.98815 —2 15767 -4  6.6188 —2  969.21  1.891 -3
70,000 69,766  392.246 93672 +2  4.42898 —2 13993 —4 58565 -2  970.90 21434 -3
72,500 72,249 3936085 83134 +1 3.93432 —2 12419 —4 5.1843 —2 97258 24283 -3
75000 74,731 394971  7.3784 +1  3.49635 -2 11022 —4 45914 -2 97426 27498 -3
77,500 77213 3963325 65487 +1  3.10856 —2  9.7829 -5 4.0168 —2 97594  3.1125 -3
80,000 79,694  397.693 58125 +1 276491 -2 86831 —5 3.6060 —2  977.62 3.5213 -3
82,500 82,174  399.0545 51592 +1 246035 —2 77022 -5  3.1978 -2  979.285 3.98215 -3
85,000 84,655 400415  4.5827 +1 219023 -2 67706 -5 28371 =2 98095 45012 -3
87,500 87,1345 4017755 40757 +1 195063 ~2 59598 -5 25181 -2 98262 50857 -3
90,000 89,613  403.135  3.6202 +1 173793 -2 52531 -5 22360 -2  984.28 57434 -3
92,500 92,0915 404495 32354 +1 154919 -2 46362 —5 19864 —2 98594  6.48345 -3
95000 94,569  405.854 28878 +1 1.38133 -2 40970 —5 17653 —2  987.59 73155 -3
97,500 97,046 4072135 25805 +1 123226 —2  3.6251 —5 1.5695 -2  989.245 825085 —3
100,000 99,523 408572 23085 +1 109971 -2 32114 =5 13960 =2 99090  9.3017 -3




APPENDIX B

Geometric, Mass, and Aerodynamic
Characteristics of Selected Airplanes

Data on the geometric, mass, and aerodynamic stability and control characteristics
are presented for seven airplanes. The airplanes include a general aviation airplane,
two jet fighters, an executive business jet, two jet transports, and a STOL transport.
The stability coefficients are presented in tabular form for each airplane. Co-
efficients that were unavailable have been presented with a numerical value of 0 in
the following tables. The stability coefficients for the A-4D are presented in graph-
ical form as a function of the Mach number and altitude. These plots show the large
variations in the coefficients due to compressibility effects. The definitions of the
stability coefficients and geometric data presented in the figures are given in the
following nomenclature list. The information presented in this appendix was taken
from [B.1], [B.2] and [B.3] given after the nomenclature list.

NOMENCLATURE
b Wing span C, = 3G, (rad™")
@ da
¢ Mean chord C,. = —?-C+ (rad™")
aa
L (2140)
C, = Zﬁ
_ G _9G
CLM - M C’aa - 35, (rad™")
_aC, . _ 9G, —
CL‘s = %8, (rad™") C’ﬁ, = 28, (rad™)
D N
C = — = e—
b os Cr OSb
9Cp g =9 ad
Cp ™ (rad™) G, = B (rad™")
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aC,
Cou = M
Co, ac,, -1y
- l
™ OS¢
C, = 9Cn (rad™")
« Ja
Y
Cy = E
C, = aB’ (rad™!)
oC,
Cy.s, = 3—({ (rad_])
L
C[ - @
aC
G, = ,Bl( ad™")
ac, ,
C = 3 (pb/2u0) (rad™")
_ aC, _
G, = a(rb/2uy) (rad™)
REFERENCES

Nomenclature 399

aC, .
C,,p 3 (pb) 200) (rad™")
aC, .
¢~ a(rb/z 5 @)
C, = — rad™!
= T g
_ 3G
™ 9M
aC,,
C, = —~— (rad™")
© 9(gc/2uy)
= —" -1
C, = 8, (rad™")
- -1
Co, =3 5 )
I. Rolling moment of inertia
I, Pitching moment of intertia
I, Yawing moment of inertia
I, Product of inertia about xz axis

Mach number
Dynamic pressure
Wing planform area
1y, Reference flight speed

v 2

B.1. Teper, G. L. Aircraft Stability and Control Data. Hawthorne, CA: System Technol-
ogy, Technical Report 176-1, April 1969.
Heffley, R. K.; and W. F. Jewell. Aircraft Handling Qualities Data. NASA CR-2144,

B.2.

B.3.

December 1972.

Mac Donald, R.A.; M. Garelick; and J.0’Grady. “Linearized Mathematical Models
for De Havilland Canada ‘Buffalo and Twin Otter” STOL Transports.” U.S. Depart-
ment of Transportation — Transportation System Center Report No. DOT-TSC-FAA-

71-8, June 1971.
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TABLE B.1
General aviation airplane: NAVION

Longitudinal C, Cp C.., Cp, Cpe Ce,
M = 0.158

Sea level 041 0.05 4.44 033 —0.683 0.0
Lateral Cyy Cig Cp C, C,, C,
M = 0.158

Sea level —0.564 —-0.074 —0.071 -0.410 -0.0575 0.107

o

Cma CL,, Cmq CL M CDM C"IM CL 8¢ ms,

—4.36 3.8 —9.96 0.0 0.0 0.0 0.355 —0.923

C, C C

&y Cy by CI or C" 5y

r

S

—0.125 —-0.134 -0.0035 0.157 0.107 —-0.072

Note: All derivatives are per radian.



Appendix 401

Center of gravity and

mass characteristics
W = 2,750 Ibs Ay
CG at 29.5% MAC N

I, = 1048 slug-ft?
I, =3000 slug-ft?
I, = 3530 slug-ft?
=0

Reference geometry

S = 184 ft?
b =334ft
c=57ft

S
FIGURE B.1

Three-view sketch and stability data for a general aviation airplane.
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TABLE B.2

Fighter aircraft: F104-A

Longitudinal C,

M = 0.257

Sea level 0.735
M =18

55,000 ft 0.2
Lateral Cy
M = 0.257

Sea level -1.17
M= 138

55,000 ft ~1.0

Co

0.263

0.055
Cy

—0.175

—-0.09

G

a

3.44

2.0

ng

0.50

0.24

Co

o«

0.45

0.38

p

—0.285

-0.27

ma

—0.64

-1.30

np

-0.14

—0.09

.,

a

0.0

0.0
G

0.265

0.15

Y

—-1.6

-2.0

—-0.75

—0.65

Cn,  Cuy
-58 0.0
-48  -02
Coo Gy
0.0042 0.208
0.0025 0.05

00 00 068

00  -001 052
C,  Cu

0.045 —0.16

0.008 —0.04

C

mse

—1.46

-0.10

Note: All derivatives are per radian.
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Center of gravity and
mass characteristics

W = 16,300 Ib
CG at 7% MAC
l, = 3549 slugft?

|, =58,611 slugft2
I, =59,669 slugft?
be =0

Reference geometry ~ <—| EHEES

<

S =196.1 ft2
b 21.94 ft
=9.55 ft
ﬂ\ &/ﬁ —
FIGURE B.2

Three-view sketch and stability data for the F-104-A fighter.
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TABLE B.3
Fighter aircraft: A-4D

Longitudinal C, Cp Ci, Cp, C,. C,, C..
M =04

Sea level 0.28 0.03 345 030 -038 072 -1.1
M =038

35,000 ft 0.30 0.038 4.0 0.56 —041 1.12 -1.65
Lateral Cy, Cp Cy G, C, C, C,
M=04

Sea level -098 -0.12 025 -0.26 0.022 0.14 -0.35
M =08

35,000 ft -1.04 -0.14 027 -0.24 0.029 0.17 -0.39

0.0

0.0
Ci,

0.08

0.072

Cn,  Cuy

-36 00

—43 015
Cosy G,
006 0.17
004 0.17

CDM CmM
0.0 0.0
0.03 -0.05
Cla, Cns,
—-0.105 0.032
-0.105 0.032

Cu,,

0.36

04

C

ms,

-0.50

—0.60

Note: All derivatives are per radian.
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Center of gravity and
mass characteristics

W =17,578 Ib ~ ]
CG at 25% MAC

I, = 8090 Slug-ft?

I, = 25,900 Slugt’ /‘T
I, =29,200 Slugft?

I, = 1300 Slugt?

Reference geometry

S = 260 ft
b =27.5ft
T =108t ﬂ
] S———
FIGURE B.3

Three-view sketch and stability data for the A-4D fighter.

5 FIGURE B4
C_, versus the Mach number.
4
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1.4 FIGURE B.5
/\ C,, versus the Mach number.
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1.0 FIGURE B.6
35,000 ft Cp,, versus the Mach number.
0.8 A
15,000 ft \ \
Cp, 06 \ o
-1
rad 04
N \
0.2 S N
Sea level T
o 1
0 0.2 0.4 0.6 0.8 1.0
Mach number
0 , FIGURE B.7
-0.2 - C,,., versus the Mach number.
o4 All altitudes “
Cn, 0.6 \\
rad-1 -0.8
-1.0
-1.2
-1.4
0 0.2 0.4 0.6 0.8 1.0
Mach number
& % FIGURE B.8
-1.0 C,,, versus the Mach number.
12 >t Al altitudes -
Cmi 1.4 \\
rad”! -1.6 N
~-1.8 A\ f
-2.0 \ /
-2.2
0 0.2 0.4 0.6 0.8 1.0
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3 FIGURE B9

-3.4
-3.6

Co, versus the Mach number.

-3.8

N

-4.0
-4.2

AN

~4.4

N

All a|titudes\Y_

-4.6
-4.8

\

-5.0

-5.2
-5.4

0.2 0.4 0.6 0.8 1.0
Mach number

FIGURE B.10
Cy,, versus the Mach number.

Al altitudes \

0.2 0.4 0.6 0.8 1.0
Mach number

-0.2

> FIGURE B.11

C,,,, versus the Mach number.

-0.4

-0.6

All altitudes

-0.8
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S I >
_0.9 — Sea level +—— 35,000 ft
-1.0 e B v /
-11 15,000 Tt |
-12
0 02 04 06 08 10
Mach number
9 ' 15,000 ft
Sea level .
0.1 - L
0.2 35,000 ft
03 :
0 02 04 06 08 10
Mach number
04 35,000 ft
0.3 : 2,
0.2 P 2
01 $ea Ievql
' | | 15,000 ft]
0
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FIGURE B.12
C,, versus the Mach number.

FIGURE B.13
C,, versus the Mach number.

FIGURE B.14
C,, versus the Mach number.

FIGURE B.15
C,, versus the Mach number.
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FIGURE B.16

C,, versus the Mach number.

FIGURE B.17
C,, versus the Mach number.

FIGURE B.18
C,, versus the Mach number.
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C,, versus the Mach number.
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FIGURE B.20
C,,, versus the Mach number.

FIGURE B.21
C,,, versus the Mach number.

FIGURE B.22
C,,, versus the Mach number.
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TABLE B.25
Business Jet: Jetstar

Longitudinal C, Cp
M =020

Sea level 0.737 0.095
M = 0.80

40,000 ft 0.4 0.04
Lateral Cyy Cy
M = 0.20

Sea level -0.72 -0.103
M = 0.80

40,000 ft -0.75 -0.06

C

a

5.0

6.5
Cop

0.137

0.13

Cp

o

0.75

0.60
G,

'p

-0.37

—0.42

C

Ma

—0.80

-0.72

p

-0.14

~0.756

C.

&

0.0

0.0

0.11

0.04

Co,

-3.0

-04

nr

—0.16

-0.16

G

q

0.054

0.060

C.,  Co, Cou  Cis,  Cos,

4

—8.0 0.0 0.0 -005 04 -0.81

—0.92 0.0 -0.6 -0.60 044 -0.88

C.s, Cy,, Ci, C

ne,

0.0075 0.175 0.029 -0.063

-0.06 0.16 0.029 -0.057

Note: All derivatives are per radian.
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Center of gravity and
mass characteristics

W = 38,200 Ib

CG at 25% MAC

I, = 118,773 Slugft’
I, = 135,869 Slugt?
I, =243,504 Slugft:
I, = 5061 Slugft?

Reference geometry

S = 5425 fi?
b = 53.75 ft
c =10.93ft

FIGURE B.25
Three-view sketch and stability data for a Jetstar executive business jet.
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Center of gravity and
mass characteristics

W = 126,000 Ib
CG at 25% MAC

I, =115,000 Slugt2 &
|, = 2450,000 Slugt? =
I, = 4070,000 Slugft2

e =0

Reference geometry

S = 2,000 ft?
b =120 ft
c =18.94 ft

FIGURE B.26
Three-view sketch and stability data for a Convair 880 jet transport.
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TABLE B.27
Transport aircraft: Boeing 747

Longitudinal  C; Cp C., Cp,
M = 0.25

Sea level 1.11 0.102 5.70 0.66
M = 0.90

40,000 ft 0.5 0.042 5.5 0.47
Lateral Cy, Cy Cog G,
M = 0.25

Sea level -0.96 -0.221 0.150 -0.45
M = 0.90

40,000 ft ~-0.85 —-0.10 020 =030

-0.121

0.20

C.,  Cn c,

67 -32 54
0006 —9.0 658
¢, G, G,
0.101 —030 0.0461
020 —0325 0014

Cmq CLM
—20.8 —0.81
—25.0 0.2

Coay Cos,

0.0064  0.175

0.003 0.075

Cp,,

Cos Cp,, Cons,

027 0338 —134
010 03 -12
Cu,
~0.109
-0.09

Note: All derivatives are per radian.
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Center of gravity and
mass characteristics

W = 636,600 Ib

CG at 25% MAC

I, =18.2 X 108 Slug-ft?
l, = 33.1 X 108 Slugft? (
I, = 49.7 X 108 SlugHt?

|

2 = 0.97 X 108 Slug-ft?

Reference geometry

S = 5,500 ft?
b = 195.68 ft
c=2731ft

FIGURE B.27
Three-view sketch and stability data for a large Boeing 747 jet transport.
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Center of gravity and
mass characteristics

W = 40,000 lbs. P
CG at 25% MAC |V
I, = 273,000 Slug#t:

, = 215,000 Slugt? [

1
I, = 447,000 Slug-ft?
Iy, =0

Reference geometry

S =945 ft?
b =96 ft
c =10.1ft

FIGURE B.28
Three-view sketch and stability data for a STOL transport.




APPENDIX C

Mathematical Review of Laplace
Transforms and Matrix Algebra

REVIEW OF MATHEMATICAL CONCEPTS
Laplace Transformation

The Laplace transform is a mathematical technique that has been used extensively
in control system synthesis. It is a very powerful mathematical tool for solving
differential equations. When the Laplace transformation technique is applied to a
differential equation it transforms the differential equation to an algebraic equa-
tion. The transformed algebraic equation can be solved for the quantity of interest
and then inverted back into the time domain to provide the solution to the differen-
tial equation.
The Laplace transformation is a mathematical operation defined by

L] = j f@) e~ dr = F(s) (C.1)

where f(z) is a function of time. The operator & and the complex variable s are the
Laplace operator and variable, respectively, and F(s) is the transform of f(r). The
Laplace transformation of various functions f(#) can be obtained by evaluating
Equation (C.1). The process of obtaining f(f) from the Laplace transform F(s),
called the inverse Laplace transformation, is given by

[ = L7F@s)] (C.2)

where the inverse Laplace transformation is given by the following integral rela-
tionship:

fn = —-l—f F(s) e ds (C.3)
2mi )

Several examples of Laplace transformations follow.

EXAMPLE PROBLEM C.1. Consider the function f{r) = e™®.

Solution. The Laplace transform of this expression yields

L] = gle ] = f e et dt = J e @9 gy
0 0

420
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and the evaluation of the integral gives the transform F(s):

1
st a

e lats =

F(s) = —

ats o

As another example suppose that f(r) = sin wt. Substituting into the definition of the
Laplace transformation one obtains

" 1 (7. .
F(s) = ¥[sin wt] = f sin wt e™ dt = % f (e« — e“)e™ dr
0 0

Evaluating this integral yields

)
s?+ w?

F(s) =

EXAMPLE PROBLEM C.. Consider the Laplace transformation of operations
such as the derivative and definite integral. When f(r) is a derivative, for example

f(n) = dy/de,

[,
§£[f(t)]—f0 dte dr

Solution. Solution of this integral can be obtained by applying the method of integra-
tion by parts. Mathematically integration by parts is given by the following expression:

)
fudv=uv

a

Letting u and dv be as follows

u=-e"
dy
dv = = dr
v dr
then du = —se " dt
v = y()

Substituting and integrating by parts yields

o«

LLf0)] =y e

+ sf y(t)e ™ dr
0

0

but the integral J' y()e s dt = Y(s)
0
dy
therefore ¥ U = —y(0) + sY(s)

In a similar manner the Laplace transformation of higher-order derivatives can be
shown to be

d’ly —_ o _ on—} — n-2_d_X
§£[dt"] s"Y(s) — s"7'y(0) — s 5

=0 =0
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When all initial conditions are 0 the transform simplifies to the following expression.

58[3’;):] = s"Y(s)

Now consider the Laplace transform of a definite integral:

1 o6 !
§£[f ¥{7) dr] = f e dtf y(r) dr

This integral can also be evaluated by the method of integration by parts. Letting u and

dv be as follows,
|
u= j yir) dr
0

do = e dt
then du = y(t)
1
v=-e"
s

Substituting and integrating by parts yields

58':] y{7) d‘r:l = e"’J y(r) dr| — %f e *'y(r) dr
) o o o

or Q[f y(7) d’r:l = vai)
o

By applying the Laplace transformation to various functions of f(f) one can
develop a table of transform pairs as shown in Table C.1. This table is a list of some of
the most commonly used transform pairs that occur in control system analysis.

“a | =

TABLE C.a1
Table of Laplace transform pairs
£ F(s) 0] F(s)
u(r) 1/s sin ot w/(s* + w?)
t 1/s2 cos wt s/(s? + w?)
@
I nt/s"t! sinh wt
SZ — w2
(1) s
Unit impulse 1 cosh wt 5 >
- w
+r ©
f &) dr =1 e sin wt —_—
., (s — a)* + w?
2 - 2
e« 1/(s + a) t cos wt u L
(s* + w?)
1 . 2ws
te —_— t sin wt P RPeE——
(s + a)p? (s2 + w?)?

tre n!/(s + a)"*'
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Solution of Ordinary Linear Differential Equations

In control system design, a linear differential equation of the form
dn y dn— 1 y

+ a,_
nggn ™ Ot g

<t a % +ay = f(1) (C4)
is common. This is a nonhomogeneous linear differential equation with constant
coefficients. The Laplace transformations of a differential equation results in an
algebraic equation in terms of the transform of the derivatives and the Laplace
variables. The resulting algebraic equation can be manipulated to solve for the
unknown function Y(s). The expression for Y(s) then can be inverted back into the
time domain to determine the solution y(z).

EXAMPLE PROBLEM CJ3. Given a second-order differential equation

d?
)2) + 2§w = + wly = wlu(f)
dr
where u(?) is a unit step function. Find the solution y(z) if the initial conditions are as
follows
y(©0) =0
dy(0)
— " = 0
dr

Solution. Taking the Laplace transformation of the differential equation yields

(s + 2{w,s + w)Y(s) = —3

Solving for Y(s) yields

w,

s(s? + 2lw,s + @?)

Y(s) =
Now y(r) can be obtained by inverting ¥(s) back into the time domain:

1
y@) = 1 + ————=e*'sin(w, V1 — %t — ¢)

Viep
where ¢=tan' (VI—/ -0

Partial Fractions Technique for Finding Inverse Transformations

When solving a differential equation using the Laplace transformation approach,
the major difficulty is in inverting the transformation back into the time domain.
The dependent variable is found as a rational function of the ratio of two polyno-
mials in the Laplace variable, s. The inverse of this function can be obtained by
the inverse Laplace transform defined by Equation (C.3). However, in practice it
generally is not necessary to evaluate the inverse in this manner. If this function
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can be found in a table of Laplace transform pairs the solution in the time domain
is easily obtained. On the other hand, if the transform cannot be found in the table
then an alternate approach must be used. The method of partial fractions reduces
the rational fraction to a sum of elementary terms which are available in the
Laplace tables.

The Laplace transform of a differential equation typically takes the form of a
ratio of polynomials in the Laplace variable, s

N(s)
D(s)
The denominator can be factored as follows:
D(s) = (s + Pl)(s + Pz) cee (s + Pn)

These roots can be either real or complex conjugate pairs and can be of multiple
order. When the roots are real and of order 1 the Laplace transform can be ex-
panded in the following manner:

F(s) = =~

F(s) = N(s) _ N(s)
D(s) (s+ p)s+ p)---(s+ py)
= G, G, o+ _Cf"_
s+ p s+ p; s+ p,
where the constants C, are defined as
[ N(s)]
C, = +
Py (s l) D( ) )
N(s)]
C, = +
P2 (S Pz) D( ) -
N(S)]
C, = (s +p
T PDe)
When some of the roots are repeated the Laplace transform can be represented as
N(s) N(s)

F(s) =

Dis) (s + p)s+ p)---(s+ p)is+ p)
and in expanded form as
C C
F(s) = —X Py kK 2+..-+—Ii’-—
s+ p s+ pa (s + p) (s + p) (s + py

The coefficients for the nonrepeated roots are determined as shown previously,
and the coefficients for the repeated roots can be obtained from the following

expression:
1 d N(s)
@‘u~ﬁmri“+)nm]
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With the partial fraction technique the Laplace transform of the differential equa-
tion can be expressed as a sum of elementary transforms that easily can be inverted
to the time domain.

Matrix Algebra

In this section we review some of the properties of matrices. A matrix is a collec-
tion of numbers arranged in a square or rectangular array. Matrices are used in the
solution of simultaneous equations and are of great utility as a shorthand notation
for large systems of equations. A brief review of some of the basic algebraic
properties of matrices are presented in the following section.

A rectangular matrix is a collection of elements that can be arranged in rows
and columns as follows:

an ay aj
ay,
as,
A=gqa;= dar
a; 4ap ai;;

where the indexes i and j represent the row and column, respectively. The rectan-
gular matrix reduces to a square matrix when i = j.

A unit matrix or identity matrix is a square matrix with the elements along the
diagonal being unity and all other elements of the array zero. The identity matrix
is denoted in the following manner:

10 --- 0
1
=000

00 --- 1

Addition and Subtraction of Matrices

Two matrices are equal if they are of the same order; that is, they have the same
number of rows and columns and the corresponding elements of the matrices are
identical. Mathematically this can be stated as

A=B
if a; =b

i i
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Matrices can be added provided they are of the same order. Matrix addition is
accomplished by adding together corresponding elements.

C=A+B
or ¢ = a; + by
Subtraction of matrices is defined in a similar manner:
C=A-B

or c; =a; — by

Multiplication of Two Matrices

Two matrices A and B can be multiplied provided that the number of columns of
A is equal to the number of rows of B. For example, suppose the matrices A and
B are defined as follows:

A= [aij]n,p
B = [bij]q.m

These matrices can be multiplied if the number of columns of A is equal to the
number of rows of B; thatis, p = ¢:

C = AB = [aij]n‘p[bij]q.m = [Cij]n,m
where c—'éab i=12...n
v k=1 wh j=1,2,...,m

EXAMPLE PROBLEM Cd4. Given the matrices A and B, determine the product AB:

A=|ay; ap ap

by by
B=1b, by
by by,

Solution. A and B can be multiplied together because the number of columns of A is
equal to the number of rows of B:

C = AB
@by + apby + apbs) (a4 by + anby + aby)
C = | (ayby + apby + ayby) (anbiy + apby + apbs)
(a3 b1y + apby + ayshyy) (asibiy + aynbyy + ayby)

Some additional properties of matrix multiplication are included in Table C.2.
Notice that in general matrix multiplication is not commutative. Multiplication of a
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TABLE C.2
Properties of matrix multiplication

(AB)C = A(BC) Associative
(A + B)C = AC + BC Distributive
AB + C) = AB + AC Distributive
AB # BA Comrmutative

matrix A by a scalar constant & is equivalent to multiplying each element of the matrix
by the scalar k:

kay, kay, ka
kA = ka2] kﬂzz k(123
ka3| ka32 ka33

Matrix Division (Inverse of a Matrix)

The solution of a system of algebraic equations requires matrix inversion. For
example, if a set of algebraic equations can be written in matrix form as

Ax =y
then the solution is given as
x=AT"y

where A ™! is the inverse of the matrix A. For the inverse of A to exist matrix A must
be square and nonsingular. The condition that A be nonsingular means that the
determinant of A must be a nonzero value. The inverse of a matrix is defined as
follows:

_ Ad)A
|A]
where Adj A is called the adjoint of A. The adjoint of a matrix is obtained by taking

the transpose of the cofactors of the A matrix, where the cofactors are determined
as follows:

A—l

Cij = (_1)i+jDij

and D, is the determinant obtained by eliminating the ith row and jth column of
A. Some additional properties of the inverse matrix are given in Table C.3.

The transpose of a matrix is obtained by interchanging the rows and columns
of the matrix. Given the matrix A,

a,, Gy Qs
A=|a an axn
ds; 4z A3z
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TABLE C3
Properties of an inverse matrix

LAA' = A'A =1
2.[AT' = A

3. If A and B are nonsingular and square matrices
then (AB)™' = B'A"'

then the transpose of A is

a, 4 das
T _
A =la, a, ap

dj3 Gy djs

For additional properties of matrices the reader should consult his or her mathe-
matics library.



APPENDIX D

Review of Control System
Analysis Techniques

BODE DIAGRAMS

The frequency response of a linear system is determined experimentally by apply-
ing a sinusoidal input signal and then measuring the sinusoidal response of the
system. The frequency response data includes the measurement of the amplitude
and phase shift of the sinusoidal output compared to the amplitude and phase of the
input signal as the input frequency is varied. The relationship between the output
and input to the system can be used by the designer to determine the performance
of the system. Furthermore, frequency response data can be used to deduce the
performance of a system to an arbitrary input that may or may not be periodic.

The magnitude of the amplitude ratio and phase angle can be presented graph-
ically in a number of ways. However, one of the most useful presentations of the
data is in the so-called Bode diagram, named after H. W. Bode for his pioneering
work in frequency response analysis. In a Bode diagram the logarithm of the
magnitude of the system transfer function, | G(iw) |, and the phase angle, ¢, are
plotted separately versus the frequency.

The frequency response, output-input amplitude ratio, and phase with respect
to the input can be determined analytically from the system transfer function
written in factored time constant form:

k(1 + T,5)(1 + Ts) - - -

G(s) = (D.1)

24 52

sSA+T)1 +Ts)-- |1+ =5+ —
This transfer function has simple zeros at —1/7,, —1/T,, . . ., a pole at the origin
of order r, simple poles at —1/T,, —1/T5, . . ., and complex poles at —{w, *

iw, V1 — {2 The steady-state response can be shown to be determined by substi-
tuting iw for the Laplace variable s in the system transfer function. Substituting iw
for s one can express the transfer function in terms of the magnitude of its ampli-
tude ratio and phase angle as follows:

20 log | Gliw)| = 20 log k + 20 log |1 + iwT,|
+201log |1 + iwl,| + -+ — 20 rlog |iw| (D.2)
—20log |1 + iwl}| —20log |1 + iwl|
— 20 log| 1 + 2{(w/@,)i — (@/w)*] - -

429
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and the phase angle in degrees

/Gliw) = tan™} T, + tan' oT, + - - - — r(90°) — tan™' T,
2w, D.3
—tan™! ol, -+ — tan'(—f%) ( )
0w, — w

The magnitude has been expressed in terms of decibels. A magnitude in decibels is
defined as follows:

. | magnitude of output |
Magnitude in dB = 20 log - - (D.4)
| magnitude of input |

where the logarithm is to the base 10.

The Bode diagram now can be constructed using a semilog plot. The magnitude
in decibels and phase angle are plotted separately on a linear ordinate versus the
frequency on a logarithmic abscissa. Because the Bode diagram is obtained by
adding the various factors of G(iw) one can construct the Bode diagram quite
rapidly.

In the general case the factors that will make up the transfer function are a
constant term (system gain), poles at the origin, simple poles and zeros on the real
axis, and complex conjugate poles and zeros. The graphical representation of each
of these individual factors is described in the following section.

System Gain

The log magnitude of the system gain is as follows:

20 log k = constant dB (D.5)
and the phase angle by R
Sk = 0 k>0 - (D.5)
180° k<O

Figure D.1 shows the Bode plot for a positive system gain.

N Magnitude of gain in dB
dB 0dB
90° / Phase angle of gain L
¢ 0°
-90° + -
-180° — T —
0.1 1 10 100
w rad/secs
FIGURE D.1

Bode representation of the magnitude and phase of the system
gain k.
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Poles or Zeros at the Origin (iw)*"

The log magnitude of a pole or zero at the origin of order r can be written as
20 log | (iw)*"| = *=20r log w dB (D.6)
and the phase angle is given by
L(iw)*" = *90°r (D.7)
The log-magnitude is 0 dB at w = 1.0 rad/s and has a slope of 20 dB/decade,
where a decade is a factor of 10 change in frequency. Figure D.2 is a sketch of the
log magnitude and phase angle for a multiple zero or pole.

Simple Poles or Zeros (1 + iwT)*!

The log magnitude of a simple pole or zero can be expressed as

+20log |1 + iwT| = 220 log V1 + (wT)? (D.8)
For very low values of w7, that is, wI' <€ 1, then
+20log V1 + (@) =0 (D.9)
and for very large values of T, that is, T > 1, then
+20log V1 + («T)? = *20 log «T (D.10)

From this simple analysis one can approximate the log magnitude plot of a simple
pole or zero by two straight line segments as shown in Figure D.3. One of the
asymptotic lines is the 0 dB line and the second line segment has a slope of 20
dB/decade that intersects the 0 dB line at the frequency @ = 1/7. The intersection

60 i B B FIGURE D.2

40 .] +40dB/dec. B representation of the
/ magnitude and phase of a

20 - +20 dB/dec.

pole or zero at the origin.

dB 0
_20 N —20 dB/dec.
—40 ] \
o0 40 dB/dec.

-60 dB/dec. o2

180° =

] i
-90° !

¢ 07

—90° r=-1
~180° r=-2

1 r=-3
~270°

0.1 1 10 100

o rad/secs
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40 ) FIGURE D.3
> Gls)=1+Ts - Bode representation of the magnitude
20 ~ [Asymptotes\ - of a simple pole or zero.
] - I
dB 0 — - -
N b
] S N
Y, S S S ——
0.01 0.1 1.0 10 100
oT
90°
60° Gis)=1+Ts -
30° -
¢ 0°
-30° -
~-60° 4 G(s) = 1/{1 + Ts) -
-90° S —— S
0.01 0.1 1.0 10 100
T
FIGURE D.4
Bode representation of the phase angle of a simple pole or
zero.

frequency is called the corner frequency. The actual log magnitude differs from the
asymptotic approximation in the vicinity of the corner frequency.
The phase angle for a simple pole or zero is given by

(1 + iwl)*' = *tan™! T (D.11)
Figure D.4 is a sketch of the phase angle.

Complex Conjugate Pole or Zero
[1 + izgw/ W, — (w/ wn)Z]:tl
The log magnitude of the complex pole can be written as

1
1 + i2lw/w, + (w/w,)?

—20 log[(1 — (w/w,)*)’ + 2fw/w,)’]" (D.12)
—10'log[(1 — (w/w,))* + (2w/w,)’]

20 log
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FIGURE D.5
Bode representation of the magnitude of a complex conjugate

pole.
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FIGURE D.6
Bode representation of the phase angle of a compiex
conjugate pole.

The log magnitude can be approximated by two straight line segments. For exam-
ple, when w/w, <€ 1

1
= D.1
20 log 1 + i2lw/w, — (w/w,)* 0 (D.13)
and when w/w, > 1
1
2 = —40 1 D.14
0 log 1 + Rw/w, — (w/w,) og w/w, ( )

The two straight line asymptotes consist of a straight line along the 0 dB line for
w/w, = 1 < 1 and a line having a slope of —40 dB/decade for w/w, > 1. The
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asymptotes intersect at w/w, = 1 or w = w,, where w, is the corner frequency.
Figure D.5 shows the asymptotes as well as the actual magnitude plot for various
damping ratios for a complex pole.

The phase angle for a complex pole is given by

(D.16)

L[l + i2£w/wn - (w/w")Z]_l = —tan_l[_—zw]

1 = (o/w,)

Figure D.6 shows the phase angle for a complex pole. Similar curves can be
developed for a complex zero.

If the transfer function is expressed in time constant form, then the Bode
diagram easily can be constructed from the simple expressions developed in this
section.



Index

A

Active control technology, 171
Adverse yaw, 78
Aerodynamic force and moment
coefficients, 20
Ailerons, 62, 82
effectiveness, 83, 121
positive deflection, 62
Airspeed, 23
calibrated airspeed, CAS, 24, 25
equivalent airspeed, EAS, 25
indicated airspeed, IAS, 25
indicator, 23
true airspeed, TAS, 25
Airspeed, automatic control of, 309,
317
Altitude, 15
density altitude, 26
geometric and geopotential, 15
pressure altitude, 26
temperature altitude, 26
Altitude hold autopilot, 302
Angle of attack, 21
definition, 21
sensors, 30, 31
Angular momentum, 97
Argand diagram, 160, 161
Atmosphere, 12
characteristics, 12
standard atmosphere, 14, 395

Atmospheric turbulence, 225, 228

gusts, 219, 226

wind shear, 229
Automatic flare control, 317
Autopilots; see Lateral autopilots;

Longitudenal autopilots

Axes system, 19

body frame, 19, 97

Eulerian frame, 102

inertial frame, 19, 97, 102
Axial force coefficient, 20

definition, 20

due to change in «, 120

due to change in u, 110, 120

B

Bairstow, L., 132
Bandwidth, 253
Barometer, 8, 26
Bass-Gura method, 350
Bernoulli’s equation, 9, 11
compressible flow, 11
incompressible flow, 9
Block diagrams, 237
Bode, H. W., 213
Bode diagrams, 213, 429
Body axes, 19
Bryan, G. H., 108, 130, 131

435
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C

Calibrated airspeed, 24, 25
Canard control, 52

positive deflection, 62
Canonical transformations, 335

diagonalized matrix, 336
Chanute, O., 35, 36, 39
Characteristic equation

definition, 134

first order, 182

lateral, 195, 197, 198

longitudinal, 150, 153, 154

second order, 134
Closed-loop control, 236
Closed-loop transfer function, 238
Coefficient of viscosity

absolute, 5

kinematic, 6, 395
Compensation

feedback path, 269

forward path, 265

lag compensation, 269

lead compensation, 267
Control effectiveness, 63, 78, 81
Control surfaces, description of

aileron, 62, 82

canard, 37, 52, 62

elevator, 62, 63

rudder, 62, 77

spoiler, 81, 82
Controllability, 344
Cooper Harper scale, 166
Cycles for doubling , 142

or halving initial amplitude, 142

D

Damping ratio
definition, 135
Dutch roll, 198
long or phugoid motion, 153, 155
short period motion, 155
Decibels, 213, 430
Delay time, 251, 253

Density, 4
Density altitude, 26
Density ratio, 5, 395
Design criteria, 262
Dihedral, definition of, 79
Dihedral effect
fuselage contribution, 80
wing contribution, 80, 121, 122
Directional control
requirement for, 78
rudder sizing, 78
Directional divergence, 181, 196
Directional static stability, 73
fuselage contribution, 74
vertical tail contribution, 74
Displacement autopilot, 292
pitch, 292, 293
roll, 298
yaw, 292
Dominant poles, 257
Downwash
effect on horizontal tail, 48
effect on fuselage, 53
wing contribution, 47
Dutch roll motion, 195
approximate solution, 198
damping ratio, 198
flying qualities, 203, 204
undamped natural frequency, 198
Dynamic stability, 41

E

Eigenvalues, 151, 336, 339, 341
Eigenvalues placement, 355
Eigenvectors, 151, 336, 339, 341
Elevator

angle for trim, 65

effectiveness, 63

floating characteristics, 69

positive deflection, 62

requirements for, 62
Equations of motion, 97

lateral, 108

linearized three degree of freedom

equations, 104



longitudinal, 108
nonlinear six degree of freedom
equation, 105
single degree of freedom equation
pitching motion, 139
plunging motion, 218
rolling motion, 182
yawing motion, 188
Equilibrium state, 40
Equivalent airspeed, 25
Euler angles, 101
definition, 101
Euler rates, 103
Evans, W. R, 235, 243

F

Feedback control, 236
Flare, automatic control of, 318
Flight control system; see Lateral
autopilots; Longitudinal autopilots
Flight measurement of neutral point,
67
Flight simulation , 169
Fluid, 3
Flying qualities, 40, 164
definition, 164
lateral requirements, 203, 204
longitudinal requirements, 167
Forcing function, 133
Free elevator, 69
Frequency response, 212
of complete transfer function, 213,
429
of first-order system, 223, 431
of longitudinal transfer function, 213
of second-order system, 432

G

Gain, 245

Gain margin, 254
Gearing ratio, 70
Glide slope beam, 315

Index 437

Gust, wind, 215, 226
sharp-edged, 221
sinusoidal, 221

H

Harmonic analysis, 227
Hinge moments, 68
effect of trim tab on, 71
elevator, 68
Horizontal tail, 47
contribution to static stability, 49
sizing, 49

I

Indicated airspeed, 24
Inertia

moments of, 100

products of, 100
Inertial axes, 97
Inertial cross-coupling, 205
Instrument landing system, 314
Ionosphere, 13

J

Jones, B. M., 132

L

Lanchester, F. W., 35, 131
Langley, S. P., 35, 36, 37
Laplace transforms, 212, 237, 420
Lapse rate, 17
Lateral autopilots
heading control autopilot, 292
stability augmentation system, 312,
367
wings leveling autopilot, 292, 298
Lateral flying qualities; see Flying
qualities
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Lateral motions,
Dutch roll motion, 195, 198, 287
roll motion, 182, 195, 198, 286
spiral motion, 195, 197
Lateral transfer functions, 286, 290
Lilienthal, O., 35, 39
Limit cycle motion, 186
Localizer, 314
Longitudinal autopilots
automatic flare, 318
automatic landing, 317
pitch displacement control, 293
speed control, 309, 317
stability augmentation system, 312,
397
Longitudinal eigenvectors, 161
Longitudinal flying qualities; see
Flying qualities
Longitudinal motions, 147
long or phugoid motions, 152
short period motions, 154
Longitudinal transfer functions, 160

M

Mach meter, 28

Mach number, 6

Manely, C., 37

Mass moments of inertia; see inertia,
moments of

Matrix algebra, 425

Modern control theory, 323

Multhopp, H., 53

Multiple input/output systems, 353

Munk, M., 53

N

Natural frequency, 135, 137
Neutral point
stick fixed, 56, 67
stick free, 69
Nonuniform atmosphere, 215; see also
Atmospheric turbulence

influence on equations of motion,
217, 218

o

Observability, 344
Open-loop control, 236
Optimal control, 359, 386
Overshoot, 251

P

Partial fractions, technique, 423

Penaud, A., 35

Performance index, 359, 387

Period, 142

Phase margin, 254

Phugoid motion (long period), 147
approximation, 152
damping ratio, 153, 155
flying qualities, 167
undamped natural frequency, 153,

155

PID controller, 271

Pilot, human
Cooper-Harper scale, 166
induced oscillations PIO, 42
opinion, 165

Pitch damper, 294

Pitch damping, 112

Pitch displacement autopilot, 293

Pitching moment coefficient
definition, 20
due to change in «, 43, 120
due to change in &, 113, 120
due to change in §,, 65, 120
due to change in ¢, 112, 120
due to change in u, 112, 120

Pitching motion, single degree of

motion, 139

Pitot static probe, 23, 29

Plunging motion, 218

Poles, 244, 247

Power effects



on static stability, 55

on trim, 55
Power spectral density, 228
Pressure, 3
Pressure altitude, 26

R

Resonance frequency, 253
Resonance peak, 253
Reynolds number, 6
Riccati equation, 359, 387
Rigid body equations of motion, see
Equations of motion
Rise time, 252, 253
Roll angle control system, 299
Roll control, 81
control effectiveness, 83
reversal, 186
Roll stability, 78
Rolling moment coefficient
definition, 20
due to change in B, 78, 121
due to change in §,, 81, 121
due to change in p, 115, 121
due to change in r, 119, 121
Rolling motion, 182, 198
approximation, 198
damping, 198
flying qualities, 203
Root locus, 243
Routh’s criteria, 238
Rudder, 77
effectiveness, 78
positive deflection, 62
sizing, 78

S

Second-order differential equation,
133

Servo, control surface, 291, 293

Settling time, 251, 253

Short-period motion, 154
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approximate solution, 154
damping ratio, 155

flying qualities, 167

undamped natural frequency, 155

Side force coefficient, 20

definition, 20

due to change in B, 121
due to change in §,, 121
due to change in §,, 121
due to change in p, 121

due to change in r, 121

Sideslip angle, 21

definition, 21
sensor, 30

Sidewash, 70

effect on fuselage, 70
effect on vertical tail, 70

Small disturbance theory, 104

applied to lateral equations, 108
applied to longitudinal equations,
108

Solution to equations of motion forced

response

pitching motion due to step change
in elevator angle, 141

plunging motion due to sharp edged
gust, 218

rolling motion due to step change in
aileron angle, 182

yawing motion due to step change in
rudder angle, 188

free response

lateral equations of motion, 193,
198

longitudinal equations of motion,
150, 155

Speed of sound, 6
Speed stability, 72, 110
Sperry, L., 281

Spiral divergency, 181
Spiral motion, 196

approximate solution, 195
flying qualities, 203

Spoiler, 82
Stability Augmentation System (SAS),

42, 203, 312, 367
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Stability derivativas, 108
definition, 108
methods for estimating derivatives,
120, 121
Standard atmospheric table, 395
State feedback design, 347, 368
numerical method, 349
State modeling, 324
State observer, 355
State transition matrix, 329
by Laplace transformation, 328
by matrix exponential, 329
numerical solution, 332
State variables, 148, 324
Static longitudinal stability, 42
definition, 43
fuselage contribution, 52
power effects, 55
stick-fixed, 42
stick-free, 69
tail contribution, 47
wing contribution, 45
Static margin, 70
stick-fixed, 70
stick-free, 70
Steady state error, 258
acceleration error constant, 261
positional error constant, 260
velocity error constant, 260
Stick fixed neutral point, 56
Stick forces, 70
gradients, 72
Stick free neutral point, 69

T

Tab surface, 71

Tail efficiency, 47

Tail volume ratio, 48

Temperature, 4

Temperature altitude, 26

Time constant, 182, 291
plunging motion, 220
rolling motion, 182, 198
spiral motion, 197

Time for doubling or halving of
motion amplitude, 143
Transfer functions, 212, 237
control servos, 292, 293
definition, 212
lateral, 286, 288, 290
longitudinal, 283, 284, 286, 289
Transient response; see solution of
equations of motion forced and
free response
Trim tabs, 71
Troposphere, 13
True airspeed, 25
Turbulence; see Atmospheric turbulence

U

U-tube manometer, 8
Upwash,

due to wing, 46

effect on fuselage, 46, 53

A\

Velocity hold autopilot, 309
Viscosity, coefficient of, 5
absolute, 5
kinematic, 6

W

Wake upset, 94

Weathercock stability; see Directional
static stability

Wind shear, 229

Wing rock, 185

Wright brothers, 37, 96

Y

Yaw angle, 101, 188
Yaw damper, 203
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Yaw rate damping, 119 Z
Yawing moment coefficient, 20
definition, 20 Z force coefficient, 20
due to change in 8, 74, 121 definition, 20
due to change in §,, 121 due to change in a, 120
due to change in §,, 77, 121 due to change in &, 113, 120
due to change in p, 121 due to change in 6,, 120
due to change in r, 119, 121 due to change in g, 112, 120
Yawing motion, 188 due to change in «, 111, 120
single degree of freedom, 188 Zahm, A., 35
Zeros, 245

Ziegler/Nichols Method, 271





