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EXAM 3 AERE355  Fall 2019 (Take-Home)  Due 11/1(F)                     SOLUTION 

PROBLEM 1 (40pts) This problem concerns the longitudinal linearized dynamics of the NAVION plane. The state 

equation is BuAxx  . For the state  
tr

u w q x , Nelson develops the numerical values in A in 

EXAMPLE PROBLEM 4.3 on pp.155-158. This matrix is given in the Matlab code in Appendix of this exam. The 

command eig(A) results in the following eigenvalues:  

             eig(A)=[-2.4894 + 2.5977i     -2.4894 - 2.5977i     -0.0171 + 0.2146i     -0.0171 - 0.2146i] 

 

(a)(10pts) For each of the two modes, (i) give its name, and (ii) compute values for the parameters ( , , , )d n      

 Solution: Recall that stable complex-conjugate roots have the form: 
1,2 1/n d di i          . 

short period 
1,2 2.4894 2.5977i    : 1/ 2.4897 0.4017sec    , 2.5977r / sd  , 

1| | 3.598r / sn   , 0.692                                   

phugoid: 
3,4 0.0171 0.2146i    : 1/ .0171 58.64sec    , 0.2146r / sd  , 

3| | 0.2153r / sn   , 0.079                                  

 

(b)(10pts) We will consider the elevator angle input ( ) ( )et tu . It follows from (4.51) on p.149 that  

0
e e e

tr

X Z M  
   B . This presumes that 0wM  . Because no value is given in relation to 

e
X

in Table B.1 (or 

anywhere else), it is reasonable to assume that 0
e

X  . Use information given in Table 3.3, Table 3.5, Table B.1 and 

EXAMPLE PROBLEM 4.3 to show that  0 28.146 11.874 0
tr

  B . Show all work HERE. 

Solution: From Table 3.5: ( / )
e e

ZZ C QS m
  and ( / )

e e
m yM C QSc I
  . From Table 3.3: 

e e
Z LC C
 
  .  

From Table B.1: 0.355
e

LC

 and 0.923

e
mC

  . From EP 4.3: / 6771/ 85.4 79.286QS m    and 

/ 6771(5.7) / 3000 12.865yQSc I   . Hence: 0.355(79.286)
e

Z    -28.146  and 0.923(12.865)
e

M    -11.874 . 

 

(c)(10pts) As it stands, the state model BuAxx  is undesirable in two respects. First, in view of the recent Boeing 

MCAS issues, it is desirable that the state be  
tr

u q x . Second, it is desirable that all state angles and the 

input angle be in degrees, as opposed to radians. Hence, we need to convert BuAxx  to      x A x B u . To this 

end, first note the following FACT: For any invertible matrix V, let  x Vx . Then clearly  x Vx . And so 

-1Vx = VAV Vx + VBu , which is ( ) ( )


   -1x = VAV x + VB u A x + VBu .  To convert w to   , requires the matrix 

 01 1/ 1 1diag uQ , and to convert from radians to degrees requires the matrix 

 1 180 / 180 / 180 /diag   U . Hence, setting 


V UQ  will result in    x A x VBu . Finally, to convert u 

(radians) to u  (degrees) requires that ( /180)(180 / ) ( /180)    u u u . From this, it follows that setting 

( /180)


B VB . Hence, the desired state model becomes      x A x B u . Use Matlab to arrive at the values for 

A and B . 

Solution: [See code @ 1(c).]     

0.0450 0.1106 0 0.5620

0.1201 2.0200 1 0

0.1140 6.9696 2.9480 0

0 0 1 0

  
 
 
  
  
 
 

A
.   

0

0.1599

11.8747

0

 
 


  
 
 
 

B   
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(d)(10pt) Regardless of your answers in (c), use 

0.045 0.111 0 0.562

0.120 2.020 1 0

0.114 6.970 2.948 0

0 0 1 0

  
 
 
  
  
 
 

A
 and 

0

0.160

11.875

0

 
 


  
 
 
 

B  . 

For the input ( ) ( ) 5 ( )o

et t t    u use the ‘impulse’ command to obtain plots of the state response. [Note: The 

‘impulse’ command does not include an argument for scaling it. So, you will need to scale the B  by -5.] Run the code 

twice: first with no maximum time value, and second, with a maximum time value of 2 seconds. 

Solution: [See code @ 1(d).] 

 

 

 

 

 

 

 

 

 

 

 

           Figure 1(d) State response to ( ) 5 ( )ot t u : Complete response (LEFT), and initial response (RIGHT). 
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PROBLEM 2(35pts)The four transfer functions associated with PROBLEM 1, obtained using the ‘ss2tf’ command, are: 
2

4 3 2

( ) 0.0177 5.3082 12.8541
( )

( ) 5.0130 13.1614 0.6722 0.6
u

e

u s s s
G s

s s s s s

  
 

   
 ; 

3 2

4 3 2

( ) 0.1599 12.3534 0.5556 0.8119
( )

( ) 5.0130 13.1614 0.6722 0.6e

s s s s
G s

s s s s s






   
 

   
 

3 2

4 3 2

( ) 11.8747 23.3534 1.1890
( )

( ) 5.0130 13.1614 0.6722 0.6
q

e

q s s s s
G s

s s s s s

  
 

   
 ; 

2

4 3 2

( ) 11.8747 23.3534 1.1890
( )

( ) 5.0130 13.1614 0.6722 0.6e

s s s
G s

s s s s s






  
 

   
 

 

(a)(5pts) Each transfer function has the denominator polynomial 4 3 2( ) 5.0130 13.1614 0.6722 0.6p s s s s s     . Verify 

that this is the system characteristic polynomial by computing its roots and commenting. 

Solution:  

roots(ps) = -2.4894 +/- 2.5977i    -0.0171 +/- 0.2146i. These are the eigenvalues of A (or equally, A ). The system 

characteristic polynomial is ( ) | | 0p s s  I A  The eigenvalues of A are the roots of ( )p s . 

 

(b)(10pts)What is unique to flight dynamics is that the various transfer functions have a significant number of zeros in 

practically every transfer function. These zeros can, and usually do have a significant impact on the dynamical responses. 

To investigate the influence of the zeros we consider here ( )G s
. In this part, use the command ‘residue’ to show that   

           
1 2( ) ( ) ( )G s G s G s    , where  

1 2

0.16 12
( )

5 13

s
G s

s s


 


 
 and 

2 2

0.003 0.02
( )

0.03 0.05

s
G s

s s


 


 
. 

HINT: ( ) ( ) ( ) ( ) ( ) ( )
( )

( ) ( )( ) ( ) ( ) ( )( ) ( )( ) ( )( )

z s z s r r r s p r s p r r s rp rp
G s

p s s p s p s p s p s p s p s p s p s p s p

      
      

         
.           (b1) 

Solution: [See code @ 2(b).] 

residue(zs,ps) = [-0.0786 +/ 2.2952i    -0.0014 +/- 0.0433i] and p = [ -2.4894 +/- 2.5977i    -0.0171 +/- 0.2146i] 

allows us to apply (b1) to each set of residues and corresponding poles, gives: 

1 2

0.1572 12.32
( )

4.979 12.95

s
G s

s s


 


 
 and 

2 2

0.002745 0.01863
( )

0.0341 0.04635

s
G s

s s


 


 
. These are close to those given above. 

 

(c)(5pts) Overlay the impulse responses 
1( )g t

, 
2( )g t

, and 
1 2( ) ( ) ( )g t g t g t    . [Note: Run your code twice; once 

using 
max 150t  , then again, using 

max 5t  .] 

Solution: [See code @ 2(d).] 

 

 

 

 

 

 

 

 

 

 

                        Figure 2(c) Impulse responses
1( )g t

,
2( )g t

and ( )g t
for 

max 150t  (LEFT) and
max 5t  (RIGHT). 



4 

 

(d)(5pts) From (b) you should have found that the short period mode 

exact transfer function is
1 2

0.1572 12.32
( )

4.979 12.95

s
G s

s s


 


 
. Arrive at the 2D 

approximation transfer function, call it 
2

( )
D

G s
, of this mode by using 

2 (2 :3,2 :3)D



 A A  and 
2 (2 :3)D



 B B . Then overlay plots of the impulse 

responses 
1( )g t

and
2

( )
D

g t
 for

max 5t  and comment. 

Solution: [See code @ 2(d).] 
2 2

0.1599 12.35
( )

4.968 12.92D

s
G s

s s


 


 
 

As expected, they are visually identical. Figure 2(d) Impulse responses 
1( )g t

and
2

( )
D

g t
. 

 

(e)(5pts) In (d) you should have found that the
2

( )
D

G s
and

1( )G s
are 

nearly identical; thereby suggesting that, at least in this case, we need 

not have gone through the residue approach in (b) to arrive at a nearly 

exact approximation of the short period mode transfer function. In this 

part we will investigate the influence of the zero in
1( )G s

on the 

corresponding impulse response 
1( )g t

. To this end, let 

10 2

12.32
( )

4.979 12.95
G s

s s





 
. Overlay impulse responses

1( )g t
and

10( )g t
. 

Then comment. 

Solution: [See code @ 2(e).] The zero has essentially no effect.              Figure 2(e) Impulse responses 
1( )g t

and
10( )g t

. 

 

(f)(5pts) In (e) you should have found that the influence of the zero is 

visually negligible. In this part we quantify this influence. Let 

11 2

0.1572
( )

4.979 12.95

s
G s

s s


 


 
. Then 

1 11 10( ) ( ) ( )G s G s G s    . Overlay the 

impulse response 
11( )g t

 and 
10( )g t

. Then comment. 

Solution: [See code @ 2(f).] 

The peak value of 
11( )g t

is ~0.04, and it occurs when 
10( ) 1.2g t   . 

This sum of -1.16 is visually negligible relative to -1.20. The largest 

contribution of 
10(0) 0.15g   while significant, decays in relation to 

 that of 
11( )g t

after no more than ~0.05 sec. Figure 2(f) Impulse responses 
11( )g t

and
10( )g t

. 

Summary and Conclusions 

This problem addressed the short period mode for the angle of attack, ( )t , in detail. (i) First, it was shown that it dies out 

well within 5 second; which is a small fraction of the decay time of ~200 seconds for the phugoid mode. (ii) We then used 

the concept of residues (also known as partial fraction expansions) to obtain the exact short period mode impulse 

response, and compared it to the total impulse response. It was found that the short period impulse response dominates the 

total impulse response for the first 5 seconds. (iii) We then showed that the exact short period mode and the 2D 

approximate modes were nearly identical; thereby obviating the need for the residue approach. (iv) Finally, we showed 

that the zero in the transfer function for the short period mode had a negligible influence on the impulse response. The 

knowledge of transfer functions was essential in carrying out such a detailed investigation. This is why I am a proponent 

of bringing that concept into play, in parallel with the state space concept. 
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PROBLEM 3(25pts) As noted in HW4 PROBLEM 3, consider the approximate short period transfer function: 

                                        
   

0 0

2 2

0 0

/ /( ) ( )
( )

( ) ( )/ /

e e eq

D

e q q

Z u s M M Z us z s
G s

s p ss M M Z u s M M Z u

  



   





  
  

    

. 

This system will be dynamically stable if and only if both of its poles lie in the LHP. It can be shown (e.g. using the Routh 

array) that both poles will lie in the LHP when the coefficients 
1 0/qc M M Z u     and 

0 0/qc M M Z u   are both less 

than zero.  

(10pts) Use Tables 3.3 and 3.5 to explain that it is not possible for 
1 0/qc M M Z u     to ever be greater than zero. 

Solution: 

(i) 
1 0/qc M M Z u    : Since these variables are positive constants times the variables ; ;

qm m ZC C C
 

it suffices to check 

the signs of the latter. 

2 /
q t

m L H tC C V l c


  : All the parameters are greater than zero, and so this is always less than zero. So 0qM  .  

2 ( / )( / ) ( / )
qt

m L H t mC C V l c C
 

           . This is less than zero, since / 2 / 0
w

L wC AR


      . So 0M  . 

0
( ) /L DZ C C QS m

    . Since 
0

, 0L DC C


 , we have 0Z   . Conclusion: 
1 0c  , always! 

 

(b)(5pts) We now address 
0 0/qc M M Z u   . From (2.36) on p.56 we see that the stick-fixed neutral point (i.e. 

setting 0M  ) satisfies: 

                                                       1
ft

w w

mL

NP ac H

L L

CC d
h h V

C d C



 






 
    

 
. (c1) 

The condition (c1) is the condition for static neutral stability. The plane will be dynamically neutrally stable 

when
0/qM M Z u  . Using Tables 3.3 and 3.5, it can be shown that this condition is equivalent to:  

 

                                           
0 2

0

( ) 1
ft

w w

mL t
NP ac H L D

L L

CC QSl d
h h V C C

C mu d C





 






    
          

   

 

                                         (c2) 

where 
NPh is what we call the stick-fixed neutral point for dynamic stability.  

Compute the difference between (c1) and (c2), and then comment on whether or not a plane can be dynamically stable, 

yet statically unstable. 

Solution: 
0 2

0

( )t

w

L

NP NP H L D

L

C QS
h h V C C

C mu








  

     
  

.  Since this difference is positive it would appear that the neutral point for 

dynamic stability is further aft than for static stability. Hence, the plane can by statically unstable, but dynamically stable 

in relation to perturbation dynamics.  

 

Remark. I did not intend to cause the considerable consternation that many students had in relation to this part.  though, 

upon it being pointed out by students that o n p.24 of Nelson the authors state that “for a vehicle to be dynamically stable 

it must be statically stable”, this consternation is understandable. Moreover, it stems from the fact that static and dynamic 

stability are two distinctly different types of stability. As defined in the boo, an object has static stability if its cg returns to 

equilibrium when subjected to a perturbation. This say nothing about the dynamics associated with the object. Dynamic 

stability relates to the dynamics of the object, itself. This is especially true in the case of small perturbations of the 

object’s dynamics. If a plane has 
0/ |m mC dC d

 


 , then it does not possess static equilibrium near 0  . A small static 
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perturbation, say 
0 will result in ( )t moving away from 0  . As the plane is doing so, suppose that the pilot gives the 

elevator a small perturbation ( ) ( )e t t  . Then the plane short period dynamics will be felt. Suppose that 
1( )t   over a 

given 20 second interval. Then the short period perturbation dynamics are in relation to
1 . If the plane is dynamically 

stable, then 
1( )t   . Hence, in relation to perturbation dynamics: YES a plan can be statically unstable and yet in 

relation to small perturbations it can be dynamically stable.  

  

 

 

 (c)(10pts) The fact it, it takes a fair bit of work to arrive at (c2). Hence, in this part, use the above tables to arrive at 

expressions for M
, 

qM and Z
, from which (c2) could be arrived at through simple algebra. 

Solution: 

(i): ( ) 1
w f t

m L n m H L

y y

QSc d QSc
M C C h h C V C

I d I   






     
                  

 

(ii): 

0 0

2
2 2q t

t
q m H L

y y

lc QSc c QSc
M C V C

u I c u I


        
                     

 

(iii): 
0

( ) /L DZ C C QS m
     
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Appendix    Matlab code 
%PROGRAM NAME: exam2.m  10/25/19 

%PROLEM 1  

%(a): 

%NAVION A-matrix for Longitudinal dynamics (p.158) 

A=[-.045 .036 0 -32.2;-.369 -2.02 176 0;.00199 -.0396 -2.948 0;0 0 1 0]; 

eigsA=eig(A); 

speig=eigsA(1); 

sptau=-1/real(speig); 

spwd=imag(speig); 

spwn=abs(speig); 

spzeta=1/(sptau*spwn); 

disp('sptau spwd spwn spzeta') 

[sptau spwd spwn spzeta] 

pheig=eigsA(3); 

phtau=-1/real(pheig); 

phwd=imag(pheig); 

phwn=abs(pheig); 

phzeta=1/(phtau*phwn); 

disp('phtau phwd phwn phzeta') 

[phtau phwd phwn phzeta] 

%(b): 

% B= [Xde Zde Mde 0]' where Zde=C_Zde*(QS/m) & Mde=C_mde*(QScbar/Iy) 

C_Zde=-0.355; %From Table 3.3: C_Zde = -C_Lde & Table B.1 

C_mde=-0.923; %From Table B.1 

QS=6771; m=85.4; QScbar=38596; Iy=3000; u0=176; %p.157 

Zde=C_Zde*(QS/m); 

Mde=C_mde*(QScbar/Iy); 

B=[0 Zde Mde 0]'; 

%(c): 

U=diag([1 180/pi 180/pi 180/pi]); %Convert radians to degrees 

Q=diag([1 1/u0 1 1]); %Convert w to alpha 

UQ=U*Q; 

AA=UQ*A*UQ^-1; 

BB=(pi/180)*UQ*B; %The pi/180 converts de to degrees. 

%(d): 

de_d=-5; %elevator angle in degrees 

BBde_d=de_d*BB; %This allows use of the unit impulse command. 

C=eye(4); D=zeros(4,1); 

sysc=ss(AA,BBde_d,C,D); 

figure(10) 

impulse(sysc) 

title('[u alpha q theta] Response to -5^o Elevator Impulse') 

grid 

figure(11) 

impulse(sysc,2) 

title('[u alpha q theta] Response to -5^o Elevator Impulse') 

grid 

%==================================================== 

%PROBLEM 2 

[zs,ps]=ss2tf(AA,BB,C,D); 

%(a): 

roots(ps) 

%(b): 

Ga=tf(zs(2,2:5),ps); 

GGa=tf(zs(2,5),ps); 

[r,p,k]=residue(zs(2,2:5),ps); 

s=tf('s'); 

P1s=s^2-(p(1)+p(2))*s+p(1)*p(2); 

A11=r(1)+r(2); A10=-(r(1)*p(2)+r(2)*p(1)); 

Z1s=A11*s+A10; 

Ga1=Z1s/P1s; 

P2s=s^2-(p(3)+p(4))*s+p(3)*p(4); 

A21=r(3)+r(4); A20=-(r(3)*p(4)+r(4)*p(3)); 

Z2s=A21*s+A20; 

Ga2=Z2s/P2s; 

%(c) 

figure(20) 

impulse(Ga1,Ga2,Ga,150) 

title('Impulse responses ga_1(t), ga_2(t) and ga(t)') 

legend('ga_1','ga_2','ga') 

grid 

figure(21) 
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impulse(Ga1,Ga2,Ga,5) 

title('Impulse responses ga_1(t), ga_2(t) and ga(t)') 

legend('ga_1','ga_2','ga') 

grid 

%(d): The 2-D Approximation for x=[alpha q]' 

AA2=AA(2:3,2:3); 

BB2=BB(2:3); 

CC2=eye(2); DD2=zeros(2,1); 

[ZZ2s PP2s]=ss2tf(AA2,BB2,CC2,DD2); 

Ga2D=tf(ZZ2s(1,2:3),PP2s); 

figure(22) 

impulse(Ga1,Ga2D,5) 

title('Impulse responses ga_1(t), ga_2_D(t)') 

legend('ga_1','ga_1_2_D') 

grid 

%(e): 

Ga10=tf(ZZ2s(1,3),PP2s); 

figure(23) 

impulse(Ga1,Ga10,5) 

title('Impulse responses ga_1(t), ga_1_0(t)') 

legend('ga1','ga10') 

grid 

%(f): 

figure(24) 

impulse(Ga11,Ga10,5) 

title('Impulse responses ga_1_1(t) and ga_1_0(t)') 

legend('ga_1_1(t)','ga_1_0(t)') 

grid 

 


