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Homework 3   AERE355   Fall 2019   Due 10/1(F)             SOLUTION 

PROBLEM 1(25pts) Consider the force equations in Table 3.1 on p.105 of Nelson 

    (a1) )(sin rvqwummgX    ; (a2) )(sincos pwruvmmgY    ; (a3) )(coscos qupvwmmgZ    

Suppose that all the linear accelerations 0 wvu  . Then we have: 

   (b1) )(sin rvqwmmgX    ; (b2) )(sincos pwrummgY    ; (b3) )(coscos qupvmmgZ   .  

(a)(6pts) Suppose the pitch rate 0q . Find the two conditions on ( , , )u v w  , one trivial and the other nontrivial, that will 

make the right sides of (b) all zero. 

Solution: For 0q , then the right sides of (b1) and (b3) will be 0 for 0v . The right side of (b2) will be zero 

for pwru  , and so uprw )/( .  

 

 

(b)(5pts) Suppose that the conditions found in part (a) hold, so that the right side of each of these three equations is zero. 

We then have:   (c1) 0sin  mgX  ; (c2) 0sincos  mgY  ; (c3) 0coscos  mgZ . 

 Write kjiF ZYX  . Show that mg|| F . 

Solution: mgmgmg  )cos(sincossincoscossincossin|| 222222222 F  

 

(c)(10pts) There are four major forces acting on the airplane: gravity force mg, thrust T, lift L, and drag D. For T at an 

angle , use a free body diagram to obtain EZEX FF kiF  in terms of these four forces and  . 

Solution:      EE LTDmgLDT kiF  cossin)(sincos)(   

 

 

 

(d)(4pts) Verify your answer in (c) by setting o0 . Explain, in words, whether or not you feel your expression for F 

makes sense. 

Solution:      EE LmgDT kiF  .  

Explanation: This makes perfect sense. Lift counters gravity, and drag counters thrust.  


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PROBLEM 2(25pts) A mini-drone is to be used in relation to search-and-rescue operations in buildings. Let the drone 

orientation in the building frame of reference be trtr UPNorthEastI,J,K ],,[][  [North is to the left of East], and let its 

orientation in relation to its body coordinates be tri,j,k][ [Along the body (b) toward the nose, toward the left wing, 

toward the nose-up]tr. [Note: this differs from the traditional body coordinates.] 

(a)(15pts)  Define the Euler matrix, Kj ΤΤΤ
1

 comprised of two rotations, such 

that 
trtr KJIkji ],,[],,[ Τ , where KΤ denotes the first rotation about the K- 

axis, and 
1j

Τ denotes the second rotation about the j1-axis. (i) Use the axes at 

right to sketch the transformations KΤ and
1j

Τ . [Label axes prior to each 

rotation, and let  and  denote the azimuth and elevation, respectively]. 

 Then (ii) from your plots, obtain the expressions for the rotation matrices KΤ , 
1j

Τ ,                   1(a.1) KΤ rotation. 

and finally, (iii) Compute T. 

Solution: (i) See plots at right.                   
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 1(a.2) 
1j

Τ  rotation.   

(iii) 
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Τ .  Figure 1(a) Rotation sketches. 

(b)(6pts) It can be shown that ITT
tr  . Since tr1 TΤ  , the rotation matrix T is said to be a unitary matrix. Since there 

are 9 terms to reckon with, here, show only that the (1,1) term is one, and that the (1,2) and (1,3) terms are zero. 

Solution:  
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TT . (1,1) term: 12222222   SCCSSCC . 

(1,2) term: 022   SCSCSCSSCSCC .            (1,3) term: 0  CSCCSC  

 

(c)(4pts) Suppose that in the drone reference frame, its velocity is  trwvuv , and the in the earth reference frame it 

is  trzyx VVVV . Then it should be clear that VTv  , hence vTV tr . Validate your answer for T in (a) by 

simplifying the matrix (call it M) in (3.30) on p.102 for 0 . 

Solution: For 0  we have 
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PROBLEM 3(25pts) The linearized small disturbance longitudinal differential equations are given in Table 3.2 on p.108. 

It can be shown that q . This set of equations can be expressed in the matrix form:  

                                            tree

trtr
qwuqwu  BA   .  

 

(a)(20pts) Derive the expressions for A and B for the case where 0wZ  . 

Solution:  
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Substituting (1b) into (1c) gives: 

Twewwqwwwuwu TTee
ZMMZMMquMqMwZMMuZMMq   )()()()()( 0   . (2) 

Substituting (2) into (1c) gives: 
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(b)(5pts) For 00  , 0 wq MZ  , and 0T   your answer in (a) should be  
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PROBLEM 4(25pts) The longitudinal dynamics of a given plane are  

governed by xAx  , where   trqwu x , and where  

 

We will soon investigate the properties of this dynamical system analytically. Here, we will use Matlab. To this end, we 

are required to have a state equation of the form uBxAx  , and a measurement equation of the form uDxCy  . 

(a)(5pts) For our current problem xAx  it should be clear that the matrices B and D must be 0, and that 

44 IC Suppose that  truuu 21 . Give the required dimensions for B and D. 

Answer: 24 0B and  24 0D . 

 

(b)(10pts) Consider the initial condition 

 trradfps 06/0200 x . Complete the 

Matlab code @ 4(b) to obtain plots of the 

initial condition responses. [NOTE: Units 

for )(t and )(tq should be converted to 

degrees.] 

Solution: [See code @ 4(b).] 

 

    Figure 4(b) Responses  trqwu x over 300 sec. 

 

(c)(5pts) Plot your results over the initial 

10 seconds. To this end, simply copy/paste 

your code in (b) into a new part (c), and 

modify it. 

Solution: [See code @ 4(c).] 

 

 

 

 

 

    Figure 4(c) Responses  trqwu x over first 10 sec. 

(d)(5pts) A comparison of your plots in (b) and (c) should reveal that, while )(tu and )(t take a long time to die out, 

)(tw and )(tq essentially die out very quickly. These behaviors at two distinctly different time scales are reflective of 

two well-known modes of the longitudinal dynamics of a plane. Go to Wikipedia to arrive at their names and descriptions. 

Answer:  [ https://en.wikipedia.org/wiki/Aircraft_dynamic_modes ] 

 
The longer period mode, called the "phugoid mode" is the one in which there is a large-amplitude variation of air-speed, pitch angle, and altitude, but almost no angle-

of-attack variation. The phugoid oscillation is really a slow interchange of kinetic energy (velocity) and potential energy (height) about some equilibrium energy level 
as the aircraft attempts to re-establish the equilibrium level-flight condition from which it had been disturbed. The motion is so slow that the effects of inertia forces and 

damping forces are very low. Although the damping is very weak, the period is so long that the pilot usually corrects for this motion without being aware that the 
oscillation even exists. Typically the period is 20–60 seconds. This oscillation can generally be controlled by the pilot. 

With no special name, the shorter period mode is called simply the "short-period mode". The short-period mode is a usually heavily damped oscillation with a period 

of only a few seconds. The motion is a rapid pitching of the aircraft about the center of gravity. The period is so short that the speed does not have time to change, so the 

oscillation is essentially an angle-of-attack variation. The time to damp the amplitude to one-half of its value is usually on the order of 1 second. Ability to quickly self 

damp when the stick is briefly displaced is one of the many criteria for general aircraft certification. 

https://en.wikipedia.org/wiki/Aircraft_dynamic_modes
https://en.wikipedia.org/wiki/Kinetic_energy
https://en.wikipedia.org/wiki/Potential_energy
https://en.wikipedia.org/wiki/Inertia
https://en.wikipedia.org/wiki/Type_certificate
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Appendix      Matlab Code 
%PROGRAM NAME: hw3.m 

% PROBLEM 4 

%(b): 

A=[-.04 .04 0 -32.2;-.4 -2 180 0;0 -.04 -3 0;0 0 1 0]; 

C=eye(4); B=[]; D=[]; 

dt=.01; t=0:dt:300; 

%---------------- 

du0=20; dq0=pi/6;  

x0= [du0; 0; dq0 ; 0]; 

sys4 = ss(A,B,C,D); 

g = initial(sys4,x0,t); %[du,dw,dq,dth]' 

%--------------- 

figure(40) 

subplot(2,2,1), plot(t,g(:,1),'k','LineWidth',2) 

title('u(t)') 

xlabel('Time (sec)') 

ylabel('fps') 

grid 

hold on 

subplot(2,2,3), plot(t,g(:,4)*(180/pi),'k','LineWidth',2) 

title('theta(t)') 

xlabel('Time (sec)') 

ylabel('Angle (degrees)') 

grid 

subplot(2,2,2), plot(t,g(:,2),'k','LineWidth',2) 

title('w(t)') 

xlabel('Time (sec)') 

ylabel('fps') 

grid 

subplot(2,2,4), plot(t,g(:,3)*180/pi,'k','LineWidth',2) 

title('q(t)') 

xlabel('Time (sec)') 

xlabel('Time (sec)') 

ylabel('Angle (degrees)') 

grid 

%---------------------------------------- 

%(c): 

figure(41) 

tmax=10; 

n=tmax/dt; 

tt=0:dt:tmax-dt; 

subplot(2,2,1), plot(tt,g(1:n,1),'k','LineWidth',2) 

title('u(t)') 

xlabel('Time (sec)') 

ylabel('fps') 

grid 

hold on 

subplot(2,2,3), plot(tt,g(1:n,4)*(180/pi),'k','LineWidth',2) 

title('theta(t)') 

xlabel('Time (sec)') 

ylabel('Angle (degrees)') 

grid 

subplot(2,2,2), plot(tt,g(1:n,2),'k','LineWidth',2) 

title('w(t)') 

xlabel('Time (sec)') 

ylabel('fps') 

grid 

subplot(2,2,4), plot(tt,g(1:n,3)*180/pi,'k','LineWidth',2) 

title('q(t)') 

xlabel('Time (sec)') 

xlabel('Time (sec)') 

ylabel('Angle (degrees)') 

grid 

 

 


