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                                                            The Q Factor of a Second Order System 

Consider a second order underdamped system with transfer function 
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Notice the (1) was chosen to have unity static gain. This is merely a convenience.  
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where we have defined 2( / )nr  


 . ( )P   called the power spectrum associated with (1). It should be clear that ( )P    

is the FRF magnitude-squared. 

 

In order for (2) to have a resonance, there must be a value of r that makes the denominator less than 1. This, in turn will 

place a requirement on the range of  values. Setting 2 2(1 ) 4 1r r    gives 22(1 2 )r   . Since we cannot have 0r  , 

it follows that that we must have 1/ 2  . This is worthy of 

 

Result 1. A second order underdamped system will have no resonance for 1/ 2  . 

 

In view of this result, in the all of the following development, we will assume that 1/ 2  . 

 

We will now find the frequency, 
res at which (2) achieves a maximum.  Setting the derivative of (2) equal to zero and 

solving for r gives
21 2r   . Hence, (2) is maximum at the frequency:  

 

                                                                            
21 2res n    . (3a) 

 

The value of (2) at the frequency (3a) is: 
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The frequency (3a) where the power of the FRF is a maximum is called the resonance (or resonant) frequency.  

 

The primary focus of these notes is on the Q-factor associated with (1). 

 

 

Definition 1 The Q factor associated with an underdamped system is defined as /resQ  


  , where 
2 1     . The 

frequencies 
1,2 satisfy 

1,2( ) 0.5 ( )resP P  . They are called the half-power frequencies. 

 

We will now arrive at the expressions for 
1,2 . To this end, consider the frequency 

0  satisfying 
0( ) 0.5 ( )resP P  . 

Then from (2) and (3b) we have: 
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where we have set 2

0( / )nr  


 . From (4) we have: 

 

                                                                   2 2 2 2(1 ) 4 8 (1 )r r      . (5) 

 

This, in turn, gives: 

                                                             2 2 2 22(1 2 ) [1 8 (1 )] 0r r        . (6) 

The solution to (6) is: 
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1,2 (1 2 ) 2 1r       . (7) 

 

From (7) we arrive at: 
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Using (3), (8) becomes: 
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Hence, we arrive at: 
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Before we go further, it should be pointed out that in (10) we must have 
1 0  . It is easy to show that this requires that 

 

                                                                                    0.38265  . (11) 

 

Hence, we see that it is (11) and not 1/ 2  that bounds  .  

 

From (7) we have:                                       2
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We then have 

 

Result 2. The Q-factor associated with (1) is:  
2 11/ ( )Q r r   for 0.38265  . For 0.38265  , Q is not defined. 
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Remark 1. Many textbooks on the subject give the 

approximate expression ˆ 1/ 2Q  . The accuracy of this 

approximation is shown at right. 

 

We see that, indeed, ˆ 1/ 2Q  is an excellent approximation 

of 
2 11/ ( )Q c c   for 0.2  . For 0.38265  , Q̂ is ~2.6dB 

higher than the true value. Many textbooks fail to mention is 

that it is valid for only 0.38265  . Moreover, they do not 

give the expression for the true Q. Fortunately, Q is rarely 

addressed for damping ratios 0.25  . 

[Note: 20logdBQ Q .] Figure 1 Plots of 
2 11/ ( )Q c c   and ˆ 1/ 2Q  . 

 

The FRF plots below offer some visual appreciation. 

 

 

 

 

 

 

 

 

 

 

 

 

               Figure 2. Power Spectrum plots for 0.01  (LEFT), 0.1  (CENTER) and 0.38268  (RIGHT). 

 

 

A Brief Look Into the More General Case with Poles at the Origin 

 

We will now consider the more general case where 
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Note that the power 2 m in the numerator of (13) is, again, 

merely for convenience. Because (13) has m poles at the origin, 

its low frequency power behavior will entail a slope of 

20 dB/decm .  

One should suspect that this roll-off will reduce the range of  -

values such that the peak at resonance is at least 3dB above the 

value at 
1 . As was done in  relation to (2), let 2( / )nr  



 . Then 

the power spectrum associated with (13) is:   
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      Figure 3. The power spectrum (14) for 0.1  . 
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Figure 3 shows the power spectrum (14) for 0.1  . The -3dB relative BW is 
2 1 1.07 0.85 0.22r r r      , and the 

relative resonance frequency is 0.98resr  . Hence, / 4.45resQ r r   , or 12.97dBdBQ  . This value is indicated by the 

double arrow in Figure 3. If we approximate Q by ˆ 1/ 2 5Q   , or ˆ 13.98dBdBQ  , we see that it is about 2dB higher 

than the true value. It is important to note that the double arrow was obtained by first constructing a straight-line 

approximation of the power spectrum.  

 

Note from Figure 3 that ( )P r has both a relative minimum and a relative maximum. Setting ( ) 0P r   gives: 

 

                                        ( ) 2 2 2 2

1,2 ( 1)(1 2 ) 1 4( 1) (1 ) / ( 2)mc m m m          
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. (15) 

The square root of the smaller element of (15) gives the relative minimum scaled frequency prior to the resonance, while 

the larger element gives the resonance scaled frequency.  

 

Proceeding to use (15) in order to arrive at an explicit expression 

for ( )resP r would allow us to identify the largest value for  such 

that the Q-factor is defined. Instead, we simply searched for it. 

The result of this search is shown in Figure 4.  

 

The relative frequencies computed from (15) are (1)

1 0.594c   

and (1) (1)

2 0.945resc r  . They match well with 0.6034 and 

0.9564, respectively. The damping ratio 0.1475  results in a 

3dB dip between the two frequencies. Hence, 0.1475  is the 

largest damping ratio for which a Q-factor is defined for 1m  .  

The true and estimated Q-factors are      Figure 4. Power spectrum for maximum 0.1475  . 

0.9564 / (1.086 .6034) 1.98 5.94Q dB     and ˆ 1/ (2 0.145) 3.39 10.6Q dB    . We see that the estimate is 6.5dB 

greater than the truth. 

 

While it would have been instructive to arrive at the expression for Q by finding expressions for the -3dB frequencies (1)

1  

and (1)

2  as was done for 0m  , we did, at least find the expression for the resonance frequency ( ) ( )

2

m m

res n c  .  

 

Result 2. For 1m  , the Q-factor is not defined for 0.1475  . The resonance frequency for any m is ( ) ( )

2

m m

res n c  .  

 

Conclusions: For second order underdamped systems, the Q-factor is commonly taken to be ˆ 1/ 2Q  . In fact, in some 

textbooks it is taken as the definition of the Q-factor. If one accepts Definition 1, then: 

 

 For 0m    ˆ 1/ 2Q  is a reasonable estimate of Q for 0.25  . A Q-factor only exists for 0.38  .  

 

 For 1m    ˆ 1/ 2Q  is a reasonable estimate of Q for 0.1  . A Q-factor only exists for 0.14  . 

 

 For 2m   one can expect that A Q-factor only exists for, at most, 0.1  .  

 

 The above bullets are perhaps the likely reason that often engineers do not address a Q-factor for 0.1  .  

     I, myself am guilty of having violated this bound  
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Matlab Code 
%PROGRAM NAME: Qfactors.m 

%This code investigates two definitions of the Q-factor 

%for a 2nd order system: 

%Qhat=(2*z)^-1 

%Q=wr/dw where dw is the 1/2 power BW range. 

%--------------------------------------------- 

z=0.01:.0001:.38265; 

%max z for r1>0 is 0.3826 

r1=sqrt(1-2*z.*(1-2*z.^2).^-1.*sqrt(1-z.^2)); 

sqr=sqrt(1+2*z.*(1-2*z.^2).^-1.*sqrt(1-z.^2)); 

Q=(sqr-r1).^-1; 

Qhat=0.5*z.^-1; 

QdB=20*log10(Q); 

QhatdB=20*log10(Qhat); 

figure(1) 

plot(z,QdB,'b','LineWidth',2) 

hold on 

plot(z,QhatdB,'r--','LineWidth',2) 

title('True and Approximate Q-Factors') 

legend('Q','Qhat') 

ylabel('dB') 

xlabel('Damping Ratio (z)') 

grid 

wn=1000; 

z=0.38268; 

wr=wn*sqrt(1-2*z^2); 

Pwr=1/(4*z^2*(1-z^2)); 

PwrdB=10*log10(Pwr); 

Q1=(2*z)^-1 

%---------------- 

w1=wr*sqrt(1-2*z*(1-2*z^2)^-1*sqrt(1-z^2)); 

w2=wr*sqrt(1+2*z*(1-2*z^2)^-1*sqrt(1-z^2)); 

Pwr1=Pwr/2; Pwr1dB=10*log10(Pwr1); 

Pwr2=Pwr1;  Pwr2dB=Pwr1dB; 

dw=w2-w1; 

Q2=wr/dw 

%--------------------- 

w=0.8*w1:.0001:1.2*w2; 

M2=wn^4*((wn^2-w.^2).^2+4*z^2*wn^2*w.^2).^-1; 

M2dB=10*log10(M2); 

figure(2) 

semilogx(w,M2dB) 

grid 

hold on 

plot([wr w1 w2],[PwrdB Pwr1dB Pwr2dB],'*r') 

title(['Power Sepctrum for z= ',num2str(z),' .']) 

xlabel('Frequency (rad/sec)') 

ylabel('dB') 

%=========================================== 

%Include m poles @ the origin: 

m=1; 

z=0.1475; 

r=0.01:.001:100; 

P=(r.^m.*((1-r).^2+4*z^2*r)).^-1; 

PdB=10*log10(P); 

sqr=sqrt(r); 

figure(11) 

semilogx(sqr,PdB) 

title('Power Spectrum P(r)') 

xlabel('sqrt(r)=w/wn') 

ylabel('dB') 

legend('z=0.1475') 

grid 

%--------------------------------- 

% -3dB relative frequencies: 

rctr=((m+1)/(m+2))*1-2*z^2; 

dr=sqrt(1-(m+1)^2*4*z^2*(1-z^2))/(m+2); 

r1=rctr-dr; 

rres=rctr+dr; 

sqr1=sqrt(r1); 

sqrres=sqrt(rres); 

[sqr1 sqrres] 


