LECTURE 3 PID Control

1 _Y(s)
s2+0.15+25 X(s)
At this early stage in the course, you should already be able to discuss, at various levels, the behavior of this dynamical
system with input Xx(t) and output y(t):

Example 1 Consider a plant with transfer function G (s) =

Level 1 (Coffee Room Discussion): Since 'b® —4ac'is way less than zero, this system is underdamped. In other words, it
will exhibit oscillatory behavior when excited by the input or in response to initial conditions. For such a second order
system, the ‘mantra’ s* +2¢ @, s+’ immediately reveals that the system undamped natural frequency is @, =5rad/sec

and the system time constant is 4z = 4(20) =80 sec. Furthermore, since 1/z = @, =0.05, the system damping ratio is

¢ =0.01. Since o, =w,[1-¢? , the damped natural frequency is essential equal to the undamped natural frequency. Since
we’re real engineers, let’s talk frequency in Hz. This system will oscillate at f, =a, /27 = 0.8 Hz. [OK. I used my smart
phone’s calculator for that one ®.] This means the period of an oscillation will be T, =1.25sec. So, we’ll see a crazy

number of oscillations (~65) over the time it takes to die out. [Again, | used my calculator ®.] It is, after all, a pretty small
damping ratio. Finally, the system static gain is 1/25=0.04.

Level 2: (Conference Room Discussion with Internet and Matlab access): | searched Google for a Laplace transform pair
with denominator s* +2¢ @ s+a? . No luck ® But | did find : ¢ sin(bt)

(s+a)* +b*

So, yeah, I can ‘complete the square’ (But geez!):
S’ +2lws+al =[s*+20 w5+ (Cw,) +[o —((w,)]=(5+Cw,) + .

Hence, Gp(S)ZZ;:O.Z 2; ~0.2 %
s°+0.1s+25 s°+0.1s+25 (s+.05)°+5
And so the system impulse response is: g, (t) =0.2e™*" sin(5t)
w2 1 g 2 -1
n 1- e " sinlw, 41—t +cos
To get the formula for the system step response, you found 5[52 +2ans+coﬁ) Jl—c_? ( y1-& (C.J)

2
Then you tell me: Sorry man, but you didn’t search hard enough: ®n Fn_ gt sin(oon 1-& t)
2 2 2
s+ 28w, s+ @y, JI—Q

So the system step response is: y, (t) = 0.04[1-e *®'sin(5t)].

Using the Matlab commands: >> Gp=tf(1,[1 .1 25]); >> step(Gp)

Resulted in the step response at right.
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Ha! Exactly like I described in the coffee room ©.
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Unity Feedback PID Control

(Back to the coffee room-which, by the way, has a white board): Yr - G, ( G y
—>€ . S) > p(s) v
Clearly, W(S) _ Y(S) _ Gc (S)Gp(S) . Y
Ye(s) 1+G.(5)G,(s)
How, write G_(s) =n,(s)/d.(s) and G (s) =n,(s)/d (s)- Figure 1 Unity feedback block diagram.

Then the open loop transfer function is: G (s)G, (s) = 20 ES;ZP((S)) - ;‘ES; —G(s), and so W (s) = ()n(s()j()
(s)d, (s s n(s)+d(s

Ks®+ K, s+K, _
S
dez+Kps+KiJ( 1 j_dez+Kps+Ki

Transfer Function for a PID Controller: G_(s) = K, +ﬁ+ K,s=
s

The resulting open loop transfer function is: G(s) =G_(s)G, (s) = =
e S $2+0.1s+25) s°+0.1s* +25s

K,s®+ K, s+K;

So, the closed loop transfer function is:  (s) = .
$°+(0.1+K,)s® +(25+ K )s +K;

How does PID control in a unity feedback control system alter the system dynamics?

Q) The inclusion of integral control results is a closed loop system with static gain W (0) =1. However, it also
changes the order of the system from 2 to 3.

(i)  If we want to retain a 2" order system, we must use PD control: G.(s)=Kys+K, . In this case, the closed loop

Kys+K, with wo) - <o
s+ (0.1+Ky)s+(25+K,) 25+K

dynamics, (assuming we still want an underdamped system) write

transfer function becomes vy (s) = . To control the system

p

s +(0.1+ Ky)s+(25+K,) =s* + 2w, s+ @} -

Thisgives: o, = 25+ K,  7=2/2{ew, =2/(01+K,), and ¢=(0.1+K,)/2,/25+K, .
Things to note:

> The response time is inversely proportional to K, .
» The damping is proportional to K, and inversely proportional to /K .
» The static gain is proportional to K, but can never be made to equal 1.0.

Step Response

1.2

For example, suppose that we want static gain g =09= K, /(254K,)- Pam
This requires K =225. Suppose that we want ‘optimal’ damping o=
¢ =0.707 . This requires K, =22.25. The resulting time constantis °*
then 7=2/K, =0.09sec. The closed loop unit step response at right **|

was obtained using the Matlab commands: =
>> GC:tf([2225 225],1), >> G:GC*Gp; >> W:feedback(G,l); >> Step(W) >> grld % 005 01 o015 ) 0z o025 03 085 04 045

Comment: The static gain and settling time are as expected. But the amount of overshoot is much greater than
what one would expect for £ =0.707 . This excess overshoot is due to the zero in

W(s) Kys+K,
s) = .
s+ (0.1+K,)s+(25+K,)

Our design only focused on the poles. Clearly, one should not ignore the zeros. The O.D.E. is




Y+(0.1+K,)y+(25+K,)y =K X+ K Xx.

We see that the response is influenced not only by the input, but also by its derivative. The derivative of a unit
step input is a unit impulse. It is this impulse that causes the response to overshoot the way it does in the figure.

Introduction to the Root Locus Method As noted above, incorporating any integral control will result in static gain
W (0) =1. The cost’ is that the system will then become a 3" order system. Suppose that we now add integral control to

22.258% +225s + K,
S

. Hence, the open loop

the PD controller we designed. The controller transfer function is then G.(s)=

transfer function becomes

G(s) :GC(S)Gp(s) :(22.2552 +2255+K; J[ 1 j

s?+0.1s+25
The closed loop characteristic polynomial is, therefore,

p(s) =s® +(0.1+ 22.25)s* + (25+225)s + K, =s° +22.355 +250s + K; .
If we had a cubic formula similar to the quadratic formula, then we could directly evaluate the influence of K. onthe
three roots of this polynomial. Unfortunately, such a formula does not exist. Hence, we will use the ‘root locus’ method.

To this end, begin with setting
p(s) =s®+(0.1+22.25)s* + (25+225)s + K; =s° +22.35s* +250s + K; =0 1)

Clearly, the values of s that solve (1) are the roots. Dividing both sides of (1) by s®+22.35s® + 250s gives

K.
1+ ! =0. (2)
s® +22.355° + 250s

Still, the values of s that solve (2) are the same roots. Define the fictitious open loop transfer function

1

s) = : 3
Q) s® +22.35s” +250s
Then (2) becomes:
1+K,Q(s)=0. (4)
- G.(s)G,(s)
Now compare the form (4) to the denominator of \y (s) = —<"""2" . They have exactly the same general form.
1+G,(s)G,(s)
Recalling that G, (s)G, (s) is the open loop transfer function associated Root Locus
with Figure 1, is the reason for defining the fictitious open loop system 5l 0f6 | 082 04 028 018 008 g
(3). Using the Matlab command rlocus(Q) will give us a plot of the 0.82 g TR
roots of the corresponding fictitious closed loop system that has roots < | ssema e 75
H H 2 0: Gain:

associated with (1). § 7 pae 063+ 10 be

K23 Damping: 0.701

. 2 0= Overshoot (%): 4.56 u

In the root locus for (1) at right, we used the data cursor to see where < Frequency (rad/s): 14.2 System: Q
the roots are for K, =500. £ “loss Pole: 5

E 10 N T 332@:5&1(%): 0
COMMENT on these roots £ ' e

. b 0.6§ : ‘0.52 ) 0.‘4 ‘0.28 ‘0.18 0‘035‘\

>>mean(x) = 5.5000 std(x)= 3.0277 T
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