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Lecture 6                   The Roots of a Parameterized Polynomial (i.e. a Root Locus) 

 

QUESTION: What is a parameterized polynomial? 

 

ANSWER: It is a polynomial that includes a parameter that can be varied. 

 

 

Example 1. Consider Kssssp  252)( 23 . 

 

Write a Matlab code that will plot the roots of )(sp for K=0:0.1:100. Then use 

the data cursor to find the values of the purely imaginary roots when they hit the 

imaginary axis. Finally, substitute one of those purely imaginary values into 

)(sp , and solve it for the corresponding K value. 

Solution: [See code @ 1(e).]  

                       500)5(25)5(2)5()5( 23  KKiiiisp  

 

 

       Figure 1 Roots of )(sp  as a function of K. 
%PROBLEM 1(e): 

K=0:.1:100;   %LET K VARY FROM 0 TO 100 

n=length(K); 

rp = zeros(n,3); 

for k=1:n 

    rp(k,:)=roots([1 2 25 K(k)]); %FIND THE ROOTS FOR A GIVEN K 

end 

RE=real(rp);  %BY DEFAULT, THEY ARE ASSUMED TO BE COMPLEX-VALUED 

IM=imag(rp); 

figure(1) 

plot(RE,IM,'*')  %PLOT THE PARAMETERIZED COLLECTION (OR LOCUS) OF ROOTS 

grid 

 

Note that the value for K that corresponds to purely imaginary roots is critical, since for that value the system is 

marginally (or neutrally) stable. This is because the polynomial of interest is the system characteristic polynomial. From 

the above plot, we see that the system will be unstable for all values of K greater than 50crK  . □ 
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Rather than writing our own code to find the root locus for ( )p s ,  

we will use Matlab’s ‘rlocus’ command: 

 
Gp=tf(1,[1 2 25]); Gc=tf([1 5],[1 0]);  rlocus(Gc*Gp) 

 

Note that the rlocus argument is the open loop transfer function 

)()()( sGsGsG scp
with K set to 1.0. With this argument, the ‘rlocus’ code 

computes the s-values that satisfy 0)()()(1  sGsGsKG scp
for a range of 

K-values. □ Figure 2 Closed loop root locus.  
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The root locus is a useful tool for the method of controller design via pole-placement. The designer first determines the 

desired closed loop specifications. These are then translated into related closed loop pole locations. Having these, the 

designer then uses the root locus angle criterion to arrive at the controller pole/zero locations. Finally, the required root 

locus gain, K, is determined using the root locus magnitude criterion.  We will develop these criteria in the next lecture.  

 

We will now review the geometry of complex poles and their relation to typical specifications. 

 

 

GEOMETRY 101 :     
 

Consider the polynomial 2 2( ) 2 n np s s s    having complex-conjugate roots. From the quadratic formula, the roots 

of ( )p s are: 

                                       2
2.1 1  



nddn whereis  for 10  . (1) 

 

The plots below illustrate the geometry associated with (1). 

 

 

 

 

 

 

 

     (i) 21   d               (ii) 21                    (iii) 21   n                            (iv)  
1 2     

 

                    Figure 3. The plots show areas of constant (i) d , (ii)  , (iii)  , and (iv) n . 

 

We will now review how the shaded regions in Figure 1 are arrived at in relation to 1 n ds i    . 

 

(i) 21   d : Since d is the imaginary part of 1s it follows that lines of constant d are horizontal. 

 

(ii) 21   : Since 1/ n  and 
n is the real part of 1s it follows that lines of constant are vertical. 

 

(iii) 21   n : Since 
2 2

1| | ( )n d ns       , we have 2
2.1 1  



nddn whereis   

it follows that a line of constant n is a circle of radius n . 

 

(iv) 
1 2    : From (ii) and (iii) we have cos /n n     , or 1cos  . Hence, a line of constant  is radial. 

 

 

Example 4. Suppose that we require that system poles adhere to specifications: (S1) 

0.7 0.9  and (S2) 0.1 0.2  . The pole region associated with these specifications is shown 

at right. □ 

 

 

 Figure 4. CL pole design region. 
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Example 5. A Simple Example of Pole-Placement Design 
 

For a plant 
2

( )
( 1)

pG s
s s




, design a controller that will satisfy (S1) 0.707 1/ 2   and (S2) 0.5  . 

(a) Since 1/ 2 2 2 2.828n n       , we have 21 2d n     . Hence, the required closed loop poles are 

1,2 2 2s i   .   

 

(b) For ( )cG s K use a root locus plot to show that this controller 

cannot place the CL poles 
1,2 2 2s i   . 

 

Gp=tf(2,[1 1 0]);   rlocus(Gp) give the plot at right.  

 

Clearly, the vertical locus never comes close to 
1,2 2 2s i   . 

 

 

 

 Figure 5. Root locus for 
2

( )
( 1)

p

K
KG s

s s



. 

 

The root locus angle criterion states that 
1 2 2s i   will be on the CL root locus if the following condition is satisfied: 

 

                                                                 ( ) ( ) 180o

z p

k k

k k     . (2) 

where ( )z k is the angle from the kth open loop zero to 
1s , and where ( )p k is the angle from the kth open loop zero to 

1s . 

 

 

(c) Use (2) to prove that no controller of the form  ( )c pG s K can result in 
1 2 2s i   . 

 

( ) ( ) 0 (135 116.56 ) 251.56 71.56 180o o o o o o

z p

k k

k k          .  

Hence, the angle criterion id ‘off’ by 71.56o . So, not only have we proved that the 

controller ( )c pG s K will not work. We have also determined how much angle the 

controller must add to the root locus.     Figure 6. Root locus angles for ( )c pG s K . 

 

 

(d) In view of (b), consider the PD controller ( ) ( )cG s K s   . From (b) we must have 

1
71.56o

z  . Hence, 
1

tan71 2 / ( 2)o

z    results in   2.67 . Hence: 

 

                                                  ( ) ( 2.67)cG s K s  .  

 

 

    Figure 7. Root locus angles for ( ) ( 2.67)cG s K s  . 

 

Before determining the required value for K , let’s obtain the root locus plot. 
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Gc=tf([1 2.67],1);  rlocus(Gc*Gp)  grid 

 

The root locus plot at right confirms that for 1.5K  the closed 

loop transfer function will have poles at 
1,2 2 2s i   .  

 

The advantage of obtaining this plot is that we can avoid the use 

of the root locus magnitude criterion by simply using the data 

cursor.  

 

 

 

 Figure 8. Root locus for ( ) ( 2.67)cG s K s  . 

 

(e) Use the ‘feedback’ command to obtain the closed loop transfer function 
( ) ( )
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1 ( ) ( )
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G s G s
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
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Gc=1.5*Gc;  W=feedback(Gc*Gp,1)     W = (3 s + 8.01)/(s^2 + 4 s + 8.01) 

  

 

(f) Use the ‘zpkdata’ command to verify that the specifications have been satisfied. 

 

[z,p,k]=zpkdata(W,'v') 

 

z =-2.6700    p =  -2.0000 +/- 2.0025i   k =3 

 

 

(g) Overlay the step responses for 
2

3 8
( )

4 8

s
W s

s s




 
 and *

2

8
( )

4 8
W s

s s


 
. Then comment. 

 

[n,d]=tfdata(W,'v')  n = 0    3.0    8.01   d = 1.00    4.00    8.01 

WW=tf(n(3),d)       WW = 8.01 / (s^2 + 4 s + 8.01) 

step(W) 

hold on 

step(WW) 

title('Step Responses') 

legend('W','WW') 

grid 

 

 

 Figure 9. Step responses for ( )W s  and *( )W s . 

 

Comment: A main reason for choosing 0.707 1/ 2    is that the associated poles will yield minimal overshoot. What 

we see in Figure 9 is that the actual overshoot is notably greater than what was expected due to the zero in ( )W s . This 

illustrates a major limitation of the controller pole-placement design method. It specifies the closed loop poles, but ignores 

closed loop zeros.  □ 

 

 

 

 

 

  

 


