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LECTURE 4     Block Diagrams, Poles/Zeros, and PID Control for Tracking & Disturbance Rejection 

 

In Example 1 of LECTURE 3 we addressed the feedback control system at right. 

In relation to this, it was stated: 
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The derivation of (1) was done at the whiteboard: The input to ( )cG s is ( ) ( )RY s Y s . Hence, the output from ( )cG s is 

( )[ ( ) ( )]c RG s Y s Y s . But this, in turn, is the input to ( )pG s . And the output of ( )pG s is ( )Y s . Hence, 

 

( ) ( ) ( )[ ( ) ( )]p c RY s G s G s Y s Y s  . Gathering terms gives: [1 ( ) ( )] ( ) ( ) ( ) ( )p c p c RG s G s Y s G s G s Y s  , which gives (1). 

 

 

We will now consider the more general block diagram at right:  

 

This is a 3-input/2-output system. 

 

 

 

 

(i) To find transfer functions related to input 
1u , we ‘turn off’ all other  

inputs as shown at right.  
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(ii) To find transfer functions related to input 
2u , we ‘turn off’ all other 

inputs off, as shown at right. 
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(iii) To find transfer functions related to input 
3u , we ‘turn off’ all other 

inputs off, as shown at right. 
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Notice that all transfer functions have the same denominator1 ( ) ( ) ( )c pG s G s H s . Consequently, they all have the same 

poles. If all the poles are in the LHP, then all are stable systems. On the other hand they have different numerators. 

Consequently, they do not all have the same zeros. While the zeros can have a notable effect on the responses, those 

responses are mainly controlled by the system poles.  
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Tracking versus Disturbance Rejection 

 

A tracking system is one where the input is a command input and the output is desired to track it. A disturbance rejection 

system is one where the input is a disturbance and the output is desired to be oblivious to it.  

 

Consider the feedback control system block diagram shown at right. 

The closed loop transfer function is:  
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For a tracking system we want ( ) ( )cA s G s and ( ) 1B s  . For obvious reasons this is called a unity feedback control 

system. We want ( )y t to track the command input ( )cy t . 

 

For a disturbance rejection system we want ( ) 1A s  and ( ) ( )cB s G s . We want ( )y t to be oblivious to the disturbance 

input ( )dy t .  

 

Example 1 Suppose that 
1

( )
0.1

pG s
s




. This is a first order plant with 10 sec  and 10sg  . Consider the simple 

proportional controller ( )cG s K .  

 

For command input ( )cy t , placing the controller in the forward loop gives: 
( )

( )
( ) (0.1 )

c

c

Y s K
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Y s s K
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 
. The closed loop 

time constant and static gain are 1/ (0.1 )K   and / (0.1 )sg K K  . 

 

For disturbance input ( )dy t , placing the controller in the feedback loop gives: 
( ) 1

( )
( ) (0.1 )

d

d

Y s
W s

Y s s K
 

 
. The closed 

loop time constant and static gain are 1/ (0.1 )K   and 1/ (0.1 )sg K  .  

 

Both systems have the same poles. However, their static gains are markedly different. For a unit step input, the steady 

state output of the tracking system is / (0.1 )sg K K  ; whereas the steady state output of the disturbance rejection 

system is 1/ (0.1 )sg K  .  

 

Suppose that we choose 100K  . Then the tracking system steady state output is 100 /100.1 1sg   . We have nearly 

perfect tracking. The steady state output for the disturbance system is 1/100.1 0.01sg   . Hence, the steady state output 

is relatively oblivious to the disturbance input.  □ 

 

It is not at all inconceivable that a single control can accomplish both improved tracking response and greater disturbance 

rejection. This feat is illustrated in the next example. 

 

  

Example 2 It is desired to design a feedback control system that can 

improve the dynamic response of the short period longitudinal dynamics of 

a certain aircraft, while at the same time making the response more robust to 

wind gusts. Suppose that the uncontrolled dynamics are modeled via the 

transfer function: 
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where ( )t is the pitching response to a vertical force ( )f t . The unit step 

 response is shown at right. Clearly, it is unacceptable.                            Figure 1 Pitch response to a unit step command. 
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The closed loop feedback control system to be implemented is shown 

at right. The command input is ( )c t , and the disturbance input is the 

wind force ( )w t . The command and disturbance transfer functions 

are: 
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, respectively. We see that the command system is 

unity feedback, while the disturbance rejection system includes the controller in the feedback loop.  

 

We will now proceed to design a PID controller that achieves the following specifications: 

 

(S1): Unity static gain.  (S2) Optimal damping (i.e. 0.707  ).  (S3) 4 response time equal to 2 seconds. 

 

We will use the root locus pole-placement method to design the controller, in order to 

motivate future discussion of this method. To begin, we first determine the desired 

closed loop poles associated with (S2) and (S3). These specifications require that 

they lie at the intersection of the 0.707  and 0.5  lines, as shown at right.  

 

The black crosses are the plant poles, and the red cross is the controller pole 

associated with integral control needed to satisfy (S1). There will be two controller 

zeros. The root locus angle criterion states that the blue square will be a closed loop 

pole if: 
1 2( ) (243 135 102 ) 180o o o o       . From this, we find that the angles from 

the controller zeros to the closed loop pole must satisfy 
1 2 300o   .  

 

With a little thought, for this condition to be satisfied, the zeros must be a complex-

conjugate pair. Let’s try controller zeros 
1,2 0.3 2z i  . Then the angle from  

1 0.3 2z i  to the blue square is 180o , and the angle from 
2 0.3 2z i  to the blue square is 120o . The total angle is 300o . 

The controller then has the form 

 

                                
2 2 2
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s s s

     
   . (2) 

 

The resulting open loop transfer function is ( ) ( )c pG s G s .  

The associated closed loop root locus is shown at right. 

From the data cursor we see that for 0.128K  the closed 

loop system has complex-conjugate poles at 

2 1.88i  with associated 0.73  and 0.5  . The third 

real pole at 3.4 has an associated 0.3  , which is faster 

than 0.5  . Hence, the controller is: 
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              Figure 2 Closed loop root locus. 
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 The closed loop transfer function is: 
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Note that its zeros are those of the controller. To 

appreciate the influence of the closed loop zeros, let 
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The unit step responses of ( )pG s , ( )cW s ,  and *( )cW s are 

 shown at right.   Figure 3 Unit step responses for ( )pG s , ( )cW s ,  and *( )cW s . 

 

Clearly ( )cW s  is a significant improvement over ( )pG s . Indeed, all three specifications are satisfied. However, in view of 

the initial small oscillations, ( )cW s is not as desirable as *( )cW s . The above specifications related only to the closed loop 

poles. The presence of the closed loop zeros was not taken into account in those specifications. Moreover, it is not easy to 

take the same into account.  

 

In relation to the wind gust disturbance input we have the closed loop 

transfer function 
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The response to a unit step gust is shown at right. The static gain is zero, 

and so the response is oblivious to the gust after ~4 seconds. However, 

the initial response to the gust is notable.  

 

It should also be evident that the zero 0s  is the reason that the static 

gain is (0) 0s dg W  . To better appreciate the influence of the 

 magnitude 50 in (6), consider                                                                       Figure 4 Unit step response for ( )dW s and *( )dW s . 
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The unit step response for *( )dW s  is also shown in Figure 4. Its peak is 1/10th that of ( )dW s . The differential equation 

associated with ( )dW s is 

                                                              7.4 21.16 25.6 50w       . (8) 

 

In words, ( )t is not responding to the unit step, itself. Rather, it is responding to its derivative; which is a Dirac delta 

function having an intensity equal to 50. This is a big impulse! It is, in part, for this reason that the authors devote the 

entire section 3.5 (pp.142-152) on the effects of zeros and additional poles. A term 
ms in the numerator of a transfer 

function corresponds to the mth derivative of the input. To further highlight such an influence, suppose that the input to (8) 

were a small amplitude sinusoid sin( )t  . The derivative is cos( )t  . For a high frequency  the amplitude could 

be yuge! (Thanks Bernie  ). 

 

Conclusion Aircraft transfer functions very often include zeros. Even if the controller contains no zeros, one must take 

care in requiring specifications that are based only on poles. Even if such specifications are achieved, it may well be that 

the actual dynamics are significantly different that those associated with the specified poles.    □ 
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Matlab Code for Example 2 

 
%PROGRAM NAME: lec4EX2.m 

Gc=tf([1 -.6 4],[1 0]); 

G=Gc*Gp; 

figure(101) 

rlocus(G) 

grid 

%=============== 

K=0.128; 

Gc=K*Gc; 

Wc=feedback(Gc*Gp,1); 

figure(102) 

step(Gp) 

hold on 

step(Wc) 

title('Step Responses of Plant and Controlled System') 

grid 

%------------- 

%Add feedback system without closed loop zeros: 

[n,d]=tfdata(Wc,'v'); 

WWc=tf(n(4),d); 

step(WWc) 

legend('Gp','W','WW') 

%============ 

%Disturbance TFs: 

Wd=feedback(Gp,Gc); 

[n,d]=tfdata(Wd,'v'); 

figure(103) 

step(Wd) 

title('Response to a Unit Step Gust') 

grid 

WWd=0.1*Wd; 

hold on 

step(WWd) 

title('Response to a Unit Step Gust for Wd and WWd=0.1Wd') 

legend('Wd','WWd') 

 


