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Abstract 

Atmospheric wind turbulence models, such as the von Karmon and Dryden models, have been used by scientists and 

engineers for many decades. Throughout this time there has been more than occasional confusion in relation to the 

scale factors associated with the power spectral density (psd) expression for a given model. The purpose of this note 

is to clear up any such confusion. In doing so, we show that the psd expressions for the above models are incorrect. 

Specifically, we show that they include a factor of 1/ that should not be included. By erroneously including this 

factor, a desired turbulence standard deviation will be low by a factor 1/ 0.564  . Lack of awareness of this can 

lead to a 56% underestimation of flight vehicle responses in related simulations. 

 

Nomenclature 

( )x t  wide continuous-time sense stationary random process, with the units of t are seconds. 

( )R   autocorrelation function associated with ( )x t .  

2  variance (i.e. total power) of the process ( )x t . 

( )S   power spectral density associated with ( )x t , where the units of ω are radians per second. 

( )G s  shaping filter transfer function. 

( )G i  shaping filter frequency response function. 

V  forward velocity of a flight vehicle. 

uL  spatial correlation length of the frontal wind turbulence profile. 
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I. Introduction 

The use of shaping filters to simulate atmospheric turbulence has been ongoing for many decades. Two models have 

been particularly popular in relation to flight vehicles. They include the von Karmon and the Dryden models. These 

models are given in the current Matlab aero-block library [1]. They have been included in flight vehicle dynamics 

textbooks, such as [2] and [3]. As popular as these models are, and have been for many decades, there continues to 

be elements of confusion in relation to them. In the military documentation [4], it is noted in APPENDIX A (p.694): 

“Finally, when using the more complex models it seems nearly impossible to formulate a program without 

an error involving a factor of 2 or π. The lesson here is to measure the statistics of the output of the 

disturbance model before starting piloted evaluations.” 

In [5] the authors devote an entire section (3.8 on pp.118-120) to what they call “The Pesky 2  Problem”, in order 

to clear up confusion the reader might have.  

In this work we hope to alleviate such confusion. It is confusion that is, to a degree, justified, in view of the fact that, 

as we will now proceed to show, those models are incorrect.  

 

II. The autocorrelation function and the Power Spectral Density 

Let ( )x t be a regular wide sense stationary (wss) random process with autocorrelation function 

( ) [ ( ) ( )]R E x t x t   . The associated psd is given by:  

                                                              ( ) ( ) iS R e d  






  . (2.1) 

From the theory of Fourier transform pairs, (specifically,  the Wiener-Kinchine Theorem [5]), we then have 

                                                           
1

( ) ( )
2

iR S e d  






  . (2.2) 

We will assume that [ ( )] 0E x t  . Then 2(0)R  , so that (2.2) gives 

                                                              2 1
( )

2
S d  







  . (2.3) 
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Typically, 
2 is referred to as the power of the process ( )x t . What (2.3) shows is that this power can be computed 

by integrating the psd.  

It is at this point that one must take care to appreciate the units of ( )S  . To this end, write (2.3) as 

                                                   2 ( ) (2 )
2

d
S S f df


  



 

 

    (2.4) 

where / 2f   is the circular frequency associated with the radial frequency ω. In this work we will assume that 

the units of  are radians/second. It follows that the units of / 2f   are cycles/second; units that are commonly 

referred to as Hertz (Hz). Hence, from (2.4), it is clear that ( ) (2 )S S f   must be in units of Hz. 

As noted above, this can be a source of confusion. After all, the psd is usually written as ( )S  ; not as (2 )S f . So it 

is reasonable to assume that ( )S  is the power per rad/sec. It is of central importance in this work. Hence, we will 

refer to it as: 

FACT 1: The units of the psd ( )S  are power/Hz. 

A second potential source of confusion is related to the fact that ( )S  is the 2-sided psd; that is, it is defined over 

( )    . However, since ( ) ( )S S   , one can define the 1-sided psd 
1( ) 2 ( )S S  for 0  . It should 

be noted that 
1(0) (0)S S . However, if we assume that ( )S  is continuous, as we will here, then (0)S contributes 

nothing to 2 . Hence, we need only consider 
1( ) 2 ( )S S  . The 1-sided psd is appealing in that the power is 

placed at only positive frequencies. Some people have an aversion to dealing with negative frequencies. The 

distinction between the 1-sided and 2-sided psds is also central to this work, and so will be referred to as: 

FACT 2: The 1-sided psd is
1( ) 2 ( )S S  . 

 

 

III. Correction of the Standard Wind Turbulence Models 

In this section we will address only one of the many models related to von Karmon and Dryden turbulence provided 

in Matlab, and given in many books on the subject. It suffices to address only one model, as all the models have the 

same fault. The Dryden frontal wind turbulence model for an air vehicle traveling at a nominal speed V is given by 

(MIL-F-8785C) [1]: 

                                                             2

2

2 1
( )

1

u
u u

u

L

V
L

V

 
 

 
   

   
  
 

. (3.1) 
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We will now show that (3.1) is incorrect. Specifically, the factor 1/ should not be included in (3.1). To this end, 

we will compute: 

                                                                        

0

( )u d 


 . (3.2) 

Letting
ux L

V


 in (3.1), and noting that 

u

V
d dx

L
  in (3.1) allows (3.2) to be expressed as: 

                                 2 2 2

2 0
0 0

2 1 2
( ) tan

1

x

u u u ux
d dx

x
    

 

 




   
      

   
  .  (3.3) 

 

At this point one might argue that (3.2) is correct, since the total power of the psd is, indeed, 2 . However, recall 

that (3.2) does not include the factor 1/ 2 as was needed in (2.3). Also, as is clear by the integration limits in (3.2), 

the integrand must have also included a factor of 2 (i.e. it is a 1-sided psd). Multiplying by 2, and erroneously 

dividing ( )S   [it is already in units of Hz] by 2 amounts to a division by π.  It follows that the true 2-sided psd is: 

                                                            2

2

2 1
( )

1

u
u u

u

L
S

V
L

V

 


 
  

   
  
 

. (3.4) 

To verify (3.4) write: 

       
2 2

2 2

2 2 2

0 0

2 2 21 1 1 1 1
( )

2 2 1
1 1

u u u u
u u u

u u

L L
S d d d dx

V V x
L L

V V

 
     

    

   

 

   
      

      
    
   

   
.  (3.5) 

 

 

IV. Implications in Relation to the Shaping Filter 

Assuming that the random process ( )x t is simulated by running continuous-time unit-intensity white 

noise ( )w t through a filter whose transfer function is ( )G s , it follows that 

                                                                
2

( ) ( )S G i  . (4.1) 

For a psd of the form 



5 

 

                                                      
2

2

2 2
( ) ( )

br

c
S G i 

 
 


 (4.2) 

where 
br refers to the -3dB break frequency, the filter transfer function is: 

                                                             ( )
br

c
G s

s 



. (4.3) 

From any table of Fourier transform pairs, one finds that the autocorrelation function associated with (4.2) is: 

                                                         
2

( )
2

br

br

c
R e

 




 
  
 

. (4.4) 

In particular: 

                                                      
2

2 (0)
2 br

c
R



 
   

 

. (4.5) 

Comparing (4.2) to (3.4) with 2
u

u

V
c

L
 and 

br

u

V

L
  , and substituting these into the right side of (4.5) gives the 

left side. Hence, this is yet another proof of (3.4).  

 

It also gives the specific expression for the shaping filter (4.3): 

                                                           

2

( )

u

u

u

V

L
G s

V
s

L







. (4.6) 

Clearly, (4.6) may be expressed as: 

                                                           

2

( )

1

u
u

u

L

V
G s

L
s

V







. (4.7) 

The form (4.7) is nearly the same as the shaping filter given in Matlab [1]; namely 

                                                          

2

( )

1

u
u

M
u

L

V
G s

L
s

V








. (4.8) 
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From (4.7) and (4.8) we have: 

                                                 

21

1
( ) ( )

1

u
u

M
u

L

V
G s G s

L
s

V






 
 
  



. (4.9) 

Hence, we see that for a desired standard deviation 
u , the Matlab shaping filter actually uses /u  .  

 

V. A Numerical Simulation 

Here, we will assume, for convenience, that 1u  and that 1br

u

V

L
   . Then (4.6) is 

2
( )

1
G s

s



. We will 

assume a sampling period 0.01sec.  The white noise is obtained by sampling from a normal distribution with 

mean zero and standard deviation 1/  . Using this as the input to the filter resulted in the following plots in Figure 

1. The Matlab code use for obtain the simulations is included in the Appendix. 

 

The plot in Fig. 1(a) shows a single simulation. The plot in Fig. 1(b) shows the simulation-based probability density 

function (pdf) of the sample standard deviation ˆ
u ,  based on 104 simulations.  

Both plots provide support for the correctness of the shaping filter (4.7). The support in Fig. 7(a) is anecdotal. The 

range of the turbulence falls within the 3 range. The support provided in Fig. 7(b) is more quantitative. The mean 

ˆ 0.985
u

  is within 2% of the theoretical standard deviation. The small difference is due to the fact that the 

continuous-time process was sampled. What is, perhaps, more interesting is the standard deviation 
ˆ 0.070
u

  . 

From this, one could expect that any single simulation would have a sample standard deviation that will likely fall 

within the range  [0.8,1.2] . Even so, one should not be overly surprised, were it to occasionally fall outside of this 

range. 
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 (a) (b) 

Fig. 1 (a) A single simulation with ˆ 0.923u  . (b) The pdf for ˆ
u based on 104 simulations. Its mean is 

ˆ 0.985
u

  , and its standard deviation is 
ˆ 0.070
u

  . 

 

VI. Summary and Conclusions 

This work addressed the correctness of a class of turbulence simulation models that have been in use for many 

decades. This class includes the von Karmon and Dryden models for simulating various turbulence profiles. It was 

noted that those models have been used in many textbooks, as well as in military documentation and in the most 

recent version of Matlab. It was then shown that those psd models are incorrect. They are off by a  factor of 1/ . 

This error was attributed to (i) incorporating a 1-sided psd, and (ii) incorrectly including the factor 1/ 2 into the psd 

whose units were already Hz. Consequently, the associated shaping filters are off by a factor of 1/  .  

The Dryden frontal wind turbulence model was then used to demonstrate their incorrectness. Finally, a numerical 

example was provided in order to not only add further validation to the correct psd (3.4) , but also to quantify the 

potential range of variability of the sample standard deviation for any given simulation. Without such quantification, 

one might be tempted to doubt the correctness of (3.4) (or any of the other models on Matlab [1]), after running a 

single simulation. 

In conclusion, it is our hope that this work will help to clear up any future confusion in relation to factors such as 2 

and  , encountered when using these models. Furthermore, it is hoped that future textbooks, military 

documentation, journal articles, and versions of Matlab will make appropriate corrections. For, it could be extremely 

troublesome to realize that a simulator validation of a given flight vehicle utilized a turbulence power that was a 

factor of  smaller than was specified.  
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Appendix  Matlab code used in the Example in Section 5 

%TechNoteExample.m 

G=tf(sqrt(2),[1 1]); 

fbw=1/(2*pi); 

del=0.01; 

ntot=15000; 

n=10000; 

nsim=10^4; 

STDu=zeros(1,nsim); 

for k=1:nsim 

   w=normrnd(0,1/sqrt(del),1,ntot); 

   t=0:del:(ntot-1)*del; 

   u=lsim(G,w,t); 

   u=u(ntot-n+1:ntot); 

   STDu(k)=std(u); 

end 

t=0:del:(n-1)*del; 

figure(1) 

histogram(STDu,'Normalization','pdf') 

title(['Simulation-Based PDF for stdu (nsim= ',num2str(nsim),' ).']) 

grid 

muSTDu=mean(STDu); 

stdSTDu=std(STDu); 

[muSTDu stdSTDu] 

figure(2) 

plot(t,u) 

title('Simulation of Dryden Turbulence u(t)') 

xlabel('Time (sec)') 

ylabel('u') 

grid 

STDu(nsim) 


