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Homework 5   AERE355   Fall 2019   Due 11/11(MON)                          SOLUTION 

Problem 1(40pts) This problem concerns pure yaw. From equations (5.22) and (5.23) on p.189 we have (for 0
N ): 

                                                                  rr r
NNN     . (1.1) 

(a)(3pts) Give the condition for weathercock (static) stability, including a reference to the appropriate page in Nelson. 

 

Answer: The condition is given on p.74: 0
nC . 

 

(b)(8pts) Suppose that the plane has weathercock stability. (i) Identify a second condition related to (1.1) that must hold 

for (1.1) to be dynamically strictly stable. Then (ii) use the appropriate table(s) to ultimately arrive at the conclusion that 

this second condition does, indeed, hold. You should find that one parameter in particular requires very careful scrutiny.  

 

Answer: (i) (1.1) will be strictly stable when, in addition to 0
nC , we also have 0

rnC . (ii) From Table 3.4 we have: 
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, are greater than zero. In relation to 
v
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, on p.76 

we have 
vvLvvvv SQClYlN

v

)( 


 . From Figures 1.10 and 2.31 we have 0vN . Since the side force 0vY , the book 

contains an error by omitting the minus sign in the leftmost equality in (2.76). In Figure 2.31 one might reasonably 

assume that 0vL . However, recall that vertical lift that is associated with a negative force, is referred to as positive lift. 

The same applies here. To be exact, 
vLvvvv

v

CYYL 


 )cos()cos( is positive lift. Hence, 0
v
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

. 

 This condition is guaranteed to hold.  An alternative argument: While 
v

LC


is not given in any of the plane tables, 
yC is 

given. In Table 3.5 we have 
 yv CmQSYY )/(



. Hence, 0vY  requires that 0
yC . This holds for all planes included 

in Appendix B.  

 

 (c)(12pts) (i)Obtain the transfer function associated with (1.1). Then, from it obtain (ii) the expressions for the system 

dynamic parameters ),,( n
and (iii) the system static gain 

sg . [This assumes the system is underdamped.] 

Solution: (i) )()()(][ 2 sNsNsNsNNNL rrrr rr
     . So: 
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(ii) 
 Nn   , 

 NNN rrn 2/2  , and 
rrn NN /22/    (iii)
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
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(d)(4pts) (i) Give the definition of the rudder control effectiveness (along with the page in Nelson where it is defined). 

Then (ii) give the numerical value of this quantity for the NAVION plane. 

 

Answer: The rudder control effectiveness is given on p.78 as 
r

nC


 . For the NAVION it is 072.0
r

nC


. 

 

(e)(5pts) Use the appropriate parameter in (c) to compute the required value of 
r to achieve a steady state sideslip 

o

ss 10 for the NAVION. 

Solution: In the steady state (1.1) becomes 
rss r

NN    . Hence, 
rsrss gNN

r
   )/( . Since 

 nz CIQSbN )/( and 

rr nz CIQSbN
 )/( , we have 014.1071.0/)072.0(/   NNg

rs
. Hence, o9.86 o

sssr g 10)014.1/1()/1(  . 
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(f)(8pts) Verify your answer in (e) by using the Matlab commands  

‘tf’ and ‘step’ to obtain a plot of the step response of (1.1) for the  

NAVION. Also, give the transfer function you computed. 

Solution: [See code @ 1(f).] 

 

The plot verifies (e). 

The transfer function is: H =  4.635  /  (s^2 + 0.7619 s + 4.571) 

 

 

 

 Figure 1(f) Rudder step response for pure yaw. 
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Problem 2(35pts) As noted on p.198 of Nelson: “If we consider the Dutch roll mode to consist primarily of side-slipping 

and yaw, then the perturbation lateral dynamics become: 
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[*I have included the input r , resulting from (5.35).] 

The characteristic polynomial for (5.45) is: 
0

0

0

02 )(
u

NuYNNY
s
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NuY
s

rrr  



 . (5.46) 

(a)(4pts) From (5.22) and (5.23) on p.189 in relation to pure yaw, arrive at the state space model BuAxx  where 

 trrx . [Note: Assume, as Nelson does, that 0
N .] 

Solution:  (5.22) is:    r . (5.23) is: rr r
NNN     . These give: rr r
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(b)(3pts) Give the assumptions needed in relation to (5.45) and in relation to your expression in (a) so that they have 

exactly the same A matrix. 

Solution: The two A matrices will be the same if 0 rYY
. 

 

(c)(3pts) If they have the same A matrices, then clearly they have the same eigenvalues. In this case, verify that they have 

the same characteristic polynomial by comparing (5.46) to the denominator of your transfer function in 1(c). 

Solution:  

(5.46) becomes: NsNs r 2
. The denominator of my transfer function in 1(c) is exactly this polynomial. Verified. 

 

 

(d)(5pts) Nelson’s values 254.0DR  and srDRn /17.2  for the approximate Dutch Roll model (5.45) are given at the 

bottom of p.200. They are given in column 3 below. Use your characteristic polynomials to compute the associated 

numerical values related to the pure yaw model (column 1 below), and to the numerical values that you arrive at in 

relation to (5.45) using the information in Table B.1 (column 2 below). 

Solution: [See code @ 2(c).] 

 pure yaw Your approx. DR 

0
ryC  

Nelson approx. DR 

0
ryC  

Your approx. DR 

522.0
ryC  

  .178 .233 .254 .2354 

n  2.14 2.18 2.17 2.1594 

 

 

(e)(5pts) Even though it is assumed that 0
ryC  (both in Table 5.2 and by its absence in Appendix Table B.1), on p.118 

we have:
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(f)(5pts) Assume that we have ftlv 16 . Use
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(g)(5pts) Assume that 1v . Use (e-f) to show that 26.0
ryC . 
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(h)(5pts) Use (f) to fill in the rightmost column of the table in (d). Then evaluate the influence of ignoring 
ryC in your 

approximate DR model. 

Solution: [See code @ 2(h).] The results are essentially identical. 
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Problem 3(25pts) Consider the state space model (5.35) on p.195 for the lateral dynamics of a plane. This represents a 2-

input/4-output system if we set 44 IC and 24 0D .  

 

(a)(15pts) Arrive at plots of the four responses to each of an impulse rudder input and an impulse aileron input. 

Solution: [See code @ 3(a).] 

 
                                                        Figure 3(a) State impulse responses. 

 

(b)(10pts) Repeat (a) but for Tfinal=10. 

Solution: [See code @ 3(b).] 

 
                                      Figure 3(a) State impulse responses for Tfinal = 10 sec. 
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Matlab Code 
%PROGRAM NAME: hw5.m  10/30/17 

%PROBLEM 1 

%(f) 

%NAVION Values: 

W=2750; Iz=3530; S=184; b=33.4; cbar=5.7; 

g=32.174; m=W/g; 

M=.158; a=1116.4; u0=M*a; 

rho=.002377; Q=0.5*rho*u0^2; 

Cnb=.071; Cnr=-.125; Cndr=-.072; 

c1=Q*S*b/Iz; 

%Transfer Function Coefficients: 

Nb=c1*Cnb; Nr=c1*(.5*b/u0)*Cnr; Ndr=-c1*Cndr; 

H=tf(-Ndr,[1 , -Nr , Nb]); 

dr0=9.86; %Rudder deflection 

figure(10) 

step(dr0*H) 

title(['Sideslip response to dr=',num2str(dr0,3),'^o Step']) 

xlabel('time (sec)') 

ylabel('Degrees') 

grid 

%======================================================= 

%PROBLEM 2 

Cyb=-.564; Cydr=.157; 

c2=Q*S/m; 

Yb=c2*Cyb; Yr=(c2*.5*b/u0)*Cyr; Ydr=c2*Cydr; 

A=[Yb/u0 , -(1-Yr/u0) ; Nb , Nr]; 

B=[Ydr ; Ndr]; 

C=[1 0]; D=0; 

eigs2D=eig(A) 

H=ss(A,B,C,D); 

%----------------------------------- 

% 2(c): 

%***Column 1*** 

wnp=sqrt(Nb); 

zp=-0.5*Nr/wnp; 

[zp wnp] 

%***Column 2*** 

Cyr=0;  

Cyr=0.26 

Cyb=-.564; Cydr=.157; 

c2=Q*S/m; 

Yb=c2*Cyb; Yr=(c2*.5*b/u0)*Cyr; 

wndr=sqrt((Yb*Nr-Nb*Yr+u0*Nb)/u0);%Nelson (5.46) 

zdr=-0.5*(Nr+Yb/u0)/wndr; 

[zdr wndr] 

%---------------------------------- 

%(g): Re-run the above for Cyr=0.522 

%======================================================= 

%PROBLEM 3 

%(a) Construction of the 4D Lateral state space matrices: 

Ix=1048; 

Cyp=0; 

Clb=-.074; Clp=-.41; Cnp=-.0575; Clr=.107; 

Lb=Clb*(Q*S*b/Ix); 

Yp=(c2*0.5*b/u0)*Cyp;  

Np=(c1*0.5*b/u0)*Cnp; 

Lp=Clp*(Q*S*b^2)/(2*Ix*u0); 

Lr=Clr*(Q*S*b^2)/(2*Ix*u0); 

A41=[Yb/u0,Yp/u0,-(1-Yr/u0),g/u0]; 

A42=[Lb,Lp,Lr,0]; 

A43=[Nb,Np,Nr,0]; 

A44=[0,1,0,0]; 

A4=[A41;A42;A43;A44]; 

%---------------------------- 

Cydr=.26; Cndr=-.072; Cldr=.012; 

Ydr=Cydr*c2; Ndr=Cndr*c1; Ldr=Cldr*(Q*S*b/Ix); 

Clda=-.234; Cnda=-.0035; 

Lda=(Q*b*S/Ix)*Clda; Nda=(Q*b*S/Ix)*Cnda; 

B4=[0,Ydr/u0; Lda,Ldr; Nda,Ndr;0,0]; 

C4=eye(4); D4=zeros(4,2); 

figure(40) 

impulse(A4,B4,C4,D4) 
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%--------------------------------- 

%(b): 

tfinal=10; 

figure(41) 

sys=ss(A4,B4,C4,D4); 

impulse(sys,tfinal) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


