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AERE355    Fall 2019     Take-Home EXAM 1 Due 9/27(F)   SOLUTION 

[Note: You MUST use the homework format, or risk zero credit. Begin each PROBLEM on a new page. Unless otherwise 

stated, Matlab code should be placed in the APPENDIX. However, the work needed to arrive at the code should be 

included at the problem part.] 

 

PROBLEM 1 (15pts) Recall that 20.5Q V


 is needed to scale lift, drag and moment information. Typically, the value 

for  at a given height h is taken to be in relation to standard sea-level conditions: 
0 287oT K , 2

0 1.01325 5 /P e N m , 

and hence 2

0 1.225 /kg m  . The assumed temperature 
0 287oT K is equivalent to 57.22o F . In this problem you will 

begin by investigating how ignoring the fact that the ground temperature is 
0 310.93oT K  (i.e. 100oF) can contribute to 

an error in relation to the assumed 3

12 0.31194 /a kg m  at a height
12 12h km . [See APPENDIX A on p.394 of Nelson.].  

 

(a)(10pts) Use equations (1.57) and (1.60) of Nelson (as well as other equations needed in order to use these) to arrive at 

the percent error 12 12

12

100%a

a

e
 




   . Show all basic computations of key variables HERE.  [HINT: You should find 

that this error is sufficiently small that using the standard sea-level conditions, no matter what the actual conditions, is 

reasonable.] 

 

Solution: [See code @ 1(a).] 

Since 
12 12h km is in the isothermal region, in order to use (1.60) we need to compute 

11 at the 11 km boundary. From 

(1.57) we have 0(1 /( )

11 11( / )
g R

gnd gndT T
   

 . To use this, we must first find: (i)
11 310.93 11000( .0065)T     o239.43 K , 

and (ii) 5

0 / 1.012(10 ) / (287 310.93)gnd gndP RT     31.1341 kg / m . For 2 2287 /oR m K s   and 2

0 9.81 /g m s  , 

equation (1.57) gives: 
11  30.3727 kg / m . Equation (1.60) for the isothermal region is: 

0 12 11 11( )/( )

12 11

g h h RT
e   

  20.3144 kg / m . Hence, the percent error is e  0.78%   

 

 

(b)(5pts) Consider the B747 transport flying at .000,40 fth    and M=0.9. Information on this craft is given in Table 

B.27 and in Figure B.27. (i): Verify that 5.0
0
LC [See column 1 in Table B.27. The book denotes it as 

LC  ] Show all 

work HERE (i.e. nothing in the APPENDIX). 

Solution:  

(i) From Table A.2, at 40,000 ft. & M=0.9 we have )10(87.5 4 and 2.871)968(9.0 V .  

    Hence, 2 4 20.5 0.5(5.87 10 )(871.2 )Q V     222.77 . From Figure B.27 we have 5500S .  

    Hence, 235,225,1SQ . From Figure B.27 we also have lbW 600,636 . Hence, 5.0/
0

 0.52QSWCC LLtrim
. 
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PROBLEM 2 (40pts) Row 3 of Table B.27 (pp.416) is repeated here for convenience. 

 

                         Table 1 (from TABLE B.27 on p.416 of the book) Longitudinal, M=0.90. 

  

 

 

(a)(6pts) Use only Table 1 to find the value for trim   (in degrees) relative to the ZLL. 

Solution: o5.48 rad
C

C
CC

L

L

trimtrimLL 091.0
5.5

5.0
0

0




  

(b)(6pts) Recall that 
mmm CCC 

0
. Use your result in (a) and Table 1 to find the value for 

0mC .  

Solution: 0.15 )091)(.6.1(0
00 trimmmtrimmm CCCC 


 

 

(c)(6pts) Use (26) of the Ch.2 Notes to compute the value of the static margin, nn Khh


  

Solution:  Equation (26) is: )/(
 Lmn CChh  . So: 0.29 5.5/)6.1(/

 Lmn CCK  

 

 

(d)(6pts) Use your answer in (c) to arrive at the largest value for the cg, call it 
maxx for which the plane will be 

longitudinally stable. 

Solution: From Figure B.27 we have “CG at 25% MAC”. In other words, 25.0h .  

So, from (c): ft13.76 )31.27(504.0/504.029.025.0 maxmax xcxhhhh nnn
aft of the leading edge 

of the wing chord. 

 

(e)(6pts) Use lift and moment arguments to determine if signs associated with 
e

LC


and
e

mC


are correct. 

Determination: A value of 0e corresponds to downward rotation of the elevator. This will result in positive tail lift, 

which is reflected in the positive nature of 
e

LC


. The resulting moment will be stabilizing (i.e. negative). Since this 

moment is 
em

e

C 


and 0e , the sign of 
e

mC


must be negative. Hence, both signs are correct. 

 

(f)(10pts) As the plane approaches landing at sea level, its speed is M=0.25. If the desired angle of attack is 8o, find the 

necessary value for 
e . Assume standard sea level conditions. [See † at the end of this exam.] 

Solution:  

0
0

e
m m m m eC C C C

 
     gives 0

( )

e

m m

e

m

C C

C








 
 . From Table B.27 we have 1.26mC


  and 1.34

e
mC

  . To find 

0mC we need to first find trim  for 0e  : 0
1.25

0.2193 12.565
5.7

L o

trim

L

C
rad

C


     .  

Set 
0

( 1.26)(0.2193)m m trimC C

      0.2763 . The desired 8 0.1396

d

o

trim rad   .  

Hence, we arrive at: 
0.2763 1.26(0.1396)

0.0749
1.34

e rad


   


o
4.29  
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PROBLEM 3 (45pts) For the NAVION plane, Table B.1 gives: 

564.0
yC    074.0

l
C  0.071

nC    134.0
a

lC


 

0035.0
a

nC


 157.0
r

yC


 107.0
r

lC


072.0
r

nC


 

The entry 0.071
nC is in bold because in class we determined  

that the sign of the entry 071.0
nC is incorrect.  

A determination of whether the sign of 
nC

  is correct proceeds as:                       Figure 3 Reprint of book Fig.1.10. 

Determination: For V as shown in the figure, 0 . Application of a ccw moment 0
nC  will tend to bring  back to 

zero. [See the sign of the moment N in Figure 3.] Hence, we must have 0
nC . Hence, the sign is incorrect. 

 

(a)(5pts) Use a similar determination in relation to the sign of 
r

yC


. In doing so, refer to the appropriate figure in the book, 

as well as to the above figure. 

Determination: Rotation of the rudder to the right gives 0r . [See Fig.2.32 on p.77.] This will result in a negative side 

force 0 ryy
r

CC 


. Since 0r , we must have 0
r

yC


. Since 157.0
r

yC


, the sign is correct. 

  

 

(b)(5pts) Figure 2.33 on p.79 implies that for roll angle 

disturbance 0  , the plane will begin to sideslip to the right 

(i.e. 0  ). Prior to the perturbation angle 0  the velocity 

vector V is as shown in Figure 3(b).hown at right.                   

Draw the rotated ( 0  ) front view body axes. Then use it show that                     Figure 3(b). Views for 0  . 

in this plane-body coordinate system we have    cos sin sin sin cosu v w V      V  

Solution: For 0  we have    0 0 0 0 cos 0 sinu v w V   V . In the rotated body coordinate system the 

components of 
0 sinw V   are shown in RED. Clearly, the 

bz component of sinV  is ( sin )cosw V   , and the 

by component of sinV  is ( sin )sinw V   . 

 

(c)(8pts) From (b) it follows that a roll angle perturbation 0  will be accompanied by a side slip angle 

1 1sin ( / ) sin (sin sin )v V     . For sufficiently small  , we have the small angle approximation sin  . Taking 

the arcsine of both sides of this equation gives 1sin  . Hence, for small  and  , we have   . (i) For 

10o  overlay plots of 1sin (sin sin )   and ̂  over the range 0 30o o   . Then (ii) find the value 
max such 

that the error in this approximation is 5% by plotting the percent error vs.  and using the data cursor. 

Solution: [See code @ 3(c).] 

 

From the data cursor we see that 

max 30o   

 

 

 

 Figure 3(c). Plots of  and ̂ (LEFT) and %Error (RIGHT). 

L
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(d)(5pts) In (c) you should have found that the approximation   is accurate for quite a large range of values of  ; 

even for 10o  . Since throughout this course we will be using small angle approximations, we can then assume that 

  . Determine if the sign of 
lC


is correct. 

Determination: ( )l l lC C C
 
   . From Figures 1.10 and 2.33, we must have 0lC  . Since 0   , this requires 

that 0lC

 . The given value is 074.0

l
C . Hence, the sign is correct. 

 

 

(e)(5pts) Differential application of the ailerons with right aileron up will tend to result in 0  . If this is defined as 

0a  , determine if the sign of 
a

lC


is correct.  

Solution: Right aileron up will impart a cw moment 0
a

l l aC C

  . Since 0a  , we must have 0

a
lC

 . Since we are 

given 134.0
a

lC


, the sign is incorrect. [See also all of the other tables.] 

 

(f)(7pts) Suppose that for a certain crosswind situation a value for  is specified. (i) In the absence of aileron activation, 

show that the rudder angle must be 


)/(
r

nnr CC . Then (ii): Recalling that the parameters involved in this expression 

are derivatives, convert this expression to one that is more intuitively obvious. 

Solution:  

(i)   


)/(0
rr

nnrrnnn CCCCC  . 

(ii) 


ddddCddCCC rrnnnn
r

/]//[]/[/  . Hence, we arrive at:  )/( dd rr  . 

 

(g)(10pts) It should be clear that: 
rnannn

ra

CCCC 


      and      
rlalll

ra

CCCC 


 .  

(i) Reformulate these equations into a single matrix equation involving the vector  
tr

r a   for the case of steady level 

flight. Then (ii) implement them in a Matlab code to find the values for r and a  needed to maintain o5 . Give your 

answers in degrees. 

Solution:  [See code @ 4(e).] 

(i) For steady level flight, we have 0 ln CC . In this case, the above equations become: 

                                           )(

1
























































































l

n

ll

nn

a

r

l

n

a

r

ll

nn

C

C

CC

CC

C

C

CC

CC

ar

ar

ar

ar  

 

(ii) The code @ 4(g) gives: [dr da] = [5.27o   -6.97o] 
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†[ [See PROBLEM 2(f).] Correction of  1.11LC  for M=0.25 in Table B.27: The speed of sound is 1116.45 /a ft s . It 

follows that the plane speed is 20.25(1116.45) 279.11 /V Ma ft s   . The air density is 3 3

0 2.3769(10 ) /slug ft  . Hence, 

2 20.5 0.5(0.0023769)(279.11 ) 92.583Q V   From Figure B.27, the plane weight is 636,600W lb and the wing area 

is 
25,500S ft . Hence, the lift coefficient is / ( ) 636600 / (92.583 5500) 1.25LC W QS    . 

 

Appendix   Matlab Code 
%PROGRAM NAME: exam1.m  (9/19) 

%PROBLEM 1: 

%Standard Ground Conditions: 

rho0=1.225; %kg/m^2 

T0=287.16; %deg.K = 57.22 deg.F 

%Ground Conditions: 

Pg= 1.012e5; % N/m^2 

Tg=310.93; % deg.K = 100 deg.F 

R=287; %Ideal gas constant m^2/(deg.K - sec^2) 

g0=9.81; %Gravity constant (N/s^2) 

lambda=-0.0065; % deg.K/m 

%(a): 

h11=11000; % m 

rhog=Pg/(R*Tg); %Air density @ ground 

T11=Tg+lambda*h11; 

%Nelson (1.57) on p.17: 

rho11=rhog*(T11/Tg)^-(1+g0/(R*lambda)); %density @ 11km 

%Nelson (1.60) on p.18: 

h12=12192; %m 

rho12=rho11*exp(-g0*(h12-h11)/(R*T11)); 

%Precent Error: 

rhoa12=0.31194; 

err=100*(rho12-rhoa12)/rhoa12; 

%================================= 

%PROBLEM 3 

%(c): 

a_degrees=10; 

a=a_degrees*pi/180; 

phi_degrees=0:.1: 30; 

phi=phi_degrees*pi/180; 

beta=asin(sin(a)*sin(phi)); 

betahat=a*phi; 

beta_degrees=beta*180/pi; 

betahat_degrees=betahat*180/pi; 

figure(31) 

plot(phi_degrees,[beta_degrees;betahat_degrees]) 

title('Plots of beta and betahat for alpha=10^o') 

xlabel('phi (Degrees)') 

ylabel('Degrees') 

grid 

legend('beta','betahat') 

figure(32) 

err=100*(betahat-beta)./beta; 

plot(phi_degrees,err) 

title('Plot Percent Error for alpha=10^o') 

xlabel('phi (Degrees)') 

grid 

%(g): 

Cnb=0.071; Clb=-0.074; 

Cndr=-0.072; Cnda=-0.0035; Cldr=-0.107; Clda=-0.134; 

b=5; %Specified beta (degrees) 

A=[Cndr Cnda;Cldr Clda]; B=[Cnb; Clb]*(-b); 

D=A^-1*B; 

dr=D(1); da=D(2); 

[dr da] %These are in units of degrees, since b was. 


