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LECTURE 4     Example 2 

 

The purpose of this LECTURE 4 addendum is to demonstrate how a little curiosity, along with a little trigonometry, can 

lead to fairly amazing results. Before we pursue those results, we repeat Example 2 as presented in LECTURE 4. 

 

 

  

Example 2 It is desired to design a feedback control system that can 

improve the dynamic response of the short period longitudinal dynamics of 

a certain aircraft, while at the same time making the response more robust to 

wind gusts. Suppose that the uncontrolled dynamics are modeled via the 

transfer function: 

                                     
2

( ) 50
( )

( ) 25
p

s
G s

F s s s


 

 
.                        (1) 

where ( )t is the pitching response to a vertical force ( )f t . The unit step 

 response is shown at right. Clearly, it is unacceptable.                            Figure 1 Pitch response to a unit step command. 

 

The closed loop feedback control system to be implemented is 

shown at right. The command input is ( )c t , and the disturbance 

input is the wind force ( )w t . The command and disturbance transfer 

functions are: 
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,           Figure 2 Feedback control block diagram. 

 

respectively. We see that the command system is unity feedback, while the disturbance rejection system includes the 

controller in the feedback loop.  

 

The closed loop specifications are: 

 

      (S1): Unity static gain.  (S2) Optimal damping (i.e. 0.707  ).  (S3) 4 response time no greater than 2 seconds. 

 

 

We will use the root locus pole-placement method to design the controller, in order to 

motivate future discussion of this method. To begin, we first determine the desired 

closed loop poles associated with (S2) and (S3). These specifications require that 

they lie at the intersection of the 0.707  and 0.5  lines, as shown at right.  

 

The black crosses are the plant poles, and the red cross is the controller pole 

associated with integral control needed to satisfy (S1). There will be two controller 

zeros. The root locus angle criterion states that the blue square will be a closed loop 

pole if: 
1 2( ) (243 135 102 ) 180o o o o       . From this, we find that the angles from 

the controller zeros to the closed loop pole must satisfy 
1 2 300o   .  

 

With a little thought, for this condition to be satisfied, the zeros must be a complex-

conjugate pair. Let’s try controller zeros 
1,2 0.3 2z i  . Then the angle from  

1 0.3 2z i  to the blue square is 180o , and the angle from 
2 0.3 2z i  to the blue square is 120o . The total angle is 300o . 

The controller then has the form 
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The resulting open loop transfer function is ( ) ( )c pG s G s .  

The associated closed loop root locus is shown at right. 

From the data cursor we see that for 0.128K  the closed 

loop system has complex-conjugate poles at 

2 1.88i  with associated 0.73  and 0.5  . The third 

real pole at 3.4 has an associated 0.3  , which is faster 

than 0.5  . Hence, the controller is: 
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              Figure 2 Closed loop root locus. 

 

The closed loop transfer function is: 
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Note that its zeros are those of the controller. To 

appreciate the influence of the closed loop zeros, let 

 

              *

3 2

25.6
( )

7.4 21.16 25.6
cW s

s s s


  
.           (5) 

 

The unit step responses of ( )pG s , ( )cW s ,  and *( )cW s are 

 shown at right.   Figure 3 Unit step responses for ( )pG s , ( )cW s ,  and *( )cW s . 

 

Clearly ( )cW s  is a significant improvement over ( )pG s . Indeed, all three specifications are satisfied. However, in view of 

the initial small oscillations, ( )cW s is not as desirable as *( )cW s . The above specifications related only to the closed loop 

poles. The presence of the closed loop zeros was not taken into account in those specifications. Moreover, it is not easy to 

take the same into account.  

 

In relation to the wind gust disturbance input we have the closed loop 

transfer function 
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The response to a unit step gust is shown at right. The static gain is zero, 

and so the response is oblivious to the gust after ~4 seconds. However, 

the initial response to the gust is notable.  

 

It should also be evident that the zero 0s  is the reason that the static 

gain is (0) 0s dg W  . To better appreciate the influence of the 

 magnitude 50 in (6), consider                                                                       Figure 4 Unit step response for ( )dW s and *( )dW s . 
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The unit step response for *( )dW s  is also shown in Figure 4. Its peak is 1/10th that of ( )dW s . The differential equation 

associated with ( )dW s is 

                                                              7.4 21.16 25.6 50w       . (8) 

 

In words, ( )t is not responding to the unit step, itself. Rather, it is responding to its derivative; which is a Dirac delta 

function having an intensity equal to 50. This is a big impulse! It is, in part, for this reason that the authors devote the 

entire section 3.5 (pp.142-152) on the effects of zeros and additional poles. A term 
ms in the numerator of a transfer 

function corresponds to the mth derivative of the input. To further highlight such an influence, suppose that the input to (8) 

were a small amplitude sinusoid sin( )t  . The derivative is cos( )t  . For a high frequency  the amplitude could 

be yuge! (Thanks Bernie  ). 

 

Conclusion Aircraft transfer functions very often include zeros. Even if the controller contains no zeros, one must take 

care in requiring specifications that are based only on poles. Even if such specifications are achieved, it may well be that 

the actual dynamics are significantly different that those associated with the specified poles. □ 

 

We will now investigate how a different selection of the controller zeros might improve matters. Rather than outright 

guessing, we will first use a little trigonometry to guide the process. 

 

The controller zeros must contribute 
1 2    . From the figure at right, this is 

equivalent to 
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The solution to this quadratic is: 
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Clearly, per Figure 3 we must have:            
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    for 0  . (10a) 

 

Carrying out the same procedure for 0  also results in (9). Hence, we can conclude that: 
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The resulting controller zeros are:                          
1,2 0( )z x i     . (11) 

 

For the specified closed loop pole 
0 0r x iy  , the root locus magnitude criterion gives 

 

                                                                              1/ ( ) ( )c pK G r G r . (12) 

 

 

And so, for given r and   we can choose various values for  , and view the resulting closed loop step response.  
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 4 
It took only a few guesses for  to arrive at what I believe is perhaps the best value: 0.1   . The root locus, and 

resulting closed loop FRF for 1.5K    are shown below. Notice that the third real root is not shown in the root locus, as it 

its time constant is smaller than 1/12  . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                           Figure 10 Closed loop root locus, step response, and FRF. 

 

The controller transfer function is: 
21.502 5.426 11.53

( )c

s s
G s

s

 
 . The behavior of the root locus in Figure 10 is 

distinctly different than it is in Figure 2. 

 

The closed loop system command and disturbance step responses are shown below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                     Figure 11 Closed loop system command (LEFT) and disturbance (RIGHT) step response. 

 

The command system step response in Figure 11 is a significant improvement over that in Figure 3. The disturbance 

response shown at right is also a vast improvement over that in Figure 4.  

 

Conclusion  

 

I, myself, was stunned by the level of improvement in the command step response. The calculations (9-12) allowed me to 

investigate a variety of proposed controller zeros. Most gave, at best, the same responses as those in Figures 3 and 4. It 

was only when I ever so slightly perturbed them by 0.1    that I discovered Figures 11 and 12. 

 

It should be emphasized that I did not use any more knowledge than you, yourselves, have at this point in the course. 

What it took to achieve this result was simply curiosity, a trigonometric identity, and a couple of Saturday hours to get 

things straightened out. Over my dozens of years teaching this material I have found that, invariably, each semester I learn 

something new. The above discovery is well worth adding to my list. I suppose that I am destined to remain a student.  
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Matlab Code for Example 2 

 
%PROGRAM NAME: lec4ex2.m 

Gp=tf(50,[1 1 25]); 

x0=-2; y0=2;   %CL pole location 

phi=300;   %Need PID conjugate zeros to give 300 degrees 

g=tand(360-phi); 

%del=distance from y0 to y-coord. of zero 

%del >= 0: y-coord of zero < y0 

%del<0: y-coord  of zero > y0 

delmin=y0*(1-sqrt(1+1/g)) 

del=-0.1 

b=y0-del; %Choose y-coordinate of upper zero 

if del<0 

    a=y0/g - sqrt((y0/g)^2 + y0^2 - b^2); 

else 

    a=y0/g + sqrt((y0/g)^2 + y0^2 - b^2); 

end 

z1=x0+a + 1i*b 

z2=conj(z1); 

s=tf('s'); 

Gc=(s-z1)*(s-z2)/s; 

figure(1) 

rlocus(Gc*Gp) 

grid 

%Find necessary gain: 

p=x0+1i*y0; 

[n,d]=tfdata(Gp,'v'); 

m=length(d); 

c1=0; d1=0; 

for k=1:m 

    c1=c1+n(k)*p^(m-k); 

    d1=d1+d(k)*p^(m-k); 

end 

MGp=abs(c1/d1); 

[n,d]=tfdata(Gc,'v'); 

m=length(d); 

c1=0; d1=0; 

for k=1:m 

    c1=c1+n(k)*p^(m-k); 

    d1=d1+d(k)*p^(m-k); 

end 

MGc=abs(c1/d1); 

K=(MGp*MGc)^-1 

%-------------------- 

Gc=K*Gc; 

W=feedback(Gc*Gp,1); 

figure(3) 

step(W) 

title(['CL Step Response for K=',num2str(K),' and z1=',num2str(z1),'.']) 

grid 

figure(4) 

bode(W) 

title('CL FRF') 

grid 

%----------------------------- 

%Disturbance Response: 

Wd=feedback(Gp,Gc); 

figure(4) 

step(Wd) 

title('Disturbance Step Response') 

grid 

 


