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CHAPTER 4    Longitudinal Motion

Read section 4.2.

Longitudinal Equations
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 (4.51)
PURE PITCHING MOTION (Section 4.3 on p.139 of Nelson)
EXAMPLE PROBLEM 1 It is desired to develop a test rig for estimating the pitching lift derivative coefficient, 
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, for horizontal tail designs. The beginning of this development is shown below.
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Figure 4.9 of Nelson Rod-plate assembly constrained to pure pitching motion.

(a) Development of the equation of angular motion:  
We begin with:            
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(E1.1)
Note #1: Since the cg of the test rig is constrained, the angle of attack, 
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, and the pitch angle, 
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, are one and the same. Hence, 
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Note #2: Let 
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From these notes, (E1.1) can be written as:
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(b) Development of the relation between
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(E1.3a)

Recall that 
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From (E1.3a-b) we obtain:                           
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Substituting (E1.3c) into (E1.2) gives:
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(c) Relation between Mα and the transient response associated with (E1.4):

[Subtitled: How many different way can we estimate 
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We know that the transient response associated with (4) will be decaying and oscillatory. Hence, we can write the left side of (E1.4) as:
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From (E1.5a), we have:                            
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We also have 
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Also, the system time constant is: 
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Now, the transient response associated with (E1.5a) has the form:

                                           
[image: image26.wmf])

sin(

)

(

1

1

j

w

q

q

w

V

+

=

-

t

e

t

d

t

n


(E1.6a)

where the pair of constants 
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will depend on the type of specified initial conditions . The initial conditions are not as important as the nature of the response (E1.6a). If we define 
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The parameter 
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is called the time constant associated with (E1.5a). This gives rise to one method for estimating 
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from the transient response measurement.

Method 1.  Ignore the oscillations and use only the decay envelope 
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And so, our estimate of the magnitude of 
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Method 2. Ignore the envelope and use only the oscillation frequency: The oscillation frequency, 
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, of the decaying response (E1.6) is: 
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And so, for an estimate of 
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Method 3. Use both decay and oscillation frequency information: This method is best described using a plot of (E1.6): [The log decrement method ]
Figure 1. Initial condition response for 
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The plot on the right in figure 1 shows that for 
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Now, from (6a), we have 
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Define 
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Finally, we can use (E1.3a), (E1.5b) and (E1.5c) to obtain:   
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Notice that in this method it is not necessary to measure 
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, since the above estimate does not involve it. This can offer a significant advantage over other methods, both in terms of accuracy and equipment. 

(d) Use of the setup in Figure 4.9 to validate the experimental design: Now that we know how to use the transient response, (6) to estimate the lift coefficient derivative for a given tail design, it is necessary to validate the experimental setup illustrated in Figure 4.9. In that design, we are assuming that the cross-bar bearing friction is negligible. We will also assume that the tube that supports the tail is completely rigid, and that its aerodynamic influence is negligible. Finally, we will assume that we have perfect measurements of the geometric and mass quantities described in that figure. By using a flat plate with known lift properties, we can compute the theoretical value for 
[image: image73.wmf]a

L

C

. If the experimentally measured transient response matches our theoretical prediction reasonably well, then we can assume that we have a valid setup. We will now proceed to compute the theoretical value for 
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The moment of inertia, Iy: From the parallel axis theorem, we have: 
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Hence, 
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Numerical values for Mα and Mq: 
For an infinite flat plate, we have 
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Using these highlighted results and equations (3), we obtain: 
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Figure 2. Expected description of the experimentally measured transient response of the flat plat to an initial angular displacement of 10o.   □
Example Problem 4.2 (Nelson p. 151) Given the differential equations:
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(a) Rewrite these in state space form 
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(b) Find the free response eigenvalues.

Solution:  The eigenvalues of 
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The roots of the characteristic polynomial p(s) are: 
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(c) What do these eigenvalues tell us about the response of the system?

Answer: The real parts of the eigenvalues are positive, and so the system is dynamically unstable. Specifically, the response to an initial disturbance would grow exponentially. This envelop is of the form
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(d) Use of Laplace Transforms to obtain the eigenvalues of A:
For students who do not feel confident about matrix algebra, but who have background in the use of the Laplace transforms, here as an alternative solution method:
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Equations (E2.1) include two unknowns; namely 
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. And so, either unknown can be solved for using purely algebraic operations. We will now solve these equations for each of these unknowns. These two resulting expressions will have something in common, as will be seen.
Solution of (E2.1) for X1(s): 
From 
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The corresponding differential equation is: 
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Solution of (E2.1) for X2(s): 
From 
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The corresponding differential equation is: 
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Remark 1. Notice that the left sides of equations (E2.2) and (E2.3) are identical. In particular, the 2-D state space system characteristic polynomial, 
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is common to both solutions. Hence, the system eigenvalues can be obtained from either solution. 
Remark 2. This method of solving for the system eigenvalues is comparable in terms of mathematical manipulations to the matrix method associated with parts (a) and (b). However, recall that the longitudinal state space system includes four equations in four unknowns. In that situation, to solve for any chosen unknown would require much more work than what was required in this simple setting of two equations in two unknowns. 

Remark 3. In this simple example, the Laplace transform method has the advantage of not only leading to the system eigenvalues, but to the solution for each chosen unknown. Specifically:
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These are solutions in the Laplace (i.e. s domain). To obtain the corresponding solutions in the time (i.e. t domain), we can use a table of Laplace transform pairs.

[ e.g. http://en.wikipedia.org/wiki/Laplace_transform#Table_of_selected_Laplace_transforms ]

At this point in the course, we will not address this table. Instead, we will simply use Matlab to obtain plots of 
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. The plots are:
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                                   Figure 1.  Plots of 
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The code is:
%PROGRAM NAME: x12solutions.m
% This code computes plots of x1(t) and x2(t) via Laplace
p = [1 -0.5 9.5];
n1 = [-1 21];
n2 = [2 2];
sys1 = tf(n1,p);
sys2 = tf(n2,p);
impulse(sys1)
pause
hold on
impulse(sys2)
axis([0 20 -200 200])
grid
Discussion of the plots: Both responses ‘explode’. This is because the roots of the characteristic polynomial 
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, have a positive real part (i.e. they are in the right half of the s plane). They both oscillate at the same frequency as they explode. However, it is clear that 
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is called the unit impulse. In more mathematical terms, it is also called the Dirac delta function. □
Approximation of the Phugoid and Short-Period Longitudinal Modes (Nelson p.152)
From p.7 of these notes, we have:
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 (1)
This dynamical system is 4-D, and so the characteristic polynomial will have four roots. These roots will occur as two pairs of complex-conjugate roots. Recall that a 2-D dynamical system with a pair of complex-conjugate roots will has a response that is oscillatory. It is characterized by a damping ratio, 
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, and an undamped natural frequency, 
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will be a very low frequency (i.e. a very long period). This corresponds to what is known as the Phugoid, or long-period longitudinal mode. The other frequency, 
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, is a high frequency mode, that is simply referred to as the short period longitudinal mode. 
Ultimately, we will address the above 4-D dynamical system. That will necessitate matrix algebra. In this section we will make some simplifying assumptions that will allow us to address two separate 2-D systems; one related to the phugoid mode, and the other related to the short period mode. Not only will this alleviate the need for matrix algebra (i.e. using Laplace transforms), but it will highlight the variables that are most significant in relation to each mode. 
The phugoid mode:  The phugoid mode as a long period mode. Typically, the period is on the order of many seconds (or even minutes). As noted by Nelson: “It represents a gradual interchange of potential and kinetic energy about the equilibrium attitude and airspeed.” Another description is: 

“The phugoid has a nearly constant angle of attack but varying pitch, caused by a repeated exchange of airspeed and altitude. It can be excited by an elevator singlet (a short, sharp deflection followed by a return to the centered position) resulting in a pitch increase with no change in trim from the cruise condition. As speed decays, the nose will drop below the horizon. Speed will increase, and the nose will climb above the horizon. Periods can vary from under 30 seconds for light aircraft to minutes for larger aircraft. Microlight aircraft typically show a phugoid period of 15–25 seconds, and it has been suggested that birds and model airplanes show convergence between the phugoid and short period modes. A classical model for the phugoid period can be simplified to about (0.85 × speed in knots) seconds, but this only really works for larger aircraft. Phugoids are often demonstrated to student pilots as an example of the speed stability of the aircraft and the importance of proper trimming. When it occurs, it is considered a nuisance, and in lighter airplanes (typically showing a shorter period) it can be a cause of pilot-induced oscillation. The phugoid, for moderate amplitude,[1] occurs at an effectively constant angle of attack, although in practice the angle of attack actually varies by a few tenths of a degree. This means that the stalling angle of attack is never exceeded, and it is possible (in the <1g section of the cycle) to fly at speeds below the known stalling speed. Free flight models with badly unstable phugoid typically stall or loop, depending on thrust.[2] An unstable or divergent phugoid is caused, mainly, by a large difference between the incidence angles of the wing and tail. A stable, decreasing phugoid can be attained by building a smaller stabilizer on a longer tail, or, at the expense of pitch and yaw "static" stability, by shifting the center of gravity to the rear.”                      [
http://en.wikipedia.org/wiki/Phugoid ]

As such, we can make the following assumptions in relation to the above 4-D dynamical system:

(A1): The pitch moment dynamics are negligible. Mathematically, this means that we remove the third equation from (1) above. Note: In doing so, we must then replace 
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(A2): The vertical velocity 
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(A3): The control forces and moments are zero.
These assumptions result in the equations:
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Rearranging these in state space form gives the 2-D dynamical system:
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(2)
The system eigenvalues are found from:
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Hence,  
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Problem 1. Explain why it must be that 
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Problem 2. Show that the phugoid undamped natural frequency is 
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Problem 3. From p.150 of Nelson, we have 
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. Use this and the result in Problem 2 to determine the type of relation between the nominal speed, 
[image: image157.wmf]0

u

, and 
[image: image158.wmf]p

n

w

.
Problem 4. Nelson states on p.153 that “If we neglect compressibility effects,… then 
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Explain how this compares to your answer in Problem 3.

Problem 5. In EXAMPLE PROBLEM 4.3 on p.155 (of Nelson) we have:
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These figures are used on the bottom of p.158 for:
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Compute the numerical value of 
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using the above equations, but with 
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Solution: From p.150 of Nelson, we have:
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The Short Period Mode:
Before we proceed with the material in Nelson, it is worth reviewing another development of this mode; one that may give the reader a greater appreciation than is given in Nelson, of the nature of this mode 

From the posted notes “Wiki Flight Dynamics: 

NOTE: I have highlighted points and added comments/remarks to emphasize items that I think are important.
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5

.

0

=

b

l

A short input (in control systems terminology an impulse) in pitch (generally via the elevator in a standard configuration fixed wing aircraft) will generally lead to overshoots about the trimmed condition. The transition is characterized by a damped simple harmonic motion about the new trim. There is very little change in the trajectory over the time it takes for the oscillation to damp out.

Generally this oscillation is high frequency (hence short period) and is damped over a period of a few seconds. A real-world example would involve a pilot selecting a new climb attitude, for example 5º nose up from the original attitude. A short, sharp pull back on the control column may be used, and will generally lead to oscillations about the new trim condition. If the oscillations are poorly damped the aircraft will take a long period of time to settle at the new condition, potentially leading to Pilot-induced oscillation. If the short period mode is unstable it will generally be impossible for the pilot to safely control the aircraft for any period of time.

This damped harmonic motion is called the short period pitch oscillation, it arises from the tendency of a stable aircraft to point in the general direction of flight. It is very similar in nature to the weathercock mode of missile or rocket configurations. The motion involves mainly the pitch attitude θ (theta) and incidence α (alpha). The direction of the velocity vector, relative to inertial axes is θ − α. The velocity vector is: 

uf = Ucos(θ − α)

wf = Usin(θ − α)

where uf,wf are the inertial axes components of velocity. According to Newton's Second Law, the accelerations are proportional to the forces, so the forces in inertial axes are:
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where m is the mass. By the nature of the motion, the speed variation [image: image172.png]


is negligible over the period of the oscillation, so:
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But the forces are generated by the pressure distribution on the body, and are referred to the velocity vector. But the velocity (wind) axes set is not an inertial frame so we must resolve the fixed axes forces into wind axes. Also, we are only concerned with the force along the z-axis:

Z = − Zfcos(θ − α) + Xfsin(θ − α)

Or:
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In words, the wind axes force is equal to the centripetal acceleration.

The moment equation is the time derivative of the angular momentum:
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where M is the pitching moment, and B is the moment of inertia about the pitch axis. Let: [image: image177.png]


, the pitch rate. The equations of motion, with all forces and moments referred to wind axes are, therefore:
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We are only concerned with perturbations in forces and moments, due to perturbations in the states α and q, and their time derivatives. These are characterized by stability derivatives determined from the flight condition. The possible stability derivatives are:

Zα Lift due to incidence, this is negative because the z-axis is downwards whilst positive incidence causes an upwards force.

Zq Lift due to pitch rate, arises from the increase in tail incidence, hence is also negative, but small compared with Zα.

Mα Pitching moment due to incidence - the static stability term. Static stability requires this to be negative.

Mq Pitching moment due to pitch rate - the pitch damping term, this is always negative.

Since the tail is operating in the flowfield of the wing, changes in the wing incidence cause changes in the downwash, but there is a delay for the change in wing flowfield to affect the tail lift, this is represented as a moment proportional to the rate of change of incidence: [image: image180.png]



Increasing the wing incidence without increasing the tail incidence produces a nose up moment, so [image: image181.png]


is expected to be positive.
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The equations of motion, with small perturbation forces and moments become:

                    [image: image182.png]
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These may be manipulated to yield a second order linear differential equation in α:

    [image: image184.png]



This represents a damped simple harmonic motion.

We should expect [image: image185.png]


to be small compared with unity, so the coefficient of α (the 'stiffness' term) will be positive, provided [image: image186.png]e
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. This expression is dominated by Mα, which defines the longitudinal static stability of the aircraft, it must be negative for stability. The damping term is reduced by the downwash effect, and it is difficult to design an aircraft with both rapid natural response and heavy damping. Usually, the response is underdamped but stable.

Nelson’s Development:
We repeat the 4-D longitudinal state space system here for convenience:
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 (1)
On p.154, Nelson states: “An approximation to the short period mode of motion can be obtained by assuming 
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, and dropping the X-force equation. The longitudinal state space equations are reduced to the following:
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(2)
Potential Exam 2 Problem: Recall the assumptions used to arrive at (2) above:

(A1) Assume that
[image: image190.wmf]0
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(A2): The X-force equation can be dropped.

(a) Write the 4-D dynamical system (1) for these two assumptions:

Solution:
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(b) Write the first equation of this system, and explain what it relates to.
Solution: The equation is: 
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, which is simply Newton’s second law in the xE direction for 
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(c) Write the fourth equation of this system, and describe it in words.

Solution: The equation is: 
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 In words, this says that the rate of change of the second Euler angle is equal to the pitch rate.
(d) Since we have ‘extracted’ the first and fourth equations in parts (b) and (c), we can ‘zero-out’ these rows in the 4-D system of equations. Write this 4-D system with the first and fourth rows zeroed out. Circle the elements in the A-matrix that no longer matter. Then discuss how this 4-D system compares to the 2-D system (2) above.
Solution:
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Comment: This simplified 4-D system is similar to the 2-D system, (2), except that it retains the w- and q- control forces. □
On p.154, Nelson then proceeds to reformulate the 2-D system, (2), in relation to 
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(3)
Explain why the equality (3) is valid: 
Explanation: __________________________________________________________________________

_____________________________________________________________________________________

From (3), (2) becomes:
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(4)
Recall that in Nelson, the definition of 
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 With these results, (4) can be re-written as:
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(5)
The characteristic polynomial for the 2-D dynamical system, (5) is:
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(6)

We do not need to compute the roots of (6) in order to extract valuable information in relation to (5).

Consider the polynomial: 
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Case 1: real roots   (i.e.
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QUESTION 1: Under what condition(s) will both roots be negative?

Answer: _______________________________________________________________________

QUESTION 2: In relation to (6), why is QUESTION 1 important?

Answer: _______________________________________________________________________

QUESTION 3: Assume that 
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. Give the expression for the root that is closest to zero.
Answer: ___________________________________________________________________

Question 4: What is the significance of the root given in response to QUESTION 3, in relation to (6)?

Answer: ___________________________________________________________________

Case 2: complex conjugate roots   (i.e.
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QUESTION 1: Under what condition(s) will both roots have negative real parts?

Answer: _______________________________________________________________________

QUESTION 2: Is it possible that we can have 
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for this case? Explain.

Answer: _______________________________________________________________________

QUESTION 3: Assume that 
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. Explain the implications of this case in relation to (6).
Answer: ________________________________________________________________________

QUESTION 4: For the case 
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Answer: ______________________________________________________________________
Conclusions in Relation to (6):

QUESTION 1: Under what conditions will (6) be a stable system?

Answer: ______________________________________________________________________

QUESTION 2: Assuming (6) is a stable system, under what condition(s) will it exhibit an oscillatory response to an initial condition?
Answer: _________________________________________________________________________

QUESTION 3: Assuming that (6) is stable, and exhibits oscillatory behavior, give expressions for 
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 and 
[image: image225.wmf]n

w

in terms of the various parameters in (6).

Answer: _________________________________________________________________________

PROBLEM Investigate how 
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 and 
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relate to the plane nominal speed, 
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Aircraft Lateral Dynamics  [Nelson Chapter 5 p.181]
1. Pure Rolling Motion: [Section 5.2 on p.182] Wind tunnel tests are often used to estimate roll moment parameters. Consider a plane that is mounted in a wind tunnel in a way that it is constrained to pure roll motion about the x-axis. Newton’s second law gives:
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(1a)
Here, 
[image: image230.wmf]a

d

D

is a small deflection of the ailerons, and 
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is a small perturbation of the roll rate. Since the plane cg is constrained, we have:
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Equations (1) result in:
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(2)

Before we continue our development in relation to (2), it is worth spending a little time to discuss the properties of a first order constant coefficient differential equation from a systems perspective.
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The structure of a first order dynamical system:
From (2), we see that the dynamics of pure roll correspond to a first order dynamical system. One standard form for such a system is:
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(3a)
The transfer function associated with (3a) is obtained by taking its Laplace transform (under zero initial conditions!). Doing this gives:
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(3b)
The system transfer function is then:
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(3c)
It follows that, for a given ‘input’, 
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, we can find the ‘response, 
[image: image238.wmf])

(

t

y

, via a table of Laplace 
transform pairs, in relation to:

                                         
[image: image239.wmf])

(

1

)

(

)

(

)

(

s

F

s

g

s

F

s

G

s

Y

s

÷

÷

ø

ö

ç

ç

è

æ

+

=

=

t

.
(3d)
Use of a Table of Laplace Transforms:
The system unit impulse response: From the table below, entry #1 shows that the Laplace transform of the unit impulse, 
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Again, using entry #4, we obtain:
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The system unit-step response: From the table below, entry #2 shows that the Laplace transform of the unit step, 
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Again, using entry #7, we obtain:
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Remark 1. Both the unit impulse and the unit step response include the term 
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Remark 2. From (3f), the asymptotic response to the unit step input is:
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(3g)
Since the input has amplitude 1.0 and the response has steady state amplitude gs, the ratio of these amplitudes is simply gs. For this reason, this ratio is called the system static gain. 

Summary: A first order system of the type described by (3a) is characterized by two parameters: the system time constant, 
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, and the system static gain, 
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Table of Laplace and Z Transforms

(Please email me if you find an error) Using this table for Z Transforms with Discrete Indices
Shortened 2-page pdf of Laplace Transforms and Properties
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We are now in a position to gain some insight into (2) without much effort. Re-writing it in the ‘standard form’ (3a) gives:
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(4a)

The system time constant and static gain are:
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Some observations-
(O1): Stability requires that 
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(O4): The static gain, 
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Notation: In Nelson’s book, he defines 
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With this notation, (4) becomes:
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(5a)

The system time constant and static gain are:
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EXAMPLE PROBLEM 5.1 (Nelson p.183)
Calculate the roll response of an F104A aircraft to a 5o step change in aileron deflection. Assume the plane is flying at sea level with a velocity of 
[image: image327.wmf]s

m

u

/

87

0

=

.

[image: image328.wmf]2

2

1

1

4676

;

7

.

6

;

18

;

039

.

0

;

285

.

0

m

kg

I

m

b

m

S

rad

C

rad

C

x

l

l

a

p

-

=

=

=

=

-

=

-

-

d


Solution: The F104A has the following aerodynamic and geometric characteristics:

   .
Hence, 
[image: image329.wmf]s

u

b

m

N

u

Q

039

.

0

2

/

;

/

4636

5

.

0

0

2

2

0

=

=

=

D

r

. And so:

             
[image: image330.wmf]2

1

0

66

.

4

/

;

3

.

1

/

)

2

/

(

-

-

=

=

-

=

=

s

I

QSb

C

L

s

I

QSb

u

b

C

L

x

l

x

l

p

a

a

p

d

d

.

From (5b) above, we obtain:
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Figure 1. Plot of the F104A roll rate response to a 5o step aileron input.

2. Pure Yawing Motion:  [Section 5.3 on p.188]
Wind tunnel tests are often used to estimate yaw moment parameters. Consider a plane that is mounted in a wind tunnel in a way that it is constrained to pure yaw motion about the z-axis. Newton’s second law gives:
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In general, 
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Equations (6) result in:
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where we have defined 
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Equating (7) and (8a) we immediately have the following:
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The damped natural frequency is:
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(8c)

Hence, the damped natural oscillation period is:
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Remark 1. Nelson notes that the term 
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is usually negligible. In this case, we have:
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Remark 2. On p.190, Nelson give plots of 
[image: image362.wmf]TRIM

t

b

b

D

D

/

)

(

 versus t for various values of 
[image: image363.wmf]V

. This ratio converges to 1.0 for every 
[image: image364.wmf]V

. The problem is: the term 
[image: image365.wmf]TRIM

b

D

is never defined. To figure out what it is, we need only look at the system static gain: 
[image: image366.wmf]r

N

N

g

s

d

b

=

. Since 
[image: image367.wmf]r

s

TRIM

ss

t

g

t

d

b

b

b

D

=

D

=

D

=

D

D

¥

®

)

(

lim

, we have determined the expression for 
[image: image368.wmf]TRIM

b

D

:  
[image: image369.wmf]r

s

TRIM

g

d

b

D

=

D

.
EXAMPLE PROBLEM 5.2 Suppose an airplane is constrained to a pure yawing motion. Use the data for the general aviation airplane in Appendix B, determine the following quantities:
(a) The yaw moment equation written in state space form.

(b) The characteristic equation and eigenvalues for the system.

(c) The damping ratio, 
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, and undamped natural frequency, 
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(d) The response of the plane to a 5o rudder input. Assume initial conditions are: 
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Solution: For sea level flight condition, the weathercock stability coefficient, the yaw damping coefficient, and the rudder control power coefficient have, respectively, the following values:
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The plane geometry parameters include: 
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These values result in the following dimensional derivative values:
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Substituting these into (7) gives:
                               
[image: image381.wmf]r

d

y

y

y

D

-

=

D

+

D

+

D

6

.

4

55

.

4

76

.

0

&

&

&

. 
(1)

We are now in a position to solve parts (a-d).

(a) The yaw moment equation written in state space form.

Solution: Recall that the state space form is: 
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(b) The characteristic equation and eigenvalues for the system.

Solution: The characteristic polynomial is simply: 
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are obtained via Matlab:
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> A=[-.76 -4.55 ; 1 0];

> eig(A)

ans =

  -0.3800 + 2.0990i

  -0.3800 - 2.0990i          

They can also be obtained via:
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> p=[1 .76 4.55];

> roots(p)
ans =
  -0.3800 + 2.0990i

  -0.3800 - 2.0990i
 (c) The damping ratio, 
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, and undamped natural frequency, 
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Solution: These are easily computed: 
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(d) The response of the plane to a 5o rudder input. Assume initial conditions are: 
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Solution: A homework problem?    □
The Spiral mode Approximation: [Section5.4.1 on p.195]
This mode is characterized by changes in the bank angle, 
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, and the heading angle, 
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. An approximation to this mode can be obtained from the above 4-state system by neglecting the side force equation and 
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These result in the following first order system description:
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The characteristic polynomial is: 
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The system root is: 
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The time constant is: 
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The Roll Approximation: [Section 5.4.2 on p.198] 
This motion is approximated by pure roll. Hence, from p.4.32 of these notes (neglecting inputs), we have:
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Dutch Roll Approximation [Section 5.4.3 on p.198]
As noted by Nelson, the Dutch roll is characterized primarily by sideslipping and yaw. (i.e. the rolling moment equation can be ignored). As such, the 4-D lateral system becomes the 2-state system:
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Since it is known that this mode includes oscillations, this is a second order underdamped system. 
Example: Conduct the following investigation of the Dutch roll dynamics.
(a) Compute the system characteristic polynomial directly from 
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Solution:
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or                                       
[image: image412.wmf]0

0

0

0

2

)

(

u

N

Y

N

u

N

Y

s

u

N

u

Y

s

s

p

r

r

r

b

b

b

b

-

+

+

÷

÷

ø

ö

ç

ç

è

æ

+

-

=


(b) Assume that the dynamics include natural oscillations (i.e. the system is stable, but underdamped). Compute expressions for the parameters associated with these dynamics.
Solution:  Equating the coefficients of 
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Since 
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We could continue to derive expressions for 
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(c) The expressions for the lateral directional derivatives related to the above are:
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Recall that 
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. Investigate the dependence of the above dynamic parameters as a function of the plane velocity, 
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(d) Recall from EXAMPLE PROBLEM 5.3:
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From Table B1. we have: 
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 The characteristic polynomial is then:
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Solution: The time constant is 
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 Hence, the transient response will decay in about 7 seconds, during which time there will be only about 2.5 periods of oscillation. 

(e) Verify your answer in (d) by plotting the impulse response corresponding to a transfer function 
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Solution:  The Matlab commands needed to produce the plot are:

> p=[1 1.102 4.71];

> sys=tf(4.71,p)

 Transfer function:

        4.71

--------------------

s^2 + 1.102 s + 4.71

 > impulse(sys)

> grid
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(f) Explain why the above analysis did not provide any information about the system static gain.

Answer: In class. Since no defined input, no output, no static gain. 
□
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The Full State Lateral Equations:    [Section 5.4 on p.193]
The lateral rigid body equations are found in Table 3.2 on p.108 and on p.193.
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               (Table 3.2)
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The starred derivatives are defined as the un-starred derivatives divided by 
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 If the product of inertia 
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The author notes that it is sometimes convenient to use the sideslip angle 
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 instead of the side velocity 
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EXAMPLE PROBLEM 5.3 

Consider once again, the general aviation aircraft (Table B.1on p.400 of Nelson). 

(a) Find the eigenvalues of the 4-D system.
Solution: The state transition matrix is:
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Using the Matlab command ‘eig(A)’ gives:

s1=  -8.4322      ;      s2= -0.4845 + 2.3329i       ;    s3=-0.4845 - 2.3329i    ;     s4=-0.0088   
The spiral mode approximation is: 
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The roll mode approximation is: 
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The Dutch roll approximation is obtained from 
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 using the quadratic formula, and is: 
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Questions: 

(Q1): Which modes correspond to which eigenvalues?

(Q2): Which approximation is the worst, and why?
(Q3): How good is the Dutch roll approximation re: the various dynamic parameters?         □
The Role of the Eigenvectors of A
1. Introduction
The eigenvalues of A determine the type of response of the system 
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. A real eigenvalue relates to an exponential type of response with no natural oscillations, whereas a conjugate pair of eigenvalues relates to an exponential type of response, but with natural oscillations at the damped natural frequency. The question that is addressed in this section is:

In what way(s) do the eigenvectors contribute to the response of the system 
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Notice that this question restricts attention to the initial condition response. As will be seen, even with this restriction, the answer to this question is mathematically nontrivial. These noted were compiled because I feel that, while both Etkin and Nelson give some insight as to how the eigenvectors influence the transient response, it is vague. These notes are an attempt to reduce that vagueness. They were compiled from the book Linear Systems by Thomas Kailath.

2. A Laplace Transform Approach
The Laplace transform of the n-D system
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gives the Laplace domain solution
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In these notes we will assume that the eigenvalues of A, call them 
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are distinct (i.e. there are no repeated eigenvalues). Using the method of partial fraction expansions (a method that will be covered in AerE331), (2) can be written as:
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The 
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The column vector, 
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Here, the row vector 
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row vector. We now present the first of a number of ‘facts’ that will be given. The interested reader may refer to the book by Kailath for elaborations and/or proofs.

Fact 1:  (i) 
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From (i), (3) becomes:
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where we have defined 
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Definition 1. The kth mode of (1) is 
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It follows that (7) is composed of the sum of the n modes 
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(A1): The temporal shape of the kth mode of (7) is controlled solely by the eigenvalue, 
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%PROGRAM NAME: ex43.m
% Nelson Example 4.3 on p. 155
% In the eqn Xdot = Ax, x = [ u w q th] on p.149
% Phugoid mode: xph = [u th]
%Short Period mode: xsp = [w q];
%==================SPECIFICATIONS=====================================
% Specify initial condition:
x0 = [10 0 0 0]';
%Specify time increment and total observation time:
%NOTE: Phugoid is ~100 sec. and Short period is ~1 sec.
dt = .001; tmax = 100;  tvec = 0:dt:tmax; lt = length(tvec);
% Specify A-matrix
A=[-.045 .036 0 -32.2;-.37 -2.02 176 0;.002 -.04 -2.95 0;0 0 1 0];
% ===== 4-D SYSTEM COMPUTATIONS USING EQN.7 on p.48 OF Ch4 NOTES =====
% Compute eiganvalues, and right (col.) and left (row) eigenvectors:
s = eig(A);
display('4-D system eigenvalues:')
disp(s)
pause
[P,D]=eig(A);
Q = P^-1;
% Compute {a(k)}k=1:4 where a(k)=alpha(k) = q(k)tr*x0:
a = Q*x0;
% Compute 4-D initial condition response
x = zeros(4,lt);
for j = 1:lt
    for k=1:4
    x(:,j) =x(:,j)+  a(k)*exp(s(k)*(j-1)*dt)*P(:,k);
    end
end
% Plot real and imaginary parts to verify correctness (i.e imag. parts =0)
for m = 1:4
    figure(m)
    ur = real(x(m,:)); ui = imag(x(m,:));
    plot(tvec,ur,tvec,ui)
    xlabel('Time (sec)')
    title('Figure # = Initial Condition Response #')
    pause
end
%========== 2-D SYSTEM APPROXIMATION COMPUTATIONS =======================
%Compute Phugoid mode u(t) Response (i.e. state #1 of 4-state response
Xu=-.045; Zu=-.369; u0=176; g=32.2; uic=x0(1);
sys = tf(uic*[1 -Xu],[1 -Xu -g*Zu/u0]);
sph2 = roots([1 -Xu -g*Zu/u0]);
display('2-D phugoid eigenvalues:')
disp(sph2)
pause
figure(1)
hold
impulse(sys,tvec,'r')
title('u(t) phugoid response from 4-D Model (BLUE) & 2-D approx.(RED)')
pause
% Compute Short Period mode Response
Zw=-2.02;Mq=-2.05; Mw=-.05; Mwdot=-.0051;wic=x0(2);
a11=Zw; a12=u0; a21=Mw+Mwdot*Zw; a22=Mq+Mwdot*u0;
den = [1 -(a11+a22) (a11*a22-a12*a21)];
num = [1 -(a11+a22)];
sys1 = tf(num,den);
ssp2 = roots(den);
display('2-D short period eigenvalues:')
disp(ssp2)
pause
figure(2)
hold
impulse(sys1,tvec,'r')
title('w(t) short period response from 4-D Model(BLUE) & 2-D approx.(RED)')
pause
%=========================================================================
%=========================================================================
% THE FOLLOWING CODE WAS DEVELOPED TO VERIFY EQN.(7) OF CH4 NOTES VIA
%          THE MATLAB FUNCTION: 'ss'= state space
%-------------------------------------------------------------------------
% Compute TF matrix: G(j,k) = output(j)/input(k)
C=eye(4);
sys4 = ss(A,[],C,[]);
g = initial(sys4,x0,tvec);
figure(1)
plot(tvec,g(:,1),'k--','LineWidth',2)
title('u(t) phugoid response:eqn7 (BLUE),2-D approx.(RED),Matlab (BLACK')
Homework 7 PROBLEM 1: Use the above code to investigate the coupling between the four initial condition response variables, 
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 for initial conditions having only one nonzero entry. Recall that the phugoid mode uses the approximate 2-D variable 
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Solution: 
To begin this homework, we will investigate the initial condition: 
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. This plane velocity disturbance will primarily excite the phugoid mode. Since we know that this mode has a time constant 
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, we will specify the observation time to be 100 sec. The initial condition and observation time items in the Matlab code are highlighted in yellow. Running this code results in the following figures:
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Figure 1. Plots of 
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Discussion: From the code, we have:

4-D system eigenvalues:

  -2.4905 + 2.6110i
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  -2.4905 - 2.6110i

  -0.0170 + 0.2152i

  -0.0170 - 0.2152i

2-D phugoid eigenvalues:

  -0.0225 + 0.2589i

  -0.0225 - 0.2589i
The most obvious difference relates to the oscillation period 
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Figure 2. Plots of 
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Discussion: Since the initial condition is zero for C and 
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, the 2-D approximation of the short period response will be zero. Figure 2 shows that, not only is the 4–D response not zero, it contains a short period response and a long period response. The latter has the same temporal structure as the phugoid response. This plot illustrates a ‘cross-coupling’ between these two modes. 
Recall that the relation between 
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. From this relation, we can get an idea of how this cross-coupling influences the angle of attack. Specifically, for 
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. Hence, we can conclude that this cross-coupling will probably not be noticeable. 

Remark: There are other figures included in the code. Also, while the code validates equation (7) on p.48 of these notes for 
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[i.e. the black and blue lines match exactly in Figure 1 above], we have not validated it for the other three state variables, nor for other initial conditions. Hence, there are many things that one could continue to pursue in this investigation. 
□
Optional Extra Credit (80pts) : Repeat the investigation of PROBLEM 1 in relation to EXAMPLE PROBLEM 5.3 of Nelson (see p.44 of these notes). Due <= 12/2.

A Contribution from Kyle Litzer:
Phugoid Mode - http://www.youtube.com/watch?v=DEOGM_9NGTI&feature=related
Short Period Mode - http://www.youtube.com/watch?v=1O7ZqBS0_B8&NR=1

Pure Roll Mode - http://www.youtube.com/watch?v=zZQWI2QVwOg
Dutch Roll Mode - http://www.youtube.com/watch?v=oLe8ajpGNTs&feature=related
Spiral Mode - http://www.youtube.com/watch?v=3PFpHDD7rWY


On Thu, Nov 10, 2011 at 6:50 PM, Kyle Litzer <kjlitzer@iastate.edu> wrote:

Professor Sherman,

I found some videos on youtube that demonstrate (via flight simulator) the longitudinal and lateral aircraft dynamic modes. Aside from being pretty cool, I feel these might be helpful to show in class, since the dynamic modes are sometimes hard to imagine purely based on the equations given.

Regards,
Kyle


Continuation of the mathematical development related to (7):
With very little further effort, we can say even more. To this end, it must be noted that the components of both the left and right eigenvectors,  
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, respectively, are in general complex-valued. Hence, they may be expressed in polar form as:
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(8a)
and
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(8b).

From (8b), we have:

         
[image: image526.wmf]å

=

=

=

=

n

j

j

i

jk

tr

n

i

nk

k

i

k

i

k

tr

k

k

x

e

q

x

x

x

e

q

e

q

e

q

x

q

jk

nk

k

1

0

0

20

10

2

1

0

|

|

]

[

]]

|

|

|

|

|

[|

2

1

j

j

j

j

a

L

L

.
(9a)

The expression (9a) can be expressed simply as:
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(9b)

From (8a) and (9b), the mth component of the response (7) becomes:
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(10a)
In particular, the mth component of the kth mode, 
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(10b)

From (10) we have a second answer to the question:

(A2): The magnitude of the mth component of the kth mode is controlled by the left and right eigenvectors, 
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(i) The magnitude of the mth component of the kth right eigenvector, 
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, contributes directly, whereas

(ii) All of the component magnitudes of the left eigenvector, 
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Similarly, the phase of the mth component of the kth mode is controlled by the left and right eigenvectors, 
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(i) The phase of the mth component of the kth right eigenvector, 
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, contributes directly, where as

(ii) All of the component phases of the left eigenvector, 
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3. Excitation of a Single Mode

An important question in relation to the system (1) is: 

Exactly how does the choice of the initial condition, 
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, influence the extent to which various modes are excited?
To answer this question, we use the following fact.
Fact 2: Define the matrix of right eigenvectors 
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This fact is an extension of item (ii) of Fact 1, which states that 
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. In matrix terminology, the matrix Q is the left inverse of the matrix P. Hence, we have an answer to the above question:

A single mode, say the kth mode will be the only mode to be excited by the initial condition 
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Remark 1. The above answer requires a little elaboration. Specifically, suppose A includes a pair of complex conjugate eigenvalues, say 
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. In simpler language, it is impossible to excite a real-valued oscillatory response without exciting both of the conjugate modes.
4. The Response Associated with a Real and with a Pair of Complex-Conjugate Eigenvalues
It turns out that an nth order system transfer function can be expressed as a sum of first order systems and second order underdamped systems. In this section we will focus on these two types of systems.
Case 1: The kth mode has sk = σk: In this case, (10b) becomes:
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(11)
Now, suppose that 
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Recall that we require that 
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In general, the n requirements given in (12) will not be met exactly. The following special case is a not unrealistic situation where they will be met approximately.
Special Case- Suppose that 
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and the n requirements in (12) reduce to the single requirement 
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And so 
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 . Notice that throughout this special case we have used approximate equalities. That’s because rarely, if ever, will (13a) hold exactly.  □

Aircraft Response Due To Atmospheric Inputs (c.f. Nelson Chapter 6  p.212)

We begin this section by repeating the longitudinal and lateral small disturbance dynamical system equations, but with simplifications obtained by neglecting variables that have been described as negligible.
Neglecting 
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, the longitudinal state equation on p.4.12 of these notes is:
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(1)
By setting the product of inertia 
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, the lateral equations on p.4.44 of these notes are:
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(2)
The atmosphere is not a uniform medium. It includes spatial and temporal dynamics associated with wind. Recall that the forces and moments acting on a plane depend on its motion relative to the local atmosphere. To demonstrate how the above equations are modified due to wind, we can write the plane x-axis velocity disturbance in relation to the local x-axis gust velocity, 
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  rotational velocities:   
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The above state equations then become:


[image: image597.wmf]ú

ú

ú

û

ù

ê

ê

ê

ë

é

ú

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ê

ë

é

-

-

-

-

-

-

-

+

ú

û

ù

ê

ë

é

D

D

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ë

é

+

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ë

é

D

D

D

D

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ë

é

-

=

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ë

é

D

D

D

D

g

g

g

q

w

u

w

u

w

u

T

q

w

u

w

u

w

u

q

w

u

M

M

M

Z

Z

X

X

M

Z

X

M

Z

X

q

w

u

M

M

M

u

Z

Z

g

X

X

q

w

u

T

T

T

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

d

d

q

q

d

d

d

d

d

d

&

&

&

&


(3)


[image: image598.wmf]ú

ú

ú

û

ù

ê

ê

ê

ë

é

ú

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ê

ë

é

-

-

-

-

-

-

-

+

ú

û

ù

ê

ë

é

D

D

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ë

é

+

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ë

é

D

D

D

D

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ë

é

-

=

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ë

é

D

D

D

D

g

g

g

r

p

v

r

p

v

v

r

a

r

p

v

r

p

v

r

p

v

r

p

v

N

N

N

L

L

L

Y

N

L

Y

N

L

r

p

v

N

N

N

L

L

L

g

u

Y

Y

Y

r

p

v

r

r

r

a

a

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

d

d

f

f

d

d

d

d

d

&

&

&

&

.
(4)

Both (3) and (4) have the structure of the following dynamical system:
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In previous sections we ignored the control inputs. We will do the same here. In this case, the above form becomes: 
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(5)
In both (3) and (4) the input, u, is a 3-D vector, and the output is a 4-D vector. Hence, in the jargon of modern control theory, these are said to be examples of a Multi-Input/Multi-Output (MIMO) system. 
For a MIMO(3,4) system, each of the 3 inputs relates to each of the 4 outputs. Hence, there are a total of 12 scalar-valued relationships. The transfer function associated with (5) is obtained by taking its Laplace transform under zero initial conditions. Doing this, we obtain 
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The matrix 
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 defined in (6) is the transfer function matrix that relates the input, u, to the output x. 

In-Class Question: What is the dimension of 
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The (j,k) element of 
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is a scalar-values transfer function that relates the jth output to the kth input. For example, in (1) the transfer function between the input 
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 and the output 
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is the (1,1) element of the transfer function matrix. 
We are now in a position to compute the transfer function matrices associated with (1) and with (2) . We can do this simply by identifying the specific matrices associated with the matrices A and B in 
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. To obtain the 12 scalar-valued transfer functions for each system by hand would be a very laborious task. It is conceivable that a symbolic code (e.g. Mathematica) could perform this task and yield nice expressions. We will not undertake either task at this time. The motivated student is encouraged to ‘go for it’! 
A Closer Look At Scalar-Valued Transfer Functions
We have already seen the value of having a scalar-valued transfer function. It allows us to specify an input, u, and obtain the output, x, using very simple mathematics, a table of Laplace transforms, and Matlab commands. To motivate the discussion, we will consider the “PURE VERTICAL OR PLUNGING MOTION” of a plane, considered in Nelson, p.218. In this section a plane constrained to undergo only vertical motion in response to a gust of wind is addressed. The development begins with:
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Expressing the aerodynamic force in the z-direction as 
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Since the vertical force is a function of the angle of attack, 
[image: image614.wmf]a
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The change in the angle of attack due to the combination of its motion and the vertical wind gust is:
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This gives:                                         
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As mentioned before, one standard for of a first order model has the form 
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Hence, the system time constant is 
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 and the static gain is 
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From (5), we can easily obtain the response for a variety of gust profiles. We now consider some progressively realistic profiles.

Case 1: A very idealized (and mathematically simple) gust profile.

Suppose that the gust profile, 
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 has the form of a short burst of duration, T, and strength, Wo. To obtain its Laplace transform, 
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Item 2: For any function 
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The idealized gust pulse can be written as: 
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From (5) and (6), the Laplace transform of the response
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We can use a table of transform pairs to obtain the expression for 
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. But it is instructive to express (7) as the sum of two components:
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The first term on the right side of (8) is simply the scaled step response of the system 
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. The second term on the right is the same response, but time-delayed by an amount T. 
EXAMPLE PROBLEM 6.1 of Nelson (p.224) As above, both Nelson and Etkin typically assume that 
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 With these numerical values, the system transfer function is:
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From entry #4 in the table of Laplace transform pairs, the corresponding system impulse response is:
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We will assume that the gust magnitude is 
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Note that in (9) we cannot cancel the two 1’s, since the second 1 is multiplied by the time-delayed unit step function. Consequently for any time 
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To plot the response (() using Matlab we have two options:

Option 1: Define an array of discrete time values that extend from 0 to at least 
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 We will choose the maximum time to be 5 seconds. The interval, 
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 Hence the array of computation times will include a total of 1+5/.01=501 numbers. This array is computed as: tvec = 0:500;  tvec = tvec*.01. The response portion given by (10) is then simply: w = 15*(1 – exp(-1.43*tvec). Its time-delayed version begins after the 2/.01=200th time index. And so: ws = [zeroes(1,200) w]; ws = ws(1:501).
These commands are summarized as:

>> tvec=0:500; tvec=.01*tvec;

>> w=15*(1-exp(-1.43*tvec));

>> ws=[zeros(1,200) w]; ws=ws(1:501);

>> dw=w - ws;

>> plot(tvec,dw)
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Figure 1. Plane vertical speed response to a 2-second idealized gust with magnitude 15 ft/sec.

FREQUENCY CONTENT ASSOCIATED WITH INPUTS, OUTPUTS & TRANSFER FUNCTIONS

The profile in Case 1 was mathematically convenient, and does provide some basic insight as to how a gust might affect the dynamics of an aircraft. But anyone who has stood in an open field on a windy day knows that gusts of wind, and the wind, in general, are more complicated. 

If you watch a tree during a gust, you will find that it doesn’t simply bend in a static way. Rather, it sways. That’s because a tree is an underdamped system with a natural frequency. If you give it an initial condition by pulling it with a rope, and then let go, it will sway back and forth at its damped natural frequency. Now, the only way that a natural frequency can be excited is if the input has energy at that frequency. And so, returning to models for a wind gust, if the chosen model has no energy at the natural frequency of the plane dynamics, then the response to that gust model will not involve those dynamics. This could result in very misleading predictions to the plane’s response to a real gust. 
The key word that was used repeatedly here is frequency. To this point, we have been concerned with the relation between a transfer function and time domain behavior (e.g. settling time and period of oscillation). And so, a natural question is:
QUESTION: How does a system transfer function, say, 
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, convey frequency information about the system dynamics?
To begin to answer this question, we will now prove a most fundamentally important connection between the time-domain (t) and Laplace-domain (s) representations of a system with transfer function 
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. To emphasize this relationship, we will not state it as a fact. Rather, we will state it as a theorem. The proof of this theorem is central to understanding it.
THEOREM. A system transfer function, say, 
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, is mathematically identical to the Laplace transform of the system impulse response.
Before proving this theorem, let’s be clear about the difference between a transfer function, 
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are ft. And so to say that the Laplace transform of the response to a unit impulse, 
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makes no sense. They have different units! The above theorem does not say they are equal. T says they have the same mathematical expression. We will use the force/displacement setting in the proof.

PROOF: For a unit impulse input, 
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. Hence, for the unit impulse input, this becomes 
[image: image680.wmf]]

[

)

(

)

(

ft

s

H

s

Y

=

. Recall, that the standard convention is to use a lower case for the time domain expression, and the upper case for its Laplace transform. And so, since 
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is called the system impulse response function. In summary then, the system transfer function is the Laplace transform of the system impulse response function. □
EXAMPLE PROBLEM 6.1 continued: The impulse response of the system with transfer function
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This response is plotted against the response to a 2-second wind gust below.
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Figure 2. Plane vertical speed response to a 2-second idealized gust with magnitude 15 ft/sec, and to an impulse with intensity equal to 30.

Discussion: The response to the 2-second pulse is well-behaved at 
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, whereas the impulse response makes a very sharp jump. This sharp jump means that the frequency content of the impulse response will include much higher frequencies that the frequency content in the 2-second pulse. But this may not be at all obvious to those who are new to this topic. To quantify this, we now give the answer to the above QUESTION:

ANSWER: The frequency content associated with a system with transfer function 
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It follows that the frequency content associated with the response 
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. For completeness, we give the following definition.
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Definition 1. Let 
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is called the Laplace Transform of 
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We are now in a position to quantitatively describe the frequency content associated with the two responses in Figure 2 above. 
The frequency content associated with the response to the 2-second gust is obtained directly from (7) (in the context of EXAMPLE PROBLEM 6.1) as:

                    
[image: image703.wmf]÷

÷

ø

ö

ç

ç

è

æ

-

ú

û

ù

ê

ë

é

+

=

=

D

-

-

w

w

w

w

w

w

i

e

i

i

W

i

H

i

W

i

g

2

sec

2

sec

2

1

43

.

1

43

.

1

)

(

)

(

)

(

,
(10a)

whereas, the frequency content associated with the impulse gust (with intensity = 30) is simply:
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The frequency content associated with (10a) and (10b) is shown below.
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Figure 3. The frequency content associated with (10a) BLUE and (10b) GREEN. NOTE: (10b) is the system (scaled) FRF.
Discussion: The frequency content of the two inputs is similar up to about 0.1 Hz. At higher frequencies the frequency content of the response to the 2-second pulse drops significantly relative to that associated with the impulse. 
THE FREQUENCY CONTENT IN A RANDOM WIND PROFILE
Again, imagine you are standing in a field during gusty wind conditions. Clearly, no two gusts will feel exactly the same. In fact, the wind, in general is not exactly the same from second to second. And so, a more realistic model for a gust would be one that has elements of randomness to it. At issue here is not the energy content in a gust. Every gust will have different energy content. What is of central concern now is the expected frequency content. More specifically, it is the expected energy at each frequency.

Consider a function 
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. (e.g. a decaying exponential.) But wind (esp. upper atmospheric wind) is always present. It does not simply go away after some 
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period of time. Furthermore, it has randomness. In fact, wind is an example of a random process. In this section we will assume it is a random process that has the same general behavior at in time. We will refer to such a process as a (weakly) stationary random process. 
Definition 2.  Assume that 
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Remark: The Fourier Transform operation converts a time-domain random function, 
[image: image714.wmf]¥

<

£

t

t

f

0

;

)

(

, to a random function 
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Since 
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is a random function, we need to address its frequency content in relation to the expected energy at any frequency. This is defined as:

Definition 3. The expected energy at a frequency 
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 is defined as 
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is called the power spectral density (psd) function associated with the random process 
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Examples of Wind PSD Models in Relation to the (u,v,w) directions:

For a specified plane speed, 
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(11b)
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(11c)

The model parameter 
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 controls the overall intensity of the psd for a given direction, and the parameter L controls the turbulence scale in a given direction. These parameters are specified by the researcher. 
EXAMPLE 6.1 continued: Since we are concerned in this example with vertical gusts, we will use equation (11c), but will express it as a function of 
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Connection to Matlab Simulink & to Military Specifications
Von Karman Wind Turbulence Model (Continuous): Generate continuous wind turbulence with Von Kármán velocity spectra

Library: Environment/Wind

Description: The Von Kármán Wind Turbulence Model (Continuous) block uses the Von Kármán spectral representation to add turbulence to the aerospace model by passing band-limited white noise through appropriate forming filters. This block implements the mathematical representation in the Military Specification MIL-F-8785C and Military Handbook MIL-HDBK-1797.
According to the military references, turbulence is a stochastic process defined by velocity spectra. For an aircraft flying at a speed V through a frozen turbulence field with a spatial frequency of Ω radians per meter, the circular frequency ω is calculated by multiplying V by Ω . The following table displays the component spectra functions: [See Matlab documentation] □

Major Points re: AerE355:
1. In the real world, wind velocity is not modeled as a simple deterministic function.
2. Military specs. require that wind velocity be modeled by passing band-limited white noise through appropriate forming filters. .

Q1: What in the world is band-limited white noise?
A1: To answer this, we first need to understand what white noise is. A random process, call it 
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 (i.e. it is a flat psd.) It follows that band-limited white noise is white noise that has been passed through a low-pass filter.
Q2: What is a low-pass filter?
A2: It is a transfer function whose FRF magnitude is unity at low frequencies and decays to zero at higher frequencies. The following first order system is an example of a low-pass filter.

Example of a low-pass filter- Consider the first order system with transfer function 
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Since (12a) is a complex number, we can express it in polar form. [Recall that the polar form of the complex number 
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It is standard practice to express the magnitude, 
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Things to note:

(i) at frequencies 
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(ii) at frequency 
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(iii) at a frequency 
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       at a frequency 
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In words, the FRF is flat at frequencies much lower than the frequency 
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 is called the system break frequency, since it is at this frequency that the zero-slope low frequency behavior begins to transition to the high frequency slope of 20dB/decade.
Now, to make this first order system function as a low-pass filter it is only necessary to set 
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 we can plot the FRF using two Matlab commands. First, we define the system: ‘sys = tf(1,[.016 1])’. Then we type ‘bode(sys)’.

The result is given below.
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Figure 4. First order low-pass filter FRF with cut-off frequency 
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Application to the Von Karman Wind Model
We are now in a position to address the Von Karman wind model. For simplicity, we will express the vertical velocity psd as:
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Notice that we can write 
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, where the bar denotes the complex conjugate. If we let 
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where we have defined the “transfer function 
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For any time, t, the white noise variance is 
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denotes the expected value. Recall from Definition 3 above that 
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In words, we are representing the wind, 
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Conclusion: We can simulate  Von Karman wind data by running white noise with variance 
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 through the transfer function H(s).
Table of Laplace and Z Transforms
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