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Homework 6  AERE355  Fall 2019  Due 11/20 (W)     SOLUTION 

 PROBLEM 1(30pts) The transfer function of a certain first order Low Pass Filter (LPF) is 
1)/(

1
)(




BWs
sH


where the 

frequency range ],0[ BW is called the filter dB3 bandwidth (BW). 

(a)(8pts) The dc (i.e. very low frequency) gain 1)0( iH gives   dBiH 0)1log(20)0(log20  . Use the same 

computation to determine why the interval ],0[ BW is called the dB3 bandwidth.  

Solution: 
i

iH BW
11

1
)(


  gives 2/1

22
2

11

1
)( 


BWiH  . Hence:     dBiH BW 01.3)2log(102log20)(log20 2/1   . 

The interval ],0[ BW is the range of frequencies such that the magnitude of )( iH is with 3dB of its static gain. 

 

(b)(6pts) The ‘bode(H)’ command was used to obtain the Frequency 

Response Function (FRF) shown at right for rad/s100BW . For an input 

)1000sin()( ttu  use the information in Figure 1(b) to estimate the values of 

M and   expression for the steady state output )1000sin()(  tMty . 

Solution: 

1.010)1000(20)1000( 1  MdBM dB
.     

 rado 45.183)1000(   

                                                                   

 

 

 

 Figure 1(b) FRF for )(sH with  

(c)(10pts) The term low pass filter is due to the fact that when an input is 

supplied to )(sH , the output is a filtered version of the input. Specifically, 

lower frequency (meandering) components are allowed to pass freely, while 

higher frequency (rapidly jittering) components are suppressed. To visualize 

this, use the ‘lsim’ command to complete the code at 1(c) in relation to a 

measured white noise input )(tu . This is an array of numbers randomly 

sampled from a normal distribution having mean 0 and standard deviation 

1.0. (i) Overlay plots of the input and output, and (ii) discuss how they 

differ.  

Solution: [See code @ 1(c).] 

 

It is clear that the output is far less jittery than the input.    Figure 1(c) Plots of input and output. 

 

(d)(6pts) At frequencies 
BW  you should see that your FRF in (b) has the following properties: (P1) the magnitude 

has a slope of 20 dB/decade; (P2) the phase is ~-90o. Using 
1)/(

1
)(




BWs
sH


, prove this for arbitrary

BW  . 

Solution: 
/ 1

/ 1

1 1
( )

( / ) 1 ( / ) ( / )BW

BW
BW BW BW

i
H i

i i 

 


     




  


. Hence, ( ) 90o    .  

Also, 1
( )

( / )BW

M 
 

  and 1 1
(10 ) ( )

(10 / ) 10BW

M M 
 

  , so that  
1

(10 ) 20log ( ) 20log ( ) 20
10

M dB M M dB dB  
 

   
 

. 

Hence, the magnitude is dropping at a rate of 20dB/decade. 
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PROBLEM 2(35pts) The dynamics of a plane’s short period response to wind can be approximated by: 

                             

2
0 0

0 0

/ 1 / 0

/ /

g

q gq

Z u wZ u

M M Z u M M qM u Mq q

 

    

         
                    

. (2.1) 

 Consider the Boeing 747 @ M=.9. 

(a)(10pts) Obtain the two transfer functions ( ) ( )
gwH s and ( ) ( )

g

q

wH s by forming the (A,B,C,D) matrices and then using the 

ss2tf command. 

Solution:  [See code @ 2(a).]      ( )

2

.000452 .00210
( )

.9331 1.775gw

s
H s

s s

 


 
     and     ( )

2

.00186
( )

.9331 1.775g

q

w

s
H s

s s


 
. 

 

 

(b)(5pts) If you convert ( ) ( )
gwH s  to have units [degrees/fps] you should have 

( )

2

0.026 0.12
( )

0.933 1.775gw

s
H s

s s

 


 
. Use the Matlab ‘bode’ command to obtain a 

plot of the corresponding FRF. 

Solution: [See code @ 2(b).] 

 

       Figure 2(b) Plot of )()(  iH
gw . 

 

(c)(5pts) In (6.35) on p.220 the authors describe a sharp edge gust as 

( ) ( )g g sw t A u t . Suppose that the plane encounters such a gust with 

amplitude of 50 mph (i.e. 73.33 fps). Use the Matlab command ‘step’ to 

obtain a plot of the response ( )t (in degrees) to this input. 

Solution: [See code @ 2(c).] 

 

 

 Figure 2(c) Plot of ( )t . 

 

(d)(5pts) Since the Laplace transform of ( ) ( )g g sw t A u t is ( ) /g gw s A s , the 

Fourier transform is ( ) ( / )g gw i i A   . It follows that 

2 2( ) | ( ) | ( / )
gw g gw i A  



   describes the distribution of the gust power as a 

function of frequency. In relation to the gust in (c), obtain a plot of 

10( ) 10log ( )
g gw dB w    over the range of frequencies in Figure 2(b). Use 

the ‘semilogx’ command in relation to your frequency axis so that it has the 

same range as that in Figure 2(b). 

Solution: [See code @ 2(d).] 

 Figure 2(d) Plot of ( )
gw dB . 



3 

 

(e)(5pts) From Figure 2(b) ( )

2

0.026( ) 0.12
( )

0.933( ) 1.775gw

i
H i

i

 


 



  

. Hence, the 

spectral power associated with the response ( )t is: 

( ) 2( ) | | ( )
g gw wH 

     . Plot this in dB over the range of frequencies in 

Figure 2(b). 

Solution: [See code @ 2(e).] 

 

 

 

 Figure 2(e) Plot of ( )dB  . 

 

(f)(5pts) The total power associated with ( )t is 2

0

( )PWR t dt


  . It can also be computed as 
1

( )
2

PWR d  






  . 

This equivalence is known as Parseval’s Theorem. Show that the total power is infinite. 

Solution: 

From Figure 2(b) we see that ( ) 5ot  for 10sect  . Hence, clearly 2

0

( )PWR t dt


   . 
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PROBLEM 3(35pts) In this problem we consider von Karmon turbulence ( )gw t . From p.228 of Nelson, the vertical 

wind turbulence spatial power spectral density (psd) is almost [i.e. (6.54) is incorrect] given by: 

   

2

2

11/6
2

8
1 (1.339 )

3( )
1 (1.339 )

g

w

w w w

w

L

L
L


 

  
   

.      (6.54’)       ;    

2 2

0
2

11/6
2 2

0 0

8
1 (1.339 / )

3( )
1 (1.339 / )

g

w
w

w w

w

L u
L

u L u


 



 
   

    

.      (3.1) 

Equation (3.1), as well as the 
0u factor, follows from the fact that 

0/ u  [see (6.55)] and that 
0/d d u . 

The total power of the random process ( )gw t is its variance: 2 1
( )

2 gw w d  






  . 

(a)(5pts) Use the change of variable theorem and the command ‘integral’ to prove that this is the case. Specifically, show 

that 

2 2

0

11/6
2 2

0 0

8
1 (1.339 / )

1 3 1
2 1 (1.339 / )

w
w

w

L u
L

d
u L u




 





 
 

    
 . 

Solution: [See code @ 3(a).] Let 
0(1.339 / )wx L u  . Then  

0/ (1.339 / )wd dx L u  , so that using the change of variable 

theorem, the above integral is: 
2 2

2 11/6 2 11/6

0

1 1 (8 / 3) 1 1 (8 / 3) 1
(8.4131) 1

2 (1.339) (1 ) (1.339) (1 ) 2 (1.339)

x x
dx dx

x x  

 



 
  

   . 

 (b)(5pts) For convenience, we will approximate (3.1) as

2 2

0
2

2
2 2

0 0

8
1 (1.339 / )

3( ) (1.4607)
1 (1.339 / )

g g

w
w

w w

w

L u
L

u L u


 



 
   

    

. 

 Show that the number 1.4607 is needed so that 2 1
( )

2 gw w d  






  . 

Solution: [See code @ 3(b).] 
2

2 2

1 (8 / 3)
5.7596

(1 )

x
dx

x








 , so that 1
(5.7596) 0.6846

2 (1.339)
 . In order for this to equal 1.0 we 

need to multiply it by 1/ 0.6846 1.4607 . 

 

 (c)(5pts) In order to simulate turbulence, we need to obtain the shaping filter, ( )G s , such that 
22( ) ( )

g gw w G i    . 

Notice that from (3.1) 
2

( )G i  has the form 
2

2 2

2
2

1 ( )
| ( ) |

1 ( )

b
G i a

c









  

. For this form, show that 
2

1
( )

(1 )

bs
G s a

cs





. 

Solution:    
2 2 2 2

2 2 2 2 2

2 2 2 2 2 2 2

|1 | 1 ( ) 1 ( ) 1 ( )
| ( ) |

| (1 ) | (1 ) (1 ) [(1 )(1 )] [1 ( ) ]

ib b b b
G i a a a a

ic ic ic ic ic c

   


     

   
   

     
. 

 

 

(d)(10pts) For 325wL ft and fpsu 8710  it can be shown from  (c) that 

2

0.602 0.738
( )

0.245 0.999 1

s
G s

s s




 
. For wind gust variance 2 220

gw  arrive at a 

plot of 
22( ) ( )

g gw w G i    . 

Solution: [See code @ 3(d).] 

 

        Figure 3(d) Plot of 
22( ) ( )

g gw w G i    . 
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(e)(10pts) For the shaping filter and variance given in (d) use the ‘lsim’ 

command to simulate turbulence ( )gw t for 0: :10t   , where the 

sampling period is /100  . Then, to validate your simulation note 

whether it remains in the 3
gw . [Note: The input white noise ( )u t to the 

filter  [[obtained using the normrnd command] must have standard 

deviation 1/u   .] 

Solution: [See code @ 3(e).] 

From the plot it is clear that the simulation remains in the 

3 60
gw   range. 

 

     Figure 3(b) von Karmon turbulence simulation. 
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Appendix   Matlab Code 
%PROGRAM NAME: hw6.m 

%PROBLEM 1: 

%(b): 

wBW=100;  

s=tf('s'); 

H=1/((s/wBW) + 1); 

figure(10) 

bode(H) 

title('FRF for H with w_B_W=100 r/s') 

grid 

%-------------- 

%(c): 

rng('shuffle') %This will ensure that no two students have the same numbers. 

n=200; 

u=normrnd(0,1,n,1); 

dt=0.002; 

t=0:n-1; t=dt*t'; 

y=lsim(H,u,t); 

figure(11) 

plot(t,[u,y]) 

title('Plots of Input and Output') 

xlabel('Time (sec.)') 

grid 

%==================================================== 

%PROBLEM 2 

%(a): 

% Plane Information: 

S=5500; b=195.68; cbar=27.31; W=636600; Iy=33.1e6; 

CLa=5.5; CD=0.042; Cma=-1.6; Cmadot=-9.0; Cmq=-25.0; 

%Altitude Information: 

rho=5.8727e-4; a=968.08; 

u0=0.9*a; Q=0.5*rho*u0^2; m=W/32.17; 

%-------------- 

Za=-(CLa+CD)*Q*S/m; 

Ma=Cma*Q*S*cbar/Iy; 

Madot=Cmadot*Q*S*cbar^2/(2*u0*Iy); 

Mq=Cmq*Q*S*cbar^2/(2*u0*Iy); 

% Compute (A,Bw,C,D) Matrices: 

A=[Za/u0 , 1 ; Ma+Madot*Za/u0 ,Madot+Mq]; 

B=[-Za/u0^2,0;-Ma/u0,-Mq]; 

C=eye(2); D=zeros(2,2); 

%Transfer functions related to wg: 

[Hn,Hd]=ss2tf(A,B,C,D,1); %Transfer functions re: wg; 

Ha=tf(Hn(1,:),Hd) 

Hq=tf(Hn(2,:),Hd) 

%(b): 

Had=(180/pi)*Ha 

figure(20) 

bode(Had) 

title('Bode Plot of H_a(s)') 

grid 

%(c): 

Ag=73.33; 

figure(21) 

step(Ag*Had) 

title('a(t) Response to w(t)=73.33u_s(t)') 

ylabel('Degrees') 

grid 

%d): 

wvec=logspace(-1,2,1000); 

PHIwg=(Ag*wvec.^-1).^2; 

PHIwgdB=10*log10(PHIwg); 

figure(22) 

semilogx(wvec,PHIwgdB) 

title('Plot of PHIwg(w)') 

xlabel('Frequency (rad/sec)') 

ylabel('dB') 
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grid 

%(e): 

Haw=(0.12+1i*.026*wvec)./(1.775-wvec.^2+1i*.933*wvec); 

Haw2=abs(Haw).^2; 

PHIa=Haw2.*PHIwg; 

PHIadB=10*log10(PHIa); 

figure(23) 

semilogx(wvec,PHIadB) 

title('Plot of PHIa(w)') 

xlabel('Frequency (rad/sec)') 

ylabel('dB') 

grid 

%=========================================================== 

%PROBLEM 3 

%(a): 

f=@(x) (1+(8/3)*x.^2)./(1+x.^2).^(11/6); 

Qa=2*integral(f,0,inf); 

%(b): 

f=@(x) (1+(8/3)*x.^2)./(1+x.^2).^2; 

Qb=2*integral(f,0,inf); 

cb=Qa/Qb; %=1.4607 

%(c): 

Lw=325; STDwg=20; VARwg=STDwg^2; 

a=sqrt(cb*Lw/u0); c=1.339*Lw/u0; b=sqrt(8/3)*c; 

G=tf(a*[b 1],[c^2 2*c 1]) 

s=tf('s'); 

G=a*(1+b*s)/(1+c*s)^2; 

[n,d]=tfdata(G,'v'); 

f=@(w) abs((n(2)*1i*w+n(3))./(d(1)*(1i*w).^2+d(2)*1i*w+d(3))).^2; 

Q=2*integral(f,0,inf)/(2*pi); %Check that Q=1.0 

w=logspace(-1,2,1000); 

PHIwg=VARwg*abs((n(2)*1i*w+n(3))./(d(1)*(1i*w).^2+d(2)*1i*w+d(3))).^2; 

PHIwgdB=10*log10(PHIwg); 

figure(30) 

semilogx(w,PHIwgdB) 

title(['Turbulence PSD for STDwg = ',num2str(STDwg),' fps']) 

xlabel('Frequency (r/s)') 

ylabel('dB') 

grid 

%(e): 

del=pi/100; 

t=0:del:10; 

nt=length(t); 

u=normrnd(0,1/sqrt(del),1,nt); 

wgsim=lsim(STDwg*G,u,t); 

figure(31) 

plot(t,wgsim) 

title('Turbulence Simulation') 

xlabel('Time (sec)') 

ylabel('Speed (fps)') 

grid 

 


