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Lecture 7                     The Mathematics of the Root Locus 
 

Example 1. Consider a feedback control system with open loop 
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 . The closed loop 

poles are the values of s that solve the equation: 0
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The polar form in (1) is really helpful, since this single equation can be replaced by the following two equations: 
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Hence, s will be a closed loop pole if and only if it satisfies the left equation (the RL magnitude condition) and the right 

equation (the RL angle condition).  

 

The magnitude condition allows one to compute the required value of K to solve it for almost any chosen value of s. Once 

we have found the value for 1z that satisfies (2b), only then does (2a) permit us to compute what K must be.  

 

It is the angle condition that governs the behavior of the root locus as  0K . Consequently, the key to 

understanding the behavior of the root locus is to understand the angles involved in (2b).  

 

The geometry associated with (2b) is shown at right for three closed loop pole 

candidates. Let’s now prove that both
1s and

3s are viable candidates, while
2s is 

not. 

 

1s : 
1 1 2

( ) 0 ( 0)z p p          ;  
2s : 

1 1 2
( ) ( 0) 0z p p          ;  

3s : 
1 1 2

( ) ( )z p p             .  

 

What we have proven here is a special case of the more general result 

concerning real-valued closed loop pole (i.e. root) candidates: 

 

Result 1. The root locus will include every region on the real axis that is to the 

left of an odd number of open loop poles and/or zeros. 

 

This result is illustrated at right. Notice also that each locus begins at an open 

loop pole and ends at an open loop zero. The plot shows only one finite zero, 

and so there must be another at  .  

 

Let’s place a closed loop pole at 0.5s   . Then the magnitude criterion (2a) gives: 
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. Hence, we require 1.5K  to place this pole at the desired location.  

 

QUESTION: Can you now figure out where the second closed loop pole is? □ 
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The general root locus criteria are: 

 

                     1

1

| |
1

| |

m

k
k

n

k
k

s z
K

s p





 


 

      (3a)    ;        
1 1

180
k k

m m
o

z p

k k

 
 

          (3b) (3) 

 

 

Example 2. For 
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the CL root locus is at right. 

 

(i)Find theta: IN-CLASS 

 

 

(ii)Find beta: IN-CLASS 

 

 

(iii)Find cg: IN-CLASS 

 

 

 

 

 

 

 

 

 

 

Example 3. Consider
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 and ( ) 4cG s s  .  

Then 
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2( 12.5)( 4)
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. The CL root locus is at right. 

 

(i)Use the angle criterion to find the departure angle from the 

complex poles. 

 

IN-CLASS 

 

 

 

 

(i)Use the gain expression to find the point at which the 

locus intersects the real axis. 

 

IN-CLASS 

 

Remark 1. The book gives only 5 ‘RULES’ for root locus plotting. This is better than in the 1st edition; which gave 12.  

 

Remark 2. The book goes into detail in Design Using Lead Compensation (5.4.1). This is important reading. We will also 

cover Lag Compensation and Lead/Lag Compensation. So please read this section. 

 

Remark 3. Example 5.13 addresses the design of an autopilot for a Piper Dakota aircraft. This is an excellent example of 

how complicated things can be in the real world. Please read through this example.  
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Example 4. [Another real design problem- IN CLASS ] In this example we have the plant 
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.  

 

Q1: What might this plant correspond to?   

 

( ) ( )R Rf my b y y k y y      gives 
R Rmy by ky by ky    . Hence: 
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with poles at
1,2 n dp i   and with a zero at

1 / 2nz    . For 
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: 

1,2 1 4.9p i  and 
1 12.5z   . 

 

Q2: What is behavior of the plant that might warrant feedback control? 

 

As seen in the plot at right, the response has significant overshoot. Furthermore, 

it is dictated mainly from the poles. It also has a settling time of ~5 sec. 

 

 

Q3: What might be the desired behavior? 

 

Faster response, minimal overshoot, and accurate steady state positioning. 

 

 

Q4: What closed loop specifications might we make? 

 

(S1): Type 1 with ramp 0.2sse   ;    (S2): 5 1sec.  ;    (S3): max. overshoot <0.05. 

 

 

Q5: Are the specifications achievable? 

 

(S1): Type 1 with ramp 0.2sse   : This will require a controller with a zero at the 

origin. It will also require that 
0 0

lim ( ) ( ) lim ( ) 5c p c
s s

sG s G s sG s
 

  . A root locus plot 

of ( / ) ( )pK s G s is shown at right. We see that pure integral control is not 

appropriate. The plant zero is so far away from the i-axis that it cannot attract the 

loci into the LHP. Hence, the controller will need to include a zero that can better 

attract the loci. However, it must be placed to the left of 5 0s i   so that the real 

root might achieve (S2).  

 

Let’s try ( 6)
( )c

K s
G s

s


 . The root locus at right shows that this 

controller might just work. With a controller gain of at least 

16.9 (S3) is satisfied. For gains in this region the real CL pole 

will be to the left of the 0.2  line. 

 

For 17K  , 
0 0

( 6)
lim ( ) lim 6 6(17) 102

6
c

s s

K s
sG s s K

 

 
    

 
will 

clearly satisfy 0.2sse  . 
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Let’s now see if the controller 17( 6)
( )c

s
G s

s


 does the trick. 

The plot at right shows that while (S2) is satisfied, (S3) is not. We could 

plot the ramp steady state error. However, we can compute it directly from  
2

3 2
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. 

Hence: 2

0
lim ( ) / 25 / 2550 0.01ss
s

e s s s


   . 

 

So, our problem lies with the excessive overshoot. Clearly, this is due to the 

closed loop zeros.  

 

 

 

We could go into a black hole in investigating how to modify the controller 

so that the closed loop zeros would have a reduced effect. OR- we could try 

to simply crank up the controller gain and see what happens. The CL step 

response for K=30 is shown at right.  

 

What we find is that not only do we have zero overshoot; we have also 

dramatically reduced the response time.  

 

How did this happen? 

 

The CL zeros and poles are: 

 

z =   -12.5   ;    -6.0 

 

p = -1003  ;  -12.3   ;   -6.0 

 

What we see is that the closed loop transfer function as a pole/zero cancellation. And so, it behaves like the order system: 

1

987( 12.5)
( )

( 1003)( 12.3)
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 . In fact, this reduced order system has an almost second pole/zero cancellation. Hence, its 

dynamics can be approximated by 
2

1003
( )

1003
rW s

s



. 

 

Conclusion: Life can be ‘complicated’. And sometimes it works out for the better. However, having said that, we did pay 

a price; namely, we needed a more powerful controller. One can try to minimize the controller power by trying to achieve 

the boundaries of the specifications. But if one has the power, then one can try to improve upon them. It should be clear 

from this example, that controller design is as much an art as it is a science. As an art form, some may find it beautiful, 

while others may find it repulsive. In either case, real art involves creativity. With the accelerating developments of the 

day, engineers would do well to strive for more creativity. However, it should be founded on science. It should not be 

mindless brainstorming. 

 

 

 

 

 

 

 


