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Lecture 8                    Class Example of Pole Placement Using a Lead/Lag Controller 

 

In this lecture we will complete our time domain approach to controller design. Specifically, we will address two topics: 

 

1.Using the bisector method of designing a lead controller, as opposed to a PD controller. 

 

2.Using a lag controller to achieve the steady state error specification without altering the placed closed loop pole. 

 

Consider the command feedback control system shown below. 

 

The plant is a DC motor with 
)1(

100
)(




ss
sGp

 [Degrees/volt]. 

 

PROBLEM: Design a controller that will satisfy the following closed loop  

specifications: 

(S1): All time constants less than 0.25 sec. 

(S2): All damping ratios greater than 0.707. 

(S3) Steady state error for a ramp input ttr 1.0)(   [degrees/sec.] must be  

no more than 0.01o. 

 

(a) How about using KsGc )( ? 

Answer: The root locus at the right shows that (S1) cannot be satisfied  

for any K.  

 

(b) The design region associated with (S1) and (S2) 

is shown at the right. We will design a lead compensator that 

will pull the root locus in (a) to the left, so that it passes 

through the closed loop pole location shown in red.  

 

To determine how much angle must be added to satisfy the 

root locus angle criterion: ooo

pz 262)127135(00   . 

Hence, the controller must add 
o82 . Were it to entail to add only an open 

loop zero, it would need to be located as shown by the orange zero at the 

right. This would be a PD controller. We (as well as the authors) have 

pointed out the drawbacks of PD control; namely (i) sensitivity to high 

frequency noise, and (ii) a high power requirement. 

 

Using the bisector method, we split the 82o as shown in green.  

This results in: 













77.8

5.1
39.0)(

s

s
sGc

. This is called a lead controller (or compensator). It is because the zero adds more 

root locus angle than the pole. One could also say it is because the controller zero is closer to the origin than the pole. 

 

 

 

 

Gc(s) )(sGp  

controller plant 

)(t)(tr

regiondesign

25.0

707.0

4

4i

o135o127

77.8

4i

o135o127
o82

o41o41

5.1
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 is shown below. It shows that we will not be able to satisfy (S1) completely. 

The complex pole satisfies it, but the real pole at -1.73 does not. [NOTE: The root locus is interesting!] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

However, the closed loop unit step response shown above suggests that this time constant (1.58sec) does not have much 

‘presence’. And so, we will go with this lead controller. [NOTE: An alternative would be to not use the bisector method, 

and, instead, place the controller zero at -4. There are an infinite number of possibilities ]  

 

Before proceeding, it is worth noting that the step response also has significantly more overshoot than one might expect a 

complex pole with 707.0 to give. This is due to the presence of the controller zero. Such overshoot can wreak havoc, 

since it could generate oscillations of the load (in this case, the tracking antenna) that would lead to rapid material fatigue. 

 

Specification (S3): Notice that the closed loop static gain equals 1 (as evidenced in the step response). It follows that the 

response to a unit ramp input will be finite. To see this, we will now develop the notion of a system type number for a 

unity feedback command control system W(s). Suppose that the system input is m

r tt )( , with Laplace transform 
1/!)(  m

r sms . Then the steady state error is (for m > 0): 
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In order for ess to be finite, the open loop G(s) must have at least m poles at the origin. If it has more, then this error will 

be zero (assuming the CL is still stable). If it has exactly m poles at the origin, then this error will be nonzero but finite. In 

this case, the closed loop system is said to be a Type m system. We will now apply this to specification (S3): For 

ttr 1.0)(  , we have 

                    o

s

pc
ss

ss

sss

s
s

sGssGssG
e 015.0

)1(

100

77.8

)5.1(39.
lim

1.0
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. 

 

To reduce this error to 0.01o, without altering the closed loop pole location at 44 i , we will incorporate a second 

pole/zero controller, whose pole and zero as sufficiently close to zero that they contribute essentially a net angle of 0o to 

the root locus angle criterion.  

Specifically, let 
ps

zs
sGc




)(

2

. Then 
p

z
Gc )0(

2
, and the steady state error becomes 
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And so, (S3) results in )/(015.001.0 zpess  , or pz 5.1 . If we 

choose p=-.05, then z=-.075, and so 

05.

075.
)(

2 




s

s
sGc

. For this controller the pole is closer to the real axis 

than the zero. Hence, it is called a lag controller (or compensator). 

The resulting closed loop unit step response is  shown at the right, in 

comparison to that associated with only the lead controller. There is 

essentially no difference. This is because the lag controller pole and 

zero are so close to each other that they nearly cancel out. 

 

 

Closed Loop response to the Ramp- 

 

The closed loop response to ttr 1.0)(  is shown below at the left, for both the lead and lead/lag controllers. From that 

figure it is difficult to see any difference between the two controllers. The figure at the lower right shows the error for 

each controller. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We see that the addition of the lag controller did, indeed, result in satisfying (S3). However, the steady state error is not 

achieved until ~50 seconds! This leads to the following question: 

 

What was the intent behind the specification (S1)? If it was in relation to the time to achieve a fixed angle, then the above 

step response indicates that it was satisfied. If it was in relation to the time to achieve a steady state error for a ramp input, 

then it was not at all achieved.   □ 

 

Conclusion: A lead controller is used to address CL dynamics, while a lag controller is generally used to address steady 

state performance. Once again, we see that controller design is as much an art as it is a science. We have a lot of 

opportunity to experiment with various controller pole/zero arrangements. It should also be reiterated that design 

specifications can include potential ambiguities. For example, is the specified response time chosen in relation to position 

or to ramp tracking error. 
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Matlab Code 
% PROGRAM NAME: LEC9_leadlag.m 

Gp = tf(100,[1 1 0]); 

% PART (a): 

figure(1) 

rlocus(Gp) 

grid 

title('Root Locus for Gc = K') 

% Incorporate Lead Controller 

Gc = tf([1 1.5],[1 8.77]); 

G1 = Gp*Gc; 

figure(2) 

rlocus(G1) 

grid 

title('Root Locus for Lead Controller #1') 

G1 = 0.39*G1; % Incorporate Controller K-value 

H = tf(1,1); 

W1 = feedback(G1,H); 

figure(3) 

step(W1) 

grid 

title('Unit Step Response Using Lead Controller #1') 

% Incorporate Lag Controller 

Gc2 = tf([1 .075],[1 .05]); 

G2 = G1*Gc2; 

W2 = feedback(G2,H); 

hold on 

[th,t]=step(W2); 

plot(t,th,'r') 

title('Unit Step Response with Lead (blue) Lead/Lag (red) Control') 

figure(4) 

% Compute Response to the Ramp Input 

t = 0:.001:50; 

thr = 0.1*t; 

th1 = lsim(W1,thr,t)'; 

th2 = lsim(W2,thr,t)'; 

plot(t,thr,'k',t,th1,'b',t,th2,'r') 

grid 

title('Closed Lopp Response to Input 0.1*t for Lead (blue) and Lead/Lag (red)Control') 

figure(5) 

err1 = thr - th1; 

err2 = thr - th2; 

plot(t,err1,'b',t,err2,'r') 

grid 

title('Closed Loop Error for Input 0.1*t for Lead (blue) and Lead/Lag (red)Control') 


