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         Aircraft Response Due To Atmospheric Inputs (c.f. Nelson Chapter 6  p.212) 

We begin this section by repeating the longitudinal and lateral small disturbance dynamical system equations, but with 

simplifications obtained by neglecting variables that have been described as negligible. Neglecting wM  , the longitudinal 

state equation on p.12 of the Chapter 4 notes is:  
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By setting the product of inertia 0xzI , the lateral equations on p.4.44 of these notes are: 
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The atmosphere is not a uniform medium. It includes spatial and temporal dynamics associated with wind. Recall that the 

forces and moments acting on a plane depend on its motion relative to the local atmosphere. To demonstrate how the 

above equations are modified due to wind, we can write the plane x-axis velocity disturbance in relation to the local x-axis 

gust velocity, gu , as: ga uuu  . Repeating this for all disturbance variables gives: 

  linear velocities:         ga uuu      ;   ga vvv     ;   ga www   

  rotational velocities:   ga ppp      ;   ga qqq     ;   ga rrr  . 

The above state equations then become: 
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Both (3) and (4) have the structure of the following dynamical system: 

                                                     
1 1 2 2x = Ax + B u + B u . 

In Chapter 4 we ignored the control inputs. We will do the same here. In this case, the above form becomes:  

                                                             x = Ax + Bu . (5) 

In both (3) and (4) the input, u, is a 3-D vector, and the output x is a 4-D vector. Hence, in the jargon of modern control 

theory, these are said to be examples of a Multi-Input/Multi-Output (MIMO) system.  

For a MIMO(3,4) system, each of the 3 inputs relates to each of the 4 outputs. Hence, there are a total of 12 scalar-valued 

relationships. The transfer function associated with (5) is obtained by taking its Laplace transform under zero initial 

conditions. Doing this, we obtain ( ) ( ) ( )s s s s X AX BU , or: 

                                 
1( ) ( ) ( ) ( ) ( )s s s s s


 X I - A BU H U . (6) 

The matrix 
1( ) ( )s s


 I - A B H  defined in (6) is the transfer function matrix that relates the input, u, to the output x.  

In-Class Question: What is the dimension of ( )sH ?   Answer: 4x3 

 

The (j,k) element of ( )sH is a scalar-values transfer function that relates the jth output to the kth input. For example, in (1) 

the transfer function between the input )(t  and the output )(tu is the (1,1) element of the transfer function matrix.  

We are now in a position to compute the transfer function matrices associated with (1) and with (2) . We can do this 

simply by identifying the specific matrices associated with the matrices A and B in 1( ) ( )s s I - A B H . To obtain the 12 

scalar-valued transfer functions for each system by hand would be a very laborious task. It is conceivable that a symbolic 

code (e.g. Mathematica) could perform this task and yield nice expressions. We will not undertake either task at this time. 

The motivated student is encouraged to ‘go for it’!  

 

A Closer Look at Scalar-Valued Transfer Functions 

We have already seen the value of having a scalar-valued transfer function. It allows us to specify an input, u, and obtain 

the output, x, using very simple mathematics, a table of Laplace transforms, and Matlab commands. To motivate the 

discussion, we will consider the “PURE VERTICAL OR PLUNGING MOTION” of a plane, considered in Nelson, p.218. 

In this section a plane constrained to undergo only vertical motion in response to a gust of wind is addressed. The 

development begins with: 

                    WZdtdwmdirectionzinForces  / . 

Expressing the aerodynamic force in the z-direction as ZZZ  0 (i.e. a small perturbation force), results in 

WZ 0 (i.e. equilibrium), and writing w as ww 


(i.e. unaccelerated flight) gives: 

                                                           dtwdmZ //  . 

Since the vertical force is a function of the angle of attack,  , and its derivative,  , this can be expressed as: 
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                                                 0 wZZ    . (1) 

The change in the angle of attack due to the combination of its motion and the vertical wind gust is: 

                                                       00 // uwuw g . (2a) 

This gives:                                         00 // uwuw g
  . (2b) 

                              gg wuZwuZwuZwuZ )/()/()/()/1( 0000     . (3) 

As mentioned before, one standard for of a first order model has the form )()()( tfgtyty s , where the ‘input’ is 

)(tf , the ‘output’ is )(ty , the system time constant is  , and the system static gain is sg . putting (3) in this form gives: 

                              gg wwZZww
Z

Zu








 
  

 )/(0




 . (4) 

Hence, the system time constant is 






 





Z

Zu 0  and the static gain is 1sg . The system transfer function is 

obtained by taking the Laplace transform of (4) assuming zero initial conditions. It is: 

                              

0

( / ) 1( / ) 1( )
( )

( ) 1
1g

Z Z sZ Z sW s
H s

W s su Z
s

Z


  







 
  

 
  
 

. (5) 

From (5), we can easily obtain the response for a variety of gust profiles. We now consider some progressively realistic 

profiles. 

Case 1: A very idealized (and mathematically simple) gust profile. 

Suppose that the gust profile, )(twg  has the form of a short burst of duration, T, and strength, Wo. To obtain its Laplace 

transform, )(sWg , we need three items from a table of Laplace transforms: 

Item 1: The unit step function, )(tus  has the form .01)(  tfortus  Its Laplace transform is 
s

sU s

1
)(  . 

Item 2: For any function )(tf  with Laplace transform )(sF , the time-shifted function )()( ottftr 


 has Laplace 

transform ots
esFsR


 )()( . 

Item 3: For any function )(tf  with Laplace transform )(sF , the scaled function )()( tfctr


  has Laplace transform 

)()( sFcsR  . 

The idealized gust pulse can be written as: )]()([)( TtutuWtw ssog  . Using the above items, its Laplace transform 

is: 
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                                                  






 




s

e
WsW

sT

og

1
)( . (6) 

From (5) and (6), the Laplace transform of the response )(tw  is: 

                     






 
















s

e

s

sZZ
sWsHsW

sT

g

1

1

1)/(
)()()(


 . (7) 

We can use a table of transform pairs to obtain the expression for )(tw . But it is instructive to express (7) as the sum of 

two components: 

 

sT

oo

sT

o e
s

WsH
s

WsH
s

e
WsHsW 




























 


1
)(

1
)(

1
)()( .  (8) 

The first term on the right side of (8) is simply the scaled step response of the system )(sH . The second term on the right 

is the same response, but time-delayed by an amount T.  

 

EXAMPLE PROBLEM 6.1 of Nelson (p.224) As above, both Nelson and Etkin typically assume that 0Z

 . Then we 

have  Zu /0 . Recall that mQSCZ L /
  . Hence, )/(2 0guSCW L 


 . For a general aviation plane flying at 

125 fps, we obtain sec7.0  With these numerical values, the system transfer function is: 

                                           


















43.1

1
43.1

17.0

1

)(

)(
)(

sssW

sW
sH

g

. 

From entry #4 in the table of Laplace transform pairs, the corresponding system impulse response is: 

                                                                  
teth 43.143.1)(  . 

We will assume that the gust magnitude is sec/15 ftWo  , and that its duration is .sec2T  . From entry #7 of the 

table and equation (8) above, the system response to this gust is: 

                              )2()43.11()43.11(15)( )2(43.143.1   tueetw s

tt
. (9) 

Note that in (9) we cannot cancel the two 1’s, since the second 1 is multiplied by the time-delayed unit step function. 

Consequently for any time sec2t , (9) is only: 

                                            .sec20)43.11(15)( 43.1   tforetw t
 (10) 

 

To plot the response (9) using Matlab: 

Define an array of discrete time values that extend from 0 to at least .sec)42(   We will choose the maximum time to 

be 5 seconds. The interval, T , between samples should be small relative to  . We will choose .sec01.0T  Hence 
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the array of computation times will include a total of 1+5/.01=501 numbers. This array is computed as: tvec = 0:500;  tvec 

= tvec*.01. The response portion given by (10) is then simply: w = 15*(1 – exp(-1.43*tvec). Its time-delayed version 

begins after the 2/.01=200th time index. And so: ws = [zeroes(1,200) w]; ws = ws(1:501). 

These commands are summarized as: 

>> tvec=0:500; tvec=.01*tvec; 

>> w=15*(1-exp(-1.43*tvec)); 

>> ws=[zeros(1,200) w]; ws=ws(1:501); 

>> dw=w - ws; 

>> plot(tvec,dw) 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

5

10

15

Time (sec)

dw
 (f

t/s
ec

)

Response to a 2-second Gust

 

Figure 1. Plane vertical speed response to a 2-second idealized gust with magnitude 15 ft/sec. 

 

FREQUENCY CONTENT ASSOCIATED WITH INPUTS, OUasTPUTS & TRANSFER FUNCTIONS 

The profile in Case 1 was mathematically convenient, and does provide some basic insight as to how a gust might affect 

the dynamics of an aircraft. But anyone who has stood in an open field on a windy day knows that gusts of wind, and the 

wind, in general, are more complicated.  

If you watch a tree during a gust, you will find that it doesn’t simply bend in a static way. Rather, it sways. That’s because 

a tree is an underdamped system with a natural frequency. If you give it an initial condition by pulling it with a rope, and 

then let go, it will sway back and forth at its damped natural frequency. Now, the only way that a natural frequency can be 

excited is if the input has energy at that frequency. And so, returning to models for a wind gust, if the chosen model has 

no energy at the natural frequency of the plane dynamics, then the response to that gust model will not involve those 

dynamics. This could result in very misleading predictions to the plane’s response to a real gust.  

The key word that was used repeatedly here is frequency. To this point, we have been concerned with the relation 

between a transfer function and time domain behavior (e.g. settling time and period of oscillation). And so, a natural 

question is: 

QUESTION: How does a system transfer function, say, )(sH , convey frequency information about the system dynamics? 
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To begin to answer this question, we will now prove a most fundamentally important connection between the time-domain 

(t) and Laplace-domain (s) representations of a system with transfer function )(sH . To emphasize this relationship, we 

will not state it as a fact. Rather, we will state it as a theorem. The proof of this theorem is central to understanding it. 

THEOREM. A system transfer function, say, )(sH , is mathematically identical to the Laplace transform of the system 

impulse response. 

Before proving this theorem, let’s be clear about the difference between a transfer function, )(sH , and the Laplace 

domain expression for the system response to an input, say, )(sF . Suppose, for example, that the input is a force, with 

units of lbf and that the response is displacement, with units of ft. Then the units of )(sH  are [ft / lbf], while the units of 

the response, )()()( sFsHsY  are ft. And so to say that the Laplace transform of the response to a unit impulse, )(t  is 

equal to )(sH makes no sense. They have different units! The above theorem does not say they are equal. T says they 

have the same mathematical expression. We will use the force/displacement setting in the proof. 

PROOF: For a unit impulse input, )()( ttf  , the Laplace transform is ][1)( flbsF  . The Laplace transform of the 

response, )(ty , to any input, )(tf , is simply ][)()()( ftsFsHsY  . Hence, for the unit impulse input, this becomes 

][)()( ftsHsY  . Recall, that the standard convention is to use a lower case for the time domain expression, and the 

upper case for its Laplace transform. And so, since ][)()( ftsHsY   we have ][)()( ftthty  . The time-domain 

function )(th is the inverse Laplace transform of the system transfer function, )(sH . It is also the time-domain response 

to a unit-impulse input. Hence, )(th is called the system impulse response function. In summary then, the system transfer 

function is the Laplace transform of the system impulse response function. □ 

 

EXAMPLE PROBLEM 6.1 continued: The impulse response of the system with transfer 

function 


















43.1

1
43.1

17.0

1

)(

)(
)(

sssW

sW
sH

g

 is 
teth 43.143.1)(  .  

This response is plotted against the response to a 2-second wind gust below. 
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Figure 2. Plane vertical speed response to a 2-second idealized gust with magnitude 15 ft/sec, and to an impulse with 

intensity equal to 30. 

Discussion: The response to the 2-second pulse is well-behaved at 0t , whereas the impulse response makes a very 

sharp jump. This sharp jump means that the frequency content of the impulse response will include much higher 
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frequencies that the frequency content in the 2-second pulse. But this may not be at all obvious to those who are new to 

this topic. To quantify this, we now give the answer to the above QUESTION: 

ANSWER: The frequency content associated with a system with transfer function )(sH is obtained by setting is  . 

The quantity )( iH is called the system Frequency Response Function (FRF).  

It follows that the frequency content associated with the response )(ty , to any input, )(tf , is simply 

)()()(  iFiHiY  . For completeness, we give the following definition. 

 

Definition 1. Let )(tf  be a function of time, and assume that 00)(  tfortf . The function  







0

)()(
t

ts dtetfsF is called the Laplace Transform of )(tf . For is  , this transform becomes 







0

)()(
t

ti dtetfiF  , and is called the Fourier Transform of )(tf . 

 

We are now in a position to quantitatively describe the frequency content associated with the two responses in Figure 2 

above.  

The frequency content associated with the response to the 2-second gust is obtained directly from (7) (in the context of 

EXAMPLE PROBLEM 6.1) as: 

                    






 




















i

e

i
iWiHiW

i

g

2

sec2sec2

1

43.1

43.1
)()()( , (10a) 

whereas, the frequency content associated with the impulse gust (with intensity = 30) is simply: 

                           30
43.1

43.1
)()()( 










 




i
iWiHiW impulsegimpulse . (10b) 

The frequency content associated with (10a) and (10b) is shown below. 
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Figure 3. The frequency content associated with (10a) BLUE and (10b) GREEN. NOTE: (10b) is the system (scaled) 

FRF. 

Discussion: The frequency content of the two inputs is similar up to about 0.1 Hz. At higher frequencies the frequency 

content of the response to the 2-second pulse drops significantly relative to that associated with the impulse.  

 

THE FREQUENCY CONTENT IN A RANDOM WIND PROFILE 

Again, imagine you are standing in a field during gusty wind conditions. Clearly, no two gusts will feel exactly the same. 

In fact, the wind, in general is not exactly the same from second to second. And so, a more realistic model for a gust 

would be one that has elements of randomness to it. At issue here is not the energy content in a gust. Every gust will have 

different energy content. What is of central concern now is the expected frequency content. More specifically, it is the 

expected energy at each frequency. 

Consider a function )(tf . Its frequency description is given by its Fourier Transform: 





0

)()( dtetfiF ti . This is well-defined if )(tf decays fast enough as t . (e.g. a decaying exponential.) But 

wind (esp. upper atmospheric wind) is always present. It does not simply go away after some 4 period of time. 

Furthermore, it has randomness. In fact, wind is an example of a random process. In this section we will assume it is a 

random process that has the same general behavior at in time. We will refer to such a process as a (weakly) stationary 

random process.  

Definition 2.  Assume that )(tf is a stationary random process. Then the Fourier Transform of )(tf  is defined as 

.0)(
1

lim)(
0

 






  fordtetf
T

iF

T

ti

T
 

Remark: The Fourier Transform operation converts a time-domain random function,  ttf 0;)( , to a random 

function  0;)(iF . It is simply a different way of viewing the random function (i.e. as a function of  instead 

of as a function of t). It does not reduce the level of variability. 

Since  0;)(iF is a random function, we need to address its frequency content in relation to the expected 

energy at any frequency. This is defined as: 

 

Definition 3. The expected energy at a frequency   is defined as ]|)([| 2iFE . In Nelson (p.227-228) the symbol used 

for it is )(]|)([| 2  fiFE 


. In words, )(f is called the power spectral density (psd) function associated with the 

random process )(tf . The symbol )(E  denotes the expected value operation.  

Examples of Wind PSD Models in Relation to the (u,v,w) directions: 

For a specified plane speed, 0u , define the scaled frequency 0/ u


 . The following are the von Karman psd models 

for the three directions (u,v,w): 
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6/52

2

]339.1(1[

12
)(




g

g

gg

u

u

uu
L

L


  (11a) 

                           
6/112

2

]339.1(1[

12
)(




g

g

gg

v

v

vv
L

L


  (11b) 

                          
6/112

2

]339.1(1[

12
)(




g

g

gg

w

w

ww
L

L


  (11c) 

The model parameter 
2  controls the overall intensity of the psd for a given direction, and the parameter L controls the 

turbulence scale in a given direction. These parameters are specified by the researcher.  

EXAMPLE 6.1 continued: Since we are concerned in this example with vertical gusts, we will use equation (11c), but will 

express it as a function of 0u : 

                                   
6/11

2

2

0

2

339.1
1

2

)(



















































u

L

L

g

g

g

g

w

w

w

w  

 

Connection to Matlab Simulink & to Military Specifications 

Von Karman Wind Turbulence Model (Continuous): Generate continuous wind turbulence with Von Kármán 

velocity spectra. https://www.mathworks.com/help/aeroblks/vonkarmanwindturbulencemodelcontinuous.html  

The Dryden model is found in: https://www.mathworks.com/help/aeroblks/drydenwindturbulencemodelcontinuous.html  

Library: Environment/Wind 

Description: The Von Kármán Wind Turbulence Model (Continuous) block uses the Von Kármán spectral 

representation to add turbulence to the aerospace model by passing band-limited white noise through appropriate 

forming filters. This block implements the mathematical representation in the Military Specification MIL-F-8785C 

and Military Handbook MIL-HDBK-1797. 

According to the military references, turbulence is a stochastic process defined by velocity spectra. For an 

aircraft flying at a speed V through a frozen turbulence field with a spatial frequency of Ω radians per meter, the 

circular frequency ω is calculated by multiplying V by Ω . The following table displays the component spectra 

functions: [See Matlab documentation] □ 

Major Points re: AerE355: 

1. In the real world, wind velocity is not modeled as a simple deterministic function. 

https://www.mathworks.com/help/aeroblks/vonkarmanwindturbulencemodelcontinuous.html
https://www.mathworks.com/help/aeroblks/drydenwindturbulencemodelcontinuous.html
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2. Military specs. require that wind velocity be modeled by passing band-limited white noise through appropriate 

forming filters. . 

Q1: What in the world is band-limited white noise? 

A1: To answer this, we first need to understand what white noise is. A random process, call it )(tw  , is a white noise 

process if its psd is: 
2)( uu    (i.e. it is a flat psd.) It follows that band-limited white noise is white noise that has been 

passed through a low-pass filter. 

Q2: What is a low-pass filter? 

A2: It is a transfer function whose FRF magnitude is unity at low frequencies and decays to zero at higher frequencies. 

The following first order system is an example of a low-pass filter. 

Example of a low-pass filter- Consider the first order system with transfer function 
1

)(



s

g
sH s


. Recall, that the 

parameter  is the system time constant, and that sg is the system static gain. The system Frequency Response Function 

(FRF) is: 

                                                  
1)(

)(






i

g
iH s  (12a) 

Since (12a) is a complex number, we can express it in polar form. [Recall that the polar form of the complex number 

iba  is 
ieba 22   where )/(tan 1 ab  if both 0, ba .] Hence, 

                              

)(tan)(
)(1

)(

)(
1)(

)(

1

2

)()(









 











and
g

Mwhere

eMe
i

g
iH

s

iis

 (12b) 

It is standard practice to express the magnitude, )(M ,  of the FRF in units called decibels (dB). Specifically: 

)]([log20)( 10  MM dB



 . Hence, in relation to (12), we have: 

                ])(1[log10)(log20
)(1

log20)( 2

1010210 


 















 s

s
dB g

g
M . (13) 

Things to note: 

(i) at frequencies  /1 , )(log20)( 10 sdB gM  . 

(ii) at frequency  /1 , dBggM ssdB 3)(log20)2(log10)(log20)( 101010   

(iii) at a frequency  /11  , )(log20)(log20)( 110101   sdB gM  



11 

 

       at a frequency 12 10  , 

dBM

g

g

gM

dB

s

s

sdB

20)(

)10(log20)(log20)(log20

)10(log20)(log20

)(log20)(log20)(

1

1011010

11010

210102

















 

In words, the FRF is flat at frequencies much lower than the frequency /1 , and drops at a rate of 20dB per decade 

increase at frequencies much higher than the frequency /1 . Finally, at the frequency /1 , the magnitude has dropped 

3dB relative to its low frequency magnitude. The frequency /1  is called the system break frequency, since it is at this 

frequency that the zero-slope low frequency behavior begins to transition to the high frequency slope of 20dB/decade. 

Now, to make this first order system function as a low-pass filter it is only necessary to set 1sg . Acting as a filter, the 

break frequency is called the filter cut-off frequency. Suppose that we desire a cut-off frequency .10 Hzfco  Then 

sec/20 radco   , and the filter time constant is .sec016.020/1/1   co  For this filter: 
1016.

1
)(




s
sH  

we can plot the FRF using two Matlab commands. First, we define the system: ‘sys = tf(1,[.016 1])’. Then we type 

‘bode(sys)’. 

The result is given below. 
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NEW MATERIAL 11/13/19 

Application to the Von Karman Wind Model 

We are now in a position to address the Von Karman wind model. From Matlab we have: 

 

For simplicity, we will express the vertical wind velocity psd as: 

                          

2

2 2
2 2

11/6 11/16
2 2

1.3398 81 1 ( )
3 3( )

1.339 1 ( )1.339
1

g

g

w

w w w
w

w

L

L V

V L

V

 
  


  



 
  

   
      
       

. 

We will now compute 

0

( )
gw d 



 . To this end, let x  . Then (1/ )d dx  , so that 

                                                        

2
2

2 11/6

0 0

8
1

3( )
1.339 (1 )g

w
w

x

d dx
x


 



  

 
  . 

From the Matlab commands: f=@(x)(1+(8/3)*x.^2)./(1+x.^2).^(11/6);    Int=integral(f,0,inf) = 4.2065, we have 

 

2
2

0

( ) (4.2065)
1.339g

w
w wd


  





   . Hence, we can conclude that ( )
gw  is a 1-sided psd, and that the total power is 2

w . 

Recall that the Fourier transform theorem states that 2

0

1
( )

2 gw wd  




  . Hence, we have a problem; namely the 

1/ 2 that is absent in the integral we computed above. Let’s write 

2

0

( )
2gw w

d
 





  . The units of 
2

d


are cycles per second (i.e. Hz). Hence, the units of ( )

gw  must be power per Hz; 

even though the units of  are radians per second.  

 

If you’re confused, know that you’re in good company. In fact, in Grover Brown’s book on the subject, he devotes a full 

paragraph to that “pesky 2 factor’. And in the DOD Interface Standard (MIL-STD-1797A) discussed in class, it is noted on 

p.820: “Finally, when using the more complex models it seems nearly impossible to formulate a program without an error involving a 

factor of 2 or pi. The lesson here is to measure the statistics of the output of the disturbance model before starting piloted evaluations.” 

 

So, in fact, the above computed integral was not 2

0

( )
gw wd  



  . Rather, it was 2

0

( )
2gw w

d
 





  . In words, it was 

integration in Hz; not in radians per second. It would have been clearer to write 2

0

(2 )
gw wf df 



  . However, most often 
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we are given ( )
gw  , not (2 )

gw f . And there is good reason for being given ( )
gw  . For, if one has 

2( ) 2 | ( ) |
gw G i    [The factor of 2 is due to the fact that this is a 1-sided pdf.], then one can readily recover ( )G i  that 

is the FRF associated with the transfer function ( )G s .  

 

So, we can make the following conclusions about 

2

2

2

11/6
2

1.3398
1

3
( )

1.339
1

g

g

w

w w
w

w

L

L V

V L

V









 
  

  
  
       

: 

(C1) It is the 1-sided pdf. Hence, the 2-sided psd is ( ) (1/ 2) ( )
g gw w    .  

 

(C2) The factor (1/ 2 ) has been incorporated in ( )
gw  . 

 

These conclusions make it difficult to recover ( )G s directly from ( )
gw  . For, in fact: 

 
2( ) (2)(1/ 2 ) | ( ) |

gw G i    . Equivalently, 2| ( ) | ( )
gwG i    . In particular: 

 

                                           

2

2

2
2

11/6
2

1.3398
1

3
( ) | ( ) |

1.339
1

g

w

w w
w

w

L

L V
G i

V L

V




  



 
  

   
  
  
   

. 

 

In order to readily recover ( )G s , we will make the approximation. 

 

                                                        

2

2

2
2

2

1.3398
1

3
| ( ) |

1.339
1

w

w w

w

L

L V
G i

V L

V








 
  

  
  
  
   

2
c  

 

The first order of business is to find the value of c so that 2 21
| ( ) |

2
wG i d  







 .  

As before, write:                

2

2 2
2 2

2
2 2

1.3398 81 1 ( )
3 3

1.339 1 ( )1.339
1 g

w

w w w

w

L

L V

V L

V

 
  




 
  

  
      
       

2
c c

. 

Again, , let x  . Then (1/ )d dx  , so that 

2 2
2 2

2

2 2
2 2

0

8 8
1 ( ) 1

21 3 3

2 1.339 1.339(2 )1 ( ) 1

w w
w

x

d dx
x


  

 
 

 



 

 
       

 c c  

Then, from: f=@(x)(1+(8/3)*x.^2)./(1+x.^2).^2; Int=integral(f,0,inf) = 2.8798 

mailto:f=@(x)(1+(8/3)*x.%5E2)./(1+x.%5E2).%5E2
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We have: 
2

22
(2.8798)

1.339(2 )

w
w





c , so that c = 1.4607 . Hence, 

 

2

2 2
2

2 2

2 2

1.3398 81 1 ( )
1.46073 3| ( ) | 1.4607
1.339 11.339

1 g

w

w w
w

w

L

L V
G i

V L

V

 


  




 
  

     
     

        

2 2

. 

It should be clear that the numerator is 2 )(1 8 /
8

1 ( ) ((1 8 / 33
3

) ii    . 

What may not be so clear is that the denominator is:   222 21 [(1 )(1 )] (( )1 ) 1i i i i           





2

. 

Hence, we find that:               2

2

1.4607 1 ( 8 / 3 )
( )

1.339 (1 )
w

s
G s

s


 







, where 

1.339 wL

V
  . 

 

For comparison to Matlab’s shaping filter, write this as: 
2

1 ( 8 / 3 )
( ) 1.4607

(1 )

w
w

L s
G s

V s






 
    

. 

The Matlab expression is: 

                                                       

The difference in the polynomials is because Matlab did a series expansion. To account for the power 11/6. We simply 

assumed the power was 2. The most important difference is in the static gains: 

Ours is (0) 1.4607 w
w

L
G

V
 , while Matlab’s is 

1 1
(0) 1.4607 0.4668 (0)

1.4607

w w
Matlab w w w

L L
G G

V V
  

 
   . 

In words, while Matlab specifies a value for 
w , the shaping filter actually uses the value 0.4668 w . This can have 

serious repercussions in simulator testing. If, for example, it is specified that the turbulence standard deviation 

should be 20 fps, in fact, the actual turbulence will have a standard deviation of less than 10 fps!  

 

END OF NEW MATERIAL 11/13/19 

 

Notice that we can write 
_____________

2 )](1[)](1[)](1[)](1[)(1  iiii  , where the bar denotes the complex 

conjugate. If we let is  , we then have 
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 

22
_____

2

__________

2222

2

)()()(
)1(

1

)1(

1

)(1
)( uu

u
w sHsHsH

ssg
































  

where we have defined the “transfer function  

                                                      
2)1(

1
)(





s
sH


 

For any time, t, the white noise variance is ])([ 22 tuEu  , where (*)E denotes the expected value. Recall from 

Definition 3 above that )(]|)([| 2  wiWE 


. Now, write 

                                                         )()()( sUsHsW  . 

In words, we are representing the wind, )(tw , as the output of the system )(sH , with “input” )(tu . 

We then have  

222222 |)(|]|)([||)(|]|)()([|]|)([|)( uw iHiUEiHiUiHEiWE    

Conclusion: We can simulate  Von Karman wind data by running white noise with variance 
2

u  through the 

transfer function H(s). 
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Table of Laplace and Z Transforms 
(Please email me if you find an error) Using this table for Z Transforms with Discrete Indices 

Shortened 2-page pdf of Laplace Transforms and Properties 

Entry 

# 
Laplace Domain       Time Domain 

Z Domain 

(t=kT) 

1    

2 

 
 

 

3 

 
 

 

4 

 
 

 

5   
 

 

6 

 
 

 

7 

  
 

8 

 
 

 

9 

  

  

10 

  

  

11 

 
 

  

12 

 
 

 

13 

 
 

 

14 

 
 

 

mailto:erik_cheever@swarthmore.edu?subject=Laplace/Z%20Function%20Table
http://www.swarthmore.edu/NatSci/echeeve1/Ref/LPSA/LaplaceZTable/LaplaceZFuncTable.html#Using_this_table_for_Z_Transforms_with_discrete_indices_
http://www.swarthmore.edu/NatSci/echeeve1/Ref/LPSA/LaplaceZTable/Common%20Laplace%20Transform%20Pairs.pdf
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