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Homework 4 AERE355 Fall 2019 Due in class 10/25(F)        SOLUTION 

NOTE: Any solution/plot that is not placed directly beneath the typed statement will not be graded. 

 

PROBLEM 1(20pts) Consider the system described by: xyyy 101002.0 


  

(a)(3pts) Give the system transfer function:          )1002.0/(10)( 2  sssGp
 

(b)(2pts) Give the system static gain:                     1.0)0(  ps Gg  

(c)(2pts) Give the system undamped natural frequency:     10100 n  

(d)(3pts) Give the system damping ratio: 01.010/1.01.02.02:   nn
 

(e)(2pts) Give the system damped natural frequency: 109999.0101 2   nd  

(f)(3pts) The two poles of )(sGp in (a) are dn is  2,1 . Express these in polar coordinates: 

)(cos/1(tan&)( 12122

1     ndn

i wherees      ;  
 ies 2 . 

(g)(5pts) Use the Matlab command ‘impulse’ to arrive at a plot 

of the system impulse response. Copy/paste your code HERE. 

Solution:   

 

 

>> G=tf(10,[1 0.2 100]); 

>> impulse (G) 

>> grid 

 

 

 

 Figure 1(g) System impulse response. 
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PROBLEM 2(15pts) Consider the transfer function 
2504512

25024
)(

)(

)(
23 






sss

s
sG

sX

sY . 

(a)(3pts) Give the corresponding differential equation. 

Answer: xxyyyy 250242504512 


 

 

(b)(5pts) Use the Matlab command ‘roots’ to compute the system poles and zeros. Copy/paste your commands/answers 

HERE. 

Solution: poles=roots([1 12 45 250]) = -10.0000 ;  -1.0000 +/- 4.8990i   ;   zeros=roots([24 250]) = -10.4167 

 

(c)(7pts) The system static gain is 1
250

250
)0( G . You should 

have found that the system includes a zero that nearly cancels a 

system pole. (i)Arrive at the reduced order system )(sG


, obtained 

by removing this pole/zero pair while retaining 1)0( G . Then 

(ii) use the Matlab command ‘step’ to obtain overlaid plots of the 

unit step responses for )(sG and )(sG


. (iii) Comment on how 

they compare. 

Solution: [See code @ 2(c).] 

(i)
252

25
)(

2 


ss
sG


. 

 

(iii) They are visually identical.                                                  Figure 2(c) Overlaid impulse responses for )(sG and )(sG


. 
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PROBLEM 3(65pts) The approximate short period longitudinal mode response to an elevator input is**  
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On p.284 the authors derive the transfer functions 

 

  
   
   








MZMsZMMs

uZMMsuZ
sG

s

s

wqwq

q

e

eee









2

00 //
)(

)(

)(   and   
   

   



 MZMsZMMs

ZMuZMsuZMM
sG

s

sq

wqwq

w

q

e

eeee












2

00 //
)(

)(

)( . (8.7,9) 

 

Both of (8.7.9) have the denominator     MZMsZMMssp wqwq  
2)( . **I have replaced 

0/uZ
by 

wZ [See Table 3.5.] 

(a)(35pts) (i)Use Tables 3.3 and 3.5, along with the information given on pp.400-401 to arrive at the numerical value for 

each parameter in )(sp . (ii) Arrive at the numerical values of the roots of )(sp . (iii) Compute the associated time constant, 

undamped natural frequency, and damping ratio. 

Solution: [See code @ 3(a).] 

The term “arrive at” here is a tad ambiguous/vague. Should you give all those equations HERE? Well, this would be a 

reasonable interpretation of that term. On the other hand, those terms ARE given directly in the tables. Furthermore, they 

are ‘legion’. So here I would expect students to ASK what is meant by the term. Me? I personally found it to be extremely 

time-consuming, and so I did not include them here; only in the Matlab code. 

 

(i) [Mq Ma Madot Zw] = [ -2.0758   -8.7906   -0.9087   -2.0222 ] 

(ii) s1,2 = -2.5034 +/- 2.5926i = 
dn i  .  

(iii) tau=-1/real(R1) = 0.3995; wn=abs(R1)= 3.6039 ;   zeta=1/(tau*wn) = 0.6946. 

 

(b)(20pts) (i) Arrive at a plot of the roots of )(sp  for 

the speed range  u0 = 200: -1 : 50. You should find that 

they move along straight lines. (ii) Use the angle of the 

upper line to estimate the (constant) damping ratio, 

assuming these lines intersect at the origin. (iii) 

compare your estimate to your answer in (a) 

Solution: [See code @ 3(b).] 

 

(ii) rad833.01/1.1tan   . 673.0)833.0cos( 


. 

(iii) They compare reasonably well. 

 

 Figure 3(b) Roots of )(sp for the speed range  u0 = 200: -1 : 50. 

 

(c)(5pts) In view of the fact that the damping ratio is independent of the plane speed, explain how the time constant and 

undamped natural frequency vary with plane speed. 

Explanation: constant)/(1/1   nn
 . From the plot it is clear that as speed decreases  increases and 

n decreases such that their product is constant. 

 

(d)(5pts) Define  0u


 . The units of  are seconds, and the units of  are feet. Since  is called the system time constant, 

we will call  the system length constant. Similarly, define 
0/ unn 



 . The units of 
n are radians per second, and the 

units of  are radians per foot. Since 
n is called the system temporal natural frequency, we will call 

n the system spatial 
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natural frequency. In view of (c), both  and 
n are independent of the plane speed 

0u . Use your results in (a) to compute 

their numerical values for the NAVION plane. Then, from 
n compute the spatial natural period. 

Solution:  

ft)3995.0(1760 70.3  u  and rad/ft176/6039.3 0.0205n
.  ft176/6039.3/2 306.5 nnP   

 

 

 

Appendix   Matlab Code 
%PROGRAM NAME: hw4.m    10/7/17 

%PROBLEM 2 

%(c):  

figure(20) 

G=tf([24 250],[1 12 45 250]); 

Ghat=tf(25,[1 2 25]); 

figure(20) 

step(G) 

hold on 

step(Ghat) 

legend('g(t)','ghat(t)') 

grid 

%============================================= 

%PROBLEM 3 

rho=0.002377; %air density @ sea level 

%NAVION Parameters (pp.400-401) 

S=184; cbar=5.7; Iy=3000;  W=2750; g=32.18; m=W/g; 

CD0=0.05; CLa=4.44; Cma=-0.683; Cmadot=-4.36;  

Cmq=-9.96; Cmde=-0.923; CLde=0.355; 

Czde=-CLde;   %Table 3.3 p.116 

%---------------- 

%u0vec=176; %CODE for 3(a) 

u0vec=200:-1:50;  %CODE for 3(b) 

nu0=length(u0vec); 

R1=zeros(nu0,1); R2=R1; 

for k=1:nu0 

u0=u0vec(k); 

Q=0.5*rho*u0^2; 

Mq=0.5*Cmq*Q*S*cbar^2/(Iy*u0); 

Ma=Cma*Q*S*cbar/Iy; 

Madot=0.5*Cmadot*Q*S*cbar^2/(Iy*u0); 

Zw=-(CLa+CD0)*Q*S/(m*u0); 

B=-(Mq+Madot+Zw); 

C=Mq*Zw-Ma; 

ABC=[1 B C]; 

R=roots(ABC); 

R1(k)=R(1); R2(k)=R(2); 

end 

figure(30) 

plot(real(R1),imag(R1)) 

hold on 

plot(real(R1(1)),imag(R1(1)),'b*') 

plot(real(R2),imag(R2),'r') 

plot(real(R2(1)),imag(R2(1)),'r*') 

title('Roots of p(s) for u0=200 to 50 fps') 

xlabel('real') 

ylabel('imaginary') 

grid 

 


