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Homework 2       AerE355      Fall 2019   Due 9/20(F)     SOLUTION 

Problem 1(30pts)  Consider a small aircraft of the flying wing type, without elevator.  Assume that the following 

parameters apply to the aircraft and flight condition: Weight (empty + pilot) = W = 3000 lb, Wing area = S = 150 ft2,  c.g. 

location = 14.0h  26.0nh , .5 ftc  ,  = 0.002378 slug/ft2, 015.0
acmC , 08.0

LC per degree. 

(a)(10pts) Recall that  )( nLm hhCC 


. (i)Compute this value. Then (ii) use it to determine trim
 (re: ZLL). Finally, 

based on (i) and (ii) explain why the plane is longitudinally stable. 

Solution:   

(i) deg/0096.)26.14(.08.)(  nLm hhCC


 

(ii) o

mmtrimtrimmmm CCCCC
acac

56.1)0096./(015./0 


  

(iii)Because 0
mC and 0trim , the plane is longitudinally stable. 

(b)(5pts) Use (ii) in (a) to arrive at the trim velocity, V , for level, steady flight at the given density. 

Solution:  For level flight W=L, 
LL CSVLC  )2/1/( 2 , so 


LSC

W
V

2
 =366.8 ft/s. 

 

(c)(10pts) Add a 500 lb payload to the airframe-pilot combination of part (a).  Let the position of the load be a distance Δ 

behind the original old
cgx . Begin with summation of moments to show that 7/ old

cg
new
cg xx . 

Solution: new
cg

old
cg

old
cg

old
cgO xxxxM 35005003500)(5003000  , Hence, 7/ old

cg
new
cg xx . 

 

(d)(5pts) Use the expression in (c) to arrive at the value for Δ such that the plane will be neutrally stable. [Note that nh is 

not influenced by the added weight.] 

Solution: 0
7




 n

old

cg

n

new

cg
h

cc

x
h

c

x
. Hence, .2.4)14.26)(.5(77 ft

c

x
hc

old

cg

n 













  
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PROBLEM 2(30pts) In this problem we will investigate use of the elevator in relation to the NAVION general plane 

operating at sea level and M=0.158. Information on this plane is also given in Table B.1 on p.400, on p.401, and in 

EXAMPLE PROBLEM 2.2 on p.57. 

(a)(6pts) The discussion in section 2.4.2 on p.65 includes the following:  

                                                       
trimetrim eLtrimLL CCC 


 . (2.48) 

For 0
trime , use only the information in Table B.1 to find trim . Then comment on how this relates to the value 

associated with the information on the Wing airfoil characteristics in Figure 2.16. [Hint: See also the 4th eqn. on p.58.] 

Solution: For the entire plane, Table B.1 gives: o
LLLLtrim CCCC

trim
29.50923.44.4/41.0//

0



 . 

Comment: In Figure 2.16 we are given 5
Lw

o

O   . This is the angle of attack (AOA) (relative to horizontal) for zero lift 

line (ZLL) of the wing alone. The 4th equation on p.58 uses the negative of this angle to compute 
0w

LC . When the wing is 

mounted on a horizontal fuselage so that it is parallel to it, the wing will have a 5o AOA. For the entire plane we have 

5.29o

trim  relative to the plane ZLL. Hence, at the steady level flight condition (i.e. the fuselage is horizontal and the 

plane velocity direction is also horizontal), the vast majority (5/5.29 =0.945) of the lift is contributed by the wing. 

 

(b)(6pts) Find the value of 
trimLC using only the information on p.401. Then comment on how it compares to the value 

given in Table B.1. 

Solution:  
QS

W
C

trimL   where 2750W , 184S , and 2 20.5 ( ) 0.5(.002377)(.158 1116.45) 36.98Q M a    . So 404.
trimLC . 

Comment: The value given in Table B.1 is 0.41, which is slightly greater than the value found here. 

 

(c)(5pts) Suppose that the maximum elevator deflection is o
e 15

max
 . Find the minimum achievable 

mintrim (degrees). 

[Hint: See book Section 2.4.2.] 

Solution: From (2.50): max

min

trim e
L L e

trim

L

C C

C









 . Rather than converting o

e 15
max

 to radians, computing 
mintrim , and 

converting it back into degrees, we can simply multiply 
trimLC  by /180 and leave o

e 15
max

 . Then 

max

min

(180 / ) (180 / )(0.41) (0.355)(15)
4.09

4.44

trim e
L L e o

L

C C

C





  


 
   . 

(d)(5pts) Use equations (11) (for HV ), (31) and (32) in the Ch.2 notes to show that 
ee

L
t

m C
c

l
C










 . 

Solution: These equations are:    
Sc

Sl
V tt

H    (11)   ;   
te

L
t

L C
S

S
C


 
















  (31)  ;   

te
LHm CVC


 (32). 

Substituting (11) into (32) gives: 

























c

l
C

S

S
C t

L
t

m
te 

 . Substituting (31) into this gives the desired result. 

 

(e)(5pts) From the equation in (d), (i) find the numerical value for tl , and then (ii) comment on how this value compares 

to that value given in EXAMPLE PROBLEM 2.2. 

Solution: ftCCcl
ee

Lmt 82.14355./)923.)(7.5(/ 


 

Comment: The value given in the example problem is ftlt 16 , which is ~8% larger. 
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(f)(3pts) Identify where in the book the elevator control power is defined, and give its numerical value. 

Answers: It is defined at the top of p.64 & again on p.66. From Table B.1, it is 923.0
e

mC


. 

 

 

 

 

 



4 

 

PROBLEM 3(15pts) Consider the combined Figures 

2.28 & 2.32 on pp. 73 & 77, respectively. Sideslip is 

commonly performed intentionally, in order to 

accommodate crosswinds during landing. See, for 

example, segment 1:00 – 2:00 of  

[ https://www.youtube.com/watch?v=QhV3BqPA1II ] 

 

(a)(5pts) Assume that the plane at right is at lateral 

equilibrium with a designated sideslip angle o . At a 

time 0t  the sideslip angle is increased an amount 

 . Given that the fuselage contributes to 

destabilization lateral stability (c.f. p.74), describe how 

the sideslip angle would evolve, in the absence of a 

vertical tail. 

Explanation: The sideslip angle would increase further. 

 

 

(b)(5pts) Suppose that, even with a vertical tail, the plane became laterally unstable. Which rudder direction (+ or -) 

would be appropriate to try to stabilize the plane? Explain. [Hint: Consider the camber of the vertical tail/rudder.] 

Explanation: A lateral instability would continue to increase   . This would occur if, for example, the tail vertical area 

was insufficient to generate large enough negative side force to stop the increase in  . Activating right rudder 

(i.e. 0r ) will result in an increase in vertical camber, thereby generating a larger tail negative vertical lift. This, in turn, 

would result in a larger cw moment. This moment would act to reduce  . 

 

(c)(5pts) In addition to the rudder, what other control surface would need to be activated in order to level the plane? 

Justify your answer. [Hint: Watch the above video. Then, think about it.] 

Answer: The short answer is: The ailerons. Here’s my personal elaboration. The video @ 1:24 states that the wind is 

blowing 30o from the left at 17mph. This will cause the plane to slip to the right, as shown in the video and in the above 

figure. At 1:40 the video states that, in order to maintain a desired sideslip 0o   a right rudder/left aileron is appropriate. 

I disagree. The vertical tail will tend to align the nose in the direction of the velocity vector. A right rudder would increase 

this tendency. A left rudder would oppose it. In maintaining 
o by using the left rudder, the right side of the wing will 

have greater lift than the left side, causing the plane to roll left. Use of the left aileron will increase the lift on the left side 

of the wing to counter this roll. Hence, I would claim that in the video setting, what is needed to maintain 
o is left 

rudder/left aileron. But then, what do I know.  

 

 

 

 

 

 

https://www.youtube.com/watch?v=QhV3BqPA1II
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Problem 4(25pts) In this problem we consider the NAVION general plane operating as described in PROBLEM 2. 

(a)(8pts) For a sideslip angle o10 , find the magnitude and sign of the rudder step input needed to bring the NAVION 

to 
o

o 5 . [Hint: Notice that 


ddNCn / , rn ddNC
r




/ , and   dd rr / . Also, note that in Table B.1 the entry 

071.0
nC is wrong. It should be 071.0

nC .] 

Solution:  

r

r

n

n

d

d

ddN

ddN

C

C
r

















/

/
014.1

071.

072. .   Hence,  986.0




d

d r  

Hence, a rudder angle oor
r

d

d
93.4)5(986. 








 




 is needed. 

 

 

(b)(5pts) Identify where in the book the rudder control effectiveness is defined, and give its numerical value. 

Answer: It is defined directly above (2.84) on p.78. From Table B.1:  072.
r

nC


. 

 

(c)(5pts) Use the appropriate entries in Figure 1.10 to define 
l

C . Then explain why the line with slope 0
l

C  in Figure 

2.33 on p.79 corresponds to a plane that possesses roll stability. 

Definition: In Figure 1.10 we have the roll moment QSbCL l . The rate of change of the scaled moment, lC , with respect 

to the side slip angle β is 
l

C .  

Explanation: For the positive β, it is noted in Figure 2.33 that a positive roll moment is created. In order to correct for this, 

we must have 0
l

C . [See also Figure 1.10.] 

 

(e)(7pts) In the Ch.2 Notes we have 

                                         














 



 a

aarL

l
bSb

cC
C a

a





 2/

1
1

2
. (69) 

The moment derivative (68) [and its approximation (69) is called the aileron roll control power. In EXAMPLE 

PROBLEM 2.4 on p.83, the roll control power is ultimately found to be 155.0
a

lC


. Use the approximation (69) to 

estimate it.  

Solution: 55.132/)(;9.4 2112  yyyy aa  . We will retain all the other terms in the equation in the middle of 

p.84: 

151.055.13
7.16

54.1
1)55.13(9.4

)4.33(184

)2.7)(36)(.3.4(2

2/

1
1

2

























 

























 
 aaa

rL

l
bSb

cC
C a

a









. 

The approximation error is (0.151-0.155)/0.155 = -2.6%. 

 


