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Chapter 1     Introduction [A partial review of AERE 261 (]
1.2 BASIC DEFINITIONS

1.2.2 Pressure 
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1.2.3 Temperature 
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 is sea-level standard temperature in an absolute scale.
1.2.4 Density 
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1.2.5 Viscosity 
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where the condition is 
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1.2.6 Mach Number 
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where V is the speed of the plane and a is the local speed of sound.

· Incompressible subsonic: 
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· Compressible subsonic: 
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· Transonic: 
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· Supersonic: 
[image: image16.wmf]5

2

.

1

<

<

M


· Hypersonic: 
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1.3 AEROSTATICS

1.3.1 Pressure Variation in a Static Fluid   
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1.4 DEVELOPMENT OF BERNOULLI’S EQUATION (ignoring viscous effects)

From equations (1.20) to (1.25), along with Figure 1.5, we arrive at:
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(1.26).

This equation highlights the fact that the total fluid acceleration is comprised of a component associated with changing pressure 
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Next, write:
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(1.27)

This equation states that the total acceleration of an elemental mass of fluid is the sum of the acceleration of the entire flow field, 
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plus the acceleration associated with the change in the elevation (see 
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in Figure 1.5) of the field 
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at a location s.
Equating the right sides of (1.26) and (1.27) gives:
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Definition 1. A steady flow field is one that has constant velocity; that is, 
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In the case of a steady flow field, (1.1*) becomes:
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Noting that the constant velocity is 
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gives the differential form of Bernoulli’s equation for steady flow:
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From (1.29) the integral form of Bernoulli’s equation for steady flow between states 1 and 2 is:
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1.4.1 Incompressible Steady State Flow
In this situation the density, 
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, does not depend on pressure. If we also assume that it does not depend on a change in elevation, z, then (1.30) becomes
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The integrals in (1.3*) are trivial to evaluate, giving:
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Application to the stagnation point-
From http://en.wikipedia.org/wiki/Stagnation_point  we have the following:
In fluid dynamics, a stagnation point is a point in a flow field where the local velocity of the fluid is zero.[1] Stagnation points exist at the surface of objects in the flow field, where the fluid is brought to rest by the object. The Bernoulli equation shows that the static pressure is highest when the velocity is zero and hence static pressure is at its maximum value at stagnation points. This static pressure is called the stagnation pressure.[2]

 HYPERLINK "http://en.wikipedia.org/wiki/Stagnation_point" \l "cite_note-Clancy3.5-3" [3]
The Bernoulli equation applicable to incompressible flow shows that the stagnation pressure is equal to the dynamic pressure plus static pressure. Total pressure is also equal to dynamic pressure plus static pressure so, in incompressible flows, stagnation pressure is equal to total pressure. [3] (In compressible flows, stagnation pressure is also equal to total pressure providing the fluid entering the stagnation point is brought to rest isentropically.)[4]
Kutta condition[edit] : On a streamlined body fully immersed in a potential flow, there are two stagnation points—one near the leading edge and one near the trailing edge. On a body with a sharp point such as the trailing edge of a wing, the Kutta condition specifies that a stagnation point is located at that point. The streamline at a stagnation point is perpendicular to the surface of the body.




Photo showing stagnation point and attached vortex at an un-faired wing-root to fuselage junction on a Schempp-Hirth Janus C glider
QUESTION: Why is the stagnation point important?

ANSWER: http://www.academia.edu/275031/Stagnation_Point_Flow_near_the_Continuum_Limit 

“The importance of stagnation-point heat transfer in problems such as atmospheric reentry [6] and other rareﬁed hypersonic ﬂows [7] make estimating the heat transfer a problem of practical engineering interest.”

Now let’s return to (1.31) for the case where 
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corresponds to the stagnation point. If we assume 
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1.4.2 Bernoulli’s Equation for a Compressible Fluid
As noted above, for a Mach number 
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the air is compressed. The pressure density relationship is:
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where, for air, the ratio of specific heats is 
[image: image44.wmf]4

.

1

@

g

. From (1.33) we have
                 
[image: image45.wmf])

1

(

)

1

(

)

(

1

1

2

1

-

=

÷

÷

ø

ö

ç

ç

è

æ

-

=

-

=

=

=

-

-

-

ò

ò

ò

g

r

g

g

r

g

r

g

gr

r

r

g

r

r

r

g

r

g

g

g

g

cP

c

c

d

c

d

c

dP

.
(1.4*)
Substituting (1.4*) into the indefinite integral version of (1.30) gives:
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(1.34)

where C is the integration constant. Once again, if we ignore the term 
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Application of (1.34) to the stagnation point-
For the two conditions 
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Note that (1.35’) becomes (1.35) for 
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At this point, the author ‘reminds’ us that the squared speed of sound in a gas is:
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Hence, (1.36’) becomes:
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Recalling that 
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gives the alternative expression:
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As a result of (1.33), we also have:
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(1.38)

From (1.38) we have:
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Substituting (1.6*) into (1.5*) gives:
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and
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Finally, from (1.7*) we obtain:
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and
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Again, notice that (1.39’) and (1.40’) contain the constant c, which must be assumed to equal one in order to arrive at the author’s (1.39) and (1.40). Furthermore, as the author notes: these equations are only valid for 
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. The author also notes that if one has measurements of the local free-stream pressure P and 
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1.5 THE ATMOSPHERE
[image: image1.wmf]A

F

P

/

=

[image: image66.png]Altitude ( kilometers )

~60
90
r 4150
701
40
60 Standard atmospheric profile
is made up of gradient and
50“ isothermal regions
30
30 Gradient Region 420
20 Isothermal Region
10
10f
0 ~ 0
150 200 250 300
«
H -t
300 400 500

°R
Absolute Temperature

Altitude ( miles )

FIGURE 1.7
Temperature profile in the standard
atmosphere.




Remark 1.5.1  The above figure describes the relation between altitude and temperature. Notice that the Rankine scale is not at all accurate. For this reason, it is advised to use the Kelvin scale.
The thermal/altutude gradient for 
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[image: image69.emf]
Remark 1.5.2 On p.15 it is stated that “the properties of the atmosphere change with time and location…”. Hence, Figure 1.7 should be interpreted as a relation between the mean tempreature as a function of altitude. 
Example 1.5.1 Suppose that the mean temperature can be expressed as 
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also has a normal distribution; specifically, it is 
[image: image76.wmf])]

(

01

.

,

[

~

)

(

h

T

h

T

Normal

h

T

T

o

o

l

l

+

+

=

. 
QUESTION: Why is uncertainty related to atmospheric quantities of such timely relevance?

ANSWER: Drones… small drones are much more suseptible to degraded performance than traditional airplanes in uncertain and/or perturbed atmospheric conditions.
(a)Write a Matlab code that plots the mean temperature, as well as the upper and lower standard errors (i.e. plot 
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 as well as 
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Solution: The code that generated the following plot is given in the Appendix.
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(b) Use the Matlab command ‘normpdf’ to plot the distribution of T at the altitude 
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Solution: 
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(b) Use the Matlab command ‘normrnd’ to simulate 104 measurements of T at the altitude 
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. Then use the command ‘hist’ in relation to this data to plot a 25-bin histogram of the temperatures.

Solution: 
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(d) Does your histogram appear to be correct? Explain.

Answer: It is very similar to the theoretical distribution of part(b); both in location and spread. Hence, I would say it is valid.
The point of this example was to illustrate how easy it is to gain an understanding of the uncertainty of temperature via simulations. □
Definition 1.5.1 Let 
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denote the mean radius of the earth, and let 
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Now, recall that the general hydrostatic equation that relates a change in altitude to a change pressure is:
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Definition 1.5.2 If in (1.42) we use 
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, which is gravity at sea level, then the variable h is called the geopotential altitude. In this case, we have
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If we use the value of gravity at the altitude h, we will then write (1.42) as
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where 
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The equality of equations (1.43) and (1.44) gives:
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Further, it can be shown that the value of g at a geopotential altitude h is given by
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(1.46)

Substituting (1.46) into (1.45) gives
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(1.47)

To integrate (1.47) define the variable 
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Crrying out this integration gives:
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(1.48)
or 
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Finally, we can now arrive at the relation between pressure/density and altitude. To this end, for convenience, we write (1.43) again as
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From section 1.2.2 we also have 
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Dividing (1.50) by (1.51) gives:
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We will assume that the temperature varies linearly as a function of altitude (per any chosen linear region in Figure 1.7); specifically:
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From (1.9*) and (1.52) we obtain:
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The left side of (1.53) is clearly 
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To integrate the right side of (1.53) define the variable 
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From (1.10*) and (1.11*), (1.53) becomes
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From (1.9*) we can also write (1.54) as

                                                
[image: image111.wmf]l

l

R

g

o

o

T

T

T

T

R

g

P

P

-

÷

÷

ø

ö

ç

ç

è

æ

=

÷

÷

ø

ö

ç

ç

è

æ

-

=

1

1

1

ln

ln

)

/

ln(


(1.12*)
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Also, from (1.51) we have
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From (1.55) and (1.56) we therefore arrive at
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The Isothermal Region- Notice that in Figure (1.7), for 
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Integrating this equation gives:
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From (1.56) we have 
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Hence, from (1.14*) and (1.59), in this isothermal region we also have
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EXAMPLE PROBLEM 1.1 The temperature from sea level to 30,000 ft. is found to decrease in a linear fashion. At sea level we have 
[image: image123.wmf])

/

2050

,

40

(

)

,

(

2

1

1

ft

lb

F

T

o

=

r

. At 30,000 ft. we have 
[image: image124.wmf]F

T

o

60

2

-

. Find the temperature, pressure, and density at 20.000 ft.
Solution: The temperature gradient is 
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Using (1.55), the pressure is: 
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Finally, from (1.51): 
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A FINAL REMARK. While the author does not explicity mention it, the above equations are, in fact, the source of the atmospheric table in Appendix A. As such, the student may wish to incorporate them into his/her own e-table (
1.6 AERODANAMIC NOMENCLATURE
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These equations assume that the aerodynamic forces are a linear function of Q, or a quadratic function of V. Since the dimensions of the product 
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[image: image139.wmf]w

l

l

S

Q

C

L

=

     Rolling Moment
(1.64)     

                                                 
[image: image140.wmf]c

S

Q

C

M

m

=

   Pitching Moment
(1.65) 

                                                 
[image: image141.wmf]w

n

l

S

Q

C

N

=

    Yawing moment
(1.66)

where lw is the wing span and 
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is the wing mean chord length. Clearly, the parameters Cl, Cm, and Cn are also dimensionless.
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Definition 1.6.1 In relation to Figure 1.11, define the following angles:
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where the magnitude of the plane velocity vector 
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Small Angle Approximations- If the attack and sideslip angles are sufficiently small (
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1.7 AIRCRAFT INSTRUMENTS
1.7.2 Airspeed Indicator
For a plane flying at a constant speed V, the total pressure is the sum of the static and dynamic pressures:
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Notice that the total pressure is also the stagnation pressure [c.f. (1.32)]. From (1.72) we have
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Definition 1.7.1 The air speed indicator is an instrument that measures the differential pressure 
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Remark 1.1.7 The author defines the indicated air speed, 
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Definition 1.7.2 In the absence of all factors other than density, 
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Equation (1.78) simply recognizes that the measurement at hand is the pressure differential 
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EXAMPLE PROBLEM 1.2 An aircraft altimeter, calibrated to the standard atmosphere, reads 10,000 ft. The airpseed indicator (calibrated to eliminate both instrument and location errors) reads a speed of 120 knots. If the outside temperature is 
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Solution: [Updated 8/26/15] From Appendix A, the static pressure at an altitude of 10,000 ft in the standard atmosphere is 
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Hence, 
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     □
APPENDIX Matlab code for Example 1.5.1
%PROGRAM NAME: ex1_5_1.m
%PART (a):
h = 0:.01 : 10;  % Altitude array (km)
To = 288.16; %Temp (K) at sea level
L = -6.8; %Temp gradiant (K/km)
muT = To + L*h; % mean temp.
stdT = .01*muT; % temp. std. deviation
muT1 = muT - 2*stdT; %Lower error bound
muT2 = muT + 2*stdT; %Upper error bound
figure(1)
plot(h,muT,'k')
hold on
plot(h,muT1,'k--')
plot(h,muT2,'k--')
xlabel('Altitude (km)')
ylabel('Temp. (K) )')
title('Mean Temperature and Standard Errors as a Function of Altitude')
grid
pause
%PART (b)
m = length(h);
T1 = muT(m) -3*stdT(m);
T2 = muT(m) + 3*stdT(m);
dT = (T2 - T1)/100;
Tvals = T1 : dT : T2;
f = normpdf(Tvals,muT(m),stdT(m));
figure(2)
plot(Tvals, f)
xlabel('Temperature (K)')
title('Distribution of T(h=10km)')
grid
pause
% PART (c):
Tdata = normrnd(muT(m),stdT(m),1,10e4);
figure(3)
hist(Tdata,25)
xlabel('Temperature (K)')
title('Histogram of 10^4 measurements of T(h=10km)')
grid
� EMBED Equation.3  ���
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