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Lecture 5        System Steady State Performance and Type Number 

 

Consider a stable system with transfer function )(sW . Recall that, because )(sW is stable, it follows that every 

bounded input will result in a bounded output. In particular, suppose the input is a step with amplitude Uo; that is, 

)(1)( tUtu o . Then, in the s-domain, the output is 
s

U
sWsUsWsY o)()()()(  . Since, here, we are interested 

in the steady state response, we know that if the system static gain is )0(W , then the steady state response will be 

oss UWty )0()(  . This result demonstrates what is known as 

 

The Final Value Theorem (FVT)  Suppose that )(lim ty
t 

exists. Call this final value ssy . Let )(sY be the Laplace 

transform of )(ty . Then )(lim
0

sYsy
s

ss


 . 

 

Notice that, in the case of a step input, the 1/s in its Laplace transform is cancelled by the s in the final value 

theorem to give the result oss UWy )0( .  

 

Now, let’s assume that the system )(sW  is a tracking system. Specifically, 

 

Definition 1. A tracking system is one wherein it is desired that the output track the input. Such a system is also 

referred to as a command system (i.e. the input is the command, and the output is the response to the command.), 

or a reference system. [Notation: In the case of a tracking system, it is customary to use the notation )(tyc  (or, 

)(tyR ) to denote the input, and )(ty to denote the output.] 

 

In an ideal world a tracking (or command) system will exhibit perfect tracking (or, command response) in the 

steady state; that is, the steady state error 0)()(lim)(lim 


tytytee R
tt

ss . In words, the error is the 

difference between what you want and what you get. 

 

Before going further, let’s return to the above system )(sW . Suppose that )(sW is a stable tracking system. Then 

for a command input )(1)( tYty oR  , the steady state output is oss YWy )0( . Consequently, the steady state 

error is oooss YWYWYe )]0(1[)0(  . And so, this system will be able to track a constant, oY , perfectly if 

and only if 1)0( W ; that is, the stable system )(sW  has unity static gain.  

 

Now, suppose that the steady state tracking error for the step input is small, but not zero. Specifically, suppose 

that ooooss YYWYWYe  )]0(1[)0( for some 0 . We now address the following: 

 

Question: How well can the system track a ramp input? 

 

Answer: To answer this question, let’s define the error transfer function: 

 

Definition 2. For a tracking system, the error transfer function is )(/)()( sYsEs R



 , where )(sE is the Laplace 

transform of the error )()()( tytyte R  , and )(sYR is the Laplace transform of )(tyR . 

 

With this definition, in the s-domain we have: 
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Hence, for a ramp input tVty or )(  with Laplace transform 
2/)( sVsY or  , the error in the s-domain is  
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)](1[)()()(
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R  . (2) 

 

Applying the FVT to (2), we obtain 
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We can draw a number of conclusions from (3): 

 

(C1): Even though the steady state error to a step was finite, because it was not zero, the system is not able to 

track a ramp with finite steady state error. 

 

(C2) Had the error transfer function )(1)( sWs  included a zero at the origin (i.e. an s term in the numerator 

polynomial), the system would have been able to track a ramp with finite steady state error. In this case, the 

tracking error for a unit step would have been zero. 

 

We are now positioned to define what we mean by the type number of a system. 

 

Definition 3. A type-n system is a system that exhibits finite, non-zero steady state error for an input that is an nth 

degree polynomial in t. 

 

In view of this definition, we can conclude the following important result: 

 

Important Result #1: A command tracking system , )(sW , is a type-n system if and only if the error transfer 

function )(1)( sWs  has n zeros at the origin.  

 

 

Now lets’ get a bit more specific. Suppose that a tracking system )(sW  has the form 
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   (where nm  ). 

 

Then the error transfer function is 
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Hence, )(sW will be a type-m system if and only if only the coefficients of the lowest m-1 powers of s for 

)(sA and )(sB are identical. As a special case, if we only have 
o oa b , then the system is type-1. [Think about it. 

If 
o oa b , then (0) 1W  . Hence, the system can track a step perfectly.] 
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Now, let’s assume that )(sW IS a type-m system. Then 
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Since we have assumed that m n , we can factor out the 
ms term, so that: 
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Hence, we can clearly see that ( )s has m zeros at the origin. 

 

If we give it an input of the form 
1)(  m

R tty , then msmsY /)!1()(  , and so 
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If we give it an input of the form 
m

R tty )( , then 
1/!)(  msmsY , and so 
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Notice what took place. The Laplace transform of 
m

R tty )( that is 
1/!)(  msmsY has a denominator term 

1ms 
. Multiplying this term by the s term in the FVT reduces it to 

ms . This term cancels the 
ms term in ( )s . 

Pretty cool, eh? [I’m practicing my Minnesota accent.  ] From the above, we have a second important result. 

 

Important Result #2: A type-m command tracking system , )(sW , will have zero steady state error 

For any input )(tyR  that is a polynomial of degree less than m. Furthermore, the steady state error  

for a polynomial of degree m will be proportional to the ratio omm aba /)(  . 

 

 

Example 1. (4.11 on p.210) Consider a plant with 
12

1
)(

2 


ss
sGp


, along with a forward loop controller of 

the form 









s

sK
sGc

)(
)( . We would like to see how well this controller can work in a unity feedback closed 

loop tracking system.  

 

 

(a) Find the constraints on the controller parameters such that the closed loop system will be stable. 

 

Solution: The closed loop characteristic polynomial is: )())(12()( 2   sKssssD , or 

 

                                   )()12()2()( 23   KsKsssD . 

 

The Routh array for )(sD is: 
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If we assume that all of the controller parameters are greater than zero, then there will be no sign changes in the 

first column of the array if and only if c > 0. This condition could be simplified a bit, but it will still be rather 

complicated. Hence, we will not pursue it any further here. 

 

 

(b) Assuming the system is stable, find the constraints on K, α and β such that the closed loop system will be 

Type-1. 

 

Solution: The closed loop transfer function is 
)()12()2()(
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This system will be Type-1 if the following condition holds:    (C1):   KK   

 

The condition (C1) requires that 0 . In this case the closed loop system will have unity static gain. Hence, it 

will be at least Type-1. To make it Type-2 would require that the following condition also holds: 

11)0(212  KKKK  . Since this cannot hold, the best that can be achieved as a Type-1 

system for 0 . In this case, we have the closed loop system 
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with error transfer function 
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And so, for a command input of the form tctyR 0)(  , and Laplace transform 
2

0 /)( scsYR  , the steady state 

tracking error becomes 
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For 0  the controller is: 
( )

( ) i
c p

KK s K
G s K K

s s s

 
      

Hence, the quantity K is simply the gain of the integral portion of the P-I controller. The larger this gain is, the 

smaller the steady state tracking error will be. 

 

 

  

(c) Assuming the condition for a Type-1 system holds. Then from (a) we have: 
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 Find more specific conditions on the controller parameters to ensure stability. 

 

Solution: For 0  the Routh array condition for closed loop stability becomes: 
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This, in turn, requires that  2)2(2)2(0)1(2  KKKK . 

If we assume that  2 , then we have the following conditions for a Type-1 closed loop system: 

 

 The controller must (i) have the form 
s

K
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s
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)(   (i.e. it must be a P-I controller), (ii) 

  )2/(2  K , and (iii)  2  

 

Remark: If we express the controller parameters as 
s

K
K

s

K
KsG i

pc 


)( , then the condition for 

stability becomes: 0)1(2  ip KK . While this condition highlights the relation between the proportional 

and integral gains needed for stability, it turns out that the form of the controller that highlights its zero is much 

more useful in design (especially when we cover the Root Locus method of control system design).   □ 

  

 

We will now arrive at a classic defining characteristic of a Type-n unity feedback command system. 

 

Such a system will have the transfer function (assuming that )(sG  is a ratio of polynomials): 
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Hence, the error transfer function is: 
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Because this is a Type-n command system, the error transfer function, )(s  has exactly n zeroes at the origin. But 

the zeroes of this transfer function are exactly the poles of the open loop )(sG .  

 

Suppose this system is a Type-n system. Then for an input of the form
n

R tty )( , with 
1/!)(  nsnsY , the 

steady state error is: 
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where we have defined the ‘error constant )(lim
0

)( sGsK n

s

n

error




 . And so, we arrive at a third important result. 

 

 

Important Result #3: The type number of a stable unity feedback command tracking system , )(sW ,  

is exactly equal to the number of open loop poles at the origin. Furthermore, the steady state error for 

the input 
n

R tty )(  to a Type-n system of this form is simply )(lim/!
0

sGsne n

s
ss


 . 

  

 

 

 

The Type Number for a Disturbance System 

 

When the input to a system is not a command, but rather an unwanted disturbance, the system is said to be a 

disturbance system. Recall that our definition of ‘error’ is: the difference between what you want and what you 

get. 

 

Question: What is the error transfer function associated with a disturbance system )(sW ? 

 

Answer: What we want is that the disturbance will not be seen at all in the output. Hence, the error transfer 

function is )()(0)( sWsWs  . 

 

 

With a little thought it should become clear that the error transfer function given in the answer above must entail 

all the same properties that we developed for a command system error transfer function. In particular, the 

disturbance system )(sW  will be a type-n disturbance system if it has n zeroes at the origin. 

 

 

Example 1 (continued): Suppose that there is a disturbance input located at the output of the plant, and that the 

closed loop is a type-1 tracking system. Determine its type number as a disturbance system. 

 

Solution: The system block diagram is shown at the right. 

The disturbance transfer function is 
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Hence, the disturbance error transfer function is exactly the same as the command system error transfer function; 

namely: 
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Because the error transfer function has one zero at the origin, the disturbance system is also a Type-1 system. 

Furthermore, the steady state response to a disturbance input tdtd 0)(   is: 
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We will not pursue the properties of a unity-feedback disturbance system, since commonly the disturbance 

transfer function is not of the unity-feedback type.   □ 

 

 

Example 2. A simple model for automobile cruise control. 

 

 

 

 

 

 

The force balance equation gives:       
ovvtftvbtvm   )0(;)()()( 2  .  (1) 

Linearization of (1): If we let 
2)( vbvg



 , then the slope of )(vg at the initial condition speed is oo vbvg 2)(  . 

Hence, for small speed variations about vo we can approximate )(vg  as: 
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Substituting (2) into (1) gives:      
oooo vvtfvtvbvbvtvm   )0(;)(])([2)( 2 . (3) 

 

Define the velocity relative to ov as 
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

 . We then have the relative force/velocity 
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Remark 1.Notice that (4) is the model that describes the relative force/speed relationship about the speed ov , and 

that the parameter 
oo vbv 2)(



  depends on that speed. Even though (4) is a constant-coefficient linear 

differential equation, one needs to be aware that the parameter β depends upon the nominal speed at which the 

vehicle is traveling. It is, perhaps, for this reason that the authors ignored the initial condition in their model. It is 

my personal opinion that they should not have done so. For, as (4) reveals, any cruise control system that is 

implemented will be required to modify the controller parameters so that they correspond to the possibly changing 

value of ov .■ 

 

Taking the Laplace transform of (4) gives: )()()( sFsVssVm   . Hence,  
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The block diagram below includes both a command speed input, as well as a force disturbance input. The 

command system is unity-feedback, while the disturbance system is not.  

 

 

 

 

 

 

 

 

                         Figure 1. Block diagram of a cruise control feedback control system. 

 

Problem: If it is possible, design a controller that will achieve (i) a Type-1 command system, (ii) a Type-1 

disturbance system, and (iii) controller gain(s) that will permit both system steady state errors to be achieved at 

given levels. Also, for specified CL parameters  and  arrive at solutions for controller parameters. 

 

Solution: Clearly, integral must be included in ( )cG s , as it will result in an open loop pole at the origin. Using 

2

( )
d p i

c

K s K s K
G s

s

 
 gives 

2

( ) ( ) ( )
( )

d p i

c c p

K s K s K
G s G s G s

s ms 

 
 


. Hence, for the unity feedback command 

system, the error constant is (1) 1

0
lim ( ) /error i
s

K s G s K 



  . For a unit ramp input the command system ss error is 

then /c

ss ie K . The disturbance CL transfer function is 
2

( )
( )

1 ( ) ( ) ( ) ( )

p

d

c p d p i

G s s
W s

G s G s K m s K s K
 

    
. 

The associated error transfer function is 
2

( )
( ) ( )

d

d p i

s
s

K m s K s K


 

   
. And so, this is also Type-1. For a 

disturbance input ( )d t t with Laplace transform 2( ) 1/D s s the ss error is 
0

lim ( ) ( ) 1/d

ss i
s

e s s D s K


   .  
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