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                                                                   WEEK 10 LECTURES 

I. Motivation 

In view of the current cv19 situation, this set of lecture notes is intended to serve as not only a substitute for in-class 

lectures, but to provide the student with deeper insight into exam-related concepts. The intent is that this insight will 

address issues and provide answers to questions that students would otherwise ask in class during this week. 

Rather than addressing such issues in a general framework, this set of notes will address them in the context of examples. 

The chosen examples will not be identical to problems included in the exam. Even so, they will be sufficiently similar so 

as to allows students to ‘connect the dots’. 

Finally, it should be noted that the examples will be addressed in all their ‘gory’ detail. The intent here is to anticipate 

questions or lack of understanding that even the sub-par student might be dealing with. 

 

II. The Relation Between the Transfer Function and the Frequency Response Function 

 

 

Example 1. A simple model for automobile velocity. 

This example was addressed in Lecture 1. The mass is 

being force to the right by a force ( )u t that we refer to 

as the ‘input’. It imparts a velocity ( )v t  to the mass.  

We refer to this velocity as the ‘output. The retarding force ( ) ( )bf t bv t is a viscous friction force model. In other words, 

it is assumed that it is proportional to ( )v t . A force balance yields the first order differential equation: 

 

                                                                   ( ) ( ) ( )mv t bv t u t  . (E1.1) 

 

Note that we have assumed the initial condition (0 ) 0v   .  

 

To arrive at an expression for the output ( )v t  in relation to any input ( )u t , we will rely on  

 

Definition 1. For any ( )x t  defined over 0 t  , the Laplace transform of ( )x t is: 

 

                                                                

0

( ) ( )( ) ( ) st

t
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The variable s in (D1) is any chosen complex number s i   .  

 

 

The most important property in relation to using (D1) to solve (E1.1) is the following: 

 

 

                                                                ( )( ) ( )( ) ( )n nX s x s s X s  . (P1) 
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In words, what (P1) states is that the operation that is taking the nth derivative of ( )x t in the time domain is equivalent to 

simply multiplying ( )X s  by s in the Laplace domain. Here again, it should be noted that (P1) has presumed any and all 

initial conditions that might be related to ( )x t  are zero.  

Applying (P1) in relation to (E1.1) gives: 

 

                                                                       ( ) ( ) ( )msX s bX s U s  . (E1.2) 

 

Before using (E1.2) to obtain the solution for ( )v t , we offer the most important definition in the course. 

 

Definition 2. For any input ( )u t  and resulting output ( )y t , the system transfer function is 
( )

( )
( )

Y s
G s

U s



 . (D2) 

 

Applying (D2) in relation to (E1.2) gives: 

                                                                            
( ) 1

( )
( )

V s
G s

U s ms b
 


. (E1.3) 

 

The transfer function (E1.3) has a single pole: 
1 /s b m  . Since both m and b are greater than zero, this pole is negative 

(i.e. it is in the left half of the complex plane that we will denote as the LHP). Hence, (E1.3) is a stable system. 

 

In order to obtain an expression for the solution ( )v t , we need to be given a specific input. Here, we will assume that the 

input ( )u t is a unit step: ( ) ( )su t u t . We can now use a table of Laplace transform pairs to arrive at the solution ( )v t . 

Specifically, we will use the following pairs: 

                                         
1

( ) ( )s su t U s
s

               and             
1 1

1
( )

ate
a s s a

 
  

 
. (E1.4) 

Now express (E1.3) as: 

                                                                         
1 1
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( / )

G s
m s b m
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  

 
. (E1.5) 

Then from (E1.3) we have: 

                                               
1 1 1 1 1
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. (E1.6) 

 

Applying the second table entry in (E1.4) to (E1.6) gives the solution: 
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                                                                         ( / )1
( ) 1 b m tv t e

b

 
  
 

. (E1.7) 

 

Numerical values- Let 0.5m  and 0.1b  . Then (E1.7) becomes: 

 

                                                                              /5( ) 10 1 tv t e  .  (E1.8) 

 

The figure at right qualitatively verifies (E1.8). We see that the response 

achieves a steady state value 10ssv  at time 25sec.t  This time is equal to 

five 5 , where the system time constant is 5sec.  To be exact, the value 

of (E1.8) at 25sec.t   is ( 25) 9.9326v t   . In fact, mathematically, the 

model response (E1.8) will never achieve exactly 10.0. Then again, the 

viscous friction model, itself, is not exact. The goal is not to obtain an 

exact model. The goal is to obtain a model that captures the behavior of the 

system sufficient for our purposes.  

[m=0.5; b=0.1; G=tf(1,[m b]); figure(1) step(G)]  Figure E1.1 Step response for the TF (E1.5). 
 

 

 

We will now proceed to address elements of this example that relate more directly to Exam 2.  

 

Definition 3. The frequency response function (FRF) associated with a transfer function (TF) ( )G s is defined as ( )G s i . 

 

The FRF associated with (E1.5) is: 

                                                                              
2

( )
0.2

G i
i
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
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

. (E1.9) 

 

The FRF (E1.9) is best expressed in polar (i.e. magnitude/angle) form: 

 

                                                   
1tan ( /0.2) ( )

2 2

2 2
( ) ( )

0.2 0.2

i iG i e M e
i

   
 

  
   

 
. (E1.10) 

A plot of (E1.10) is shown below. It is called a Bode plot because of the log nature of the frequency axis and the 

magnitude. Specifically, the magnitude is 
1020log ( )dBM M . 
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 Figure E1.2 Bode plot associated with (E1.10). 

This figure includes a notable amount of information. We will review it step-by-step. 

 

(i) The dashed line information is called a straight-line Bode plot approximation. In relation to the magnitude 
dBM , we see 

that the horizontal line changes to a line with a slope of 20dB/decade at what is called the break frequency 

1/ 2rad/sec.br   At very low frequencies 20dB 20log( 10)dB sM g   , where the parameter 10sg  is the system 

static (i.e. low frequency) gain. The straight-line approximation is worst at the break frequency, where 

( ) 20 3 17dB.br dBM      Because the magnitude is down 3dB from the static gain at 
br , the frequency range [0, ]br is 

called the system -3dB bandwidth. It is the region where the FRF is within 3dB of its static gain. 

In relation to the phase, from (E1.10) we have: 1( ) tan ( / 0.2)    . The phase straight-line approximation assumes that 

at frequencies below 0.1 0.2rad/sec.br  the phase is ( ) 0o   , and at frequencies above 10 20rad/sec.br  it is 

( ) 90o    . At these two corner frequencies we actually have (0.2) 5.7o    and (20) 84.3o   . We also see that the 

straight-line phase approximation is exact at 
br : ( ) 45 .o

br      

 

(ii) Information in the other two data cursors relates to the placement of ( )G s into a feedback control configuration. In this 

context we will refer to ( )G s as the open loop TF. We see that ( 2) 0dBgc dBM    . In other words, the gain crossover 

frequency 2 / sec.gc rad  corresponds to ( 2) 1gcM s i i   . It is at this value of s that the root locus magnitude 

condition is satisfied. Since 
gcs i is on the imaginary axis, this frequency is of great concern. For, if we also had 

( 2) 180o

gcs i i     , then the root locus angle condition would also be satisfied. In this event, it would follow that 

gcs i is a closed loop (CL) system pole. Having a CL system pole on the imaginary axis corresponds to a marginally 

stable CL system.  
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Fortunately, from the second data cursor we have ( 2) 84.3o

gcs i i     . This value is a full 95.7o above the value 

180o . Hence, this value is called the CL system phase margin (PM).  

 

Controller Design for Improved Performance 

We will now address the design of a proportional controller 

( )cG s K that achieves a 110oPM  . To this end, we begin with a 

Bode plot of the OL system TF that includes the plant 

2
( )

0.2
pG s

s



 and the controller ( ) 1cG s  . The OL TF is then: 

             2 2
( ) ( ) ( )

0.2 0.2
c pG s G s G s K

s s

 
   

  
.               (E1.11) 

The Bode plot associated with (E1.11) is shown at right.  

The lower data cursor shows (0.55) 70o   .      Figure E1.3. Bode plot of (E1.11). 

This value is where the OL phase is 110o above 180o . Hence, if we can force the frequency 0.55  to be the gain 

crossover frequency, then we will have a CL system with 110oPM  . 

The upper data cursor shows that (0.55) 10.7dB.dBM   Hence, we 

will achieve 0.55rad/sec.gc  for 10.7dBdBK   , or, 

equivalently, for ( 10.7/20)10K   0.2917 . The OL TF is now: 

                                    2(0.2917)
( )

0.2
G s

s



.                           (E1.12) 

We see that we now have a CL 110oPM  We also see that the OL 

bandwidth decreased from the range [0,2]  to the range [0,0.2] . 

The consequences of reducing the OL bandwidth by a factor of 10 

are illustrated in the unity feedback CL FRF and unit step 

responses given below. 

     Figure E1.3. Bode plot of (E1.12). 
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 Figure (E1.4). CL Bode plots (LEFT) and step responses (RIGHT). 

From the CL FRFs we see that by reducing the OL BW by a factor of 10, the CL BW was reduced by a factor of 

2.19 / 0.79 2.78 . The larger the system BW, the more quickly it will respond. This BW reduction results in a notably 

slower step response, as shown at right.  

 

 

 

 

 

 

 

 

 

 

 

 


