
 1

0 20 40 60 80 100 120
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Step Response

Time (sec)

Am
pli

tu
de

LECTURE 3 PID Control

Example 1 Consider a plant with transfer function
)(

)(

251.0

1
)(

2 sX

sY

ss
sGp 


 .

At this early stage in the course, you should already be able to discuss, at various levels, the behavior of this dynamical

system with input)(tx and output)(ty :

Level 1 (Coffee Room Discussion): Since '4' 2 acb  is way less than zero, this system is underdamped. In other words, it

will exhibit oscillatory behavior when excited by the input or in response to initial conditions. For such a second order

system, the ‘mantra’ 22 2 nnss   immediately reveals that the system undamped natural frequency is sec/5 radn 

and the system time constant is sec80)20(44  . Furthermore, since 05.0/1  n , the system damping ratio is

01.0 . Since 21   nd
, the damped natural frequency is essential equal to the undamped natural frequency. Since

we’re real engineers, let’s talk frequency in Hz. This system will oscillate at Hzf dd 8.02/   . [OK. I used my smart

phone’s calculator for that one .] This means the period of an oscillation will be sec25.1dT . So, we’ll see a crazy

number of oscillations (~65) over the time it takes to die out. [Again, I used my calculator .] It is, after all, a pretty small

damping ratio. Finally, the system static gain is 1/25=0.04.

Level 2: (Conference Room Discussion with Internet and Matlab access): I searched Google for a Laplace transform pair

with denominator 22 2 nnss   . No luck  But I did find :

So, yeah, I can ‘complete the square’ (But geez!):

 22222222)(])([)(2[2 dnnnnnnn sssss   .

Hence,


























2222 5)05.(

5
2.0

251.0

5
2.0

251.0

1
)(

sssss
sGp

And so the system impulse response is:)5sin(2.0)(05.0 tetg t

p



To get the formula for the system step response, you found

Then you tell me: Sorry man, but you didn’t search hard enough:

So the system step response is:)]5sin(1[04.0)(05.0 tety t

step

 .

Using the Matlab commands: >> Gp=tf(1,[1 .1 25]); >> step(Gp)

Resulted in the step response at right.

Ha! Exactly like I described in the coffee room .

 2

)(sGp)(sGc

y
Ry



Unity Feedback PID Control

(Back to the coffee room-which, by the way, has a white board):

Clearly,
)()(1

)()(

)(

)(
)(

sGsG

sGsG

sY

sY
sW

pc

pc

R 
 .

How, write)(/)()(sdsnsG ccc  and)(/)()(sdsnsG ppp  . Figure 1 Unity feedback block diagram.

Then the open loop transfer function is:)(
)(

)(

)()(

)()(
)()(sG

sd

sn

sdsd

snsn
sGsG

pc

pc

pc  , and so
)()(

)(
)(

sdsn

sn
sW


 .

Transfer Function for a PID Controller:
s

KsKsK
sK

s

K
KsG

ipd

d
i

pc




2

)(.

The resulting open loop transfer function is:
sss

KsKsK

sss

KsKsK
sGsGsG

ipdipd

cc
251.0251.0

1
)()()(

23

2

2

2


























 


So, the closed loop transfer function is:

ipd

ipd

KsKsKs

KsKsK
sW






)25()1.0(
)(

23

2

.

How does PID control in a unity feedback control system alter the system dynamics?

(i) The inclusion of integral control results is a closed loop system with static gain 1)0(W . However, it also

changes the order of the system from 2 to 3.

(ii) If we want to retain a 2nd order system, we must use PD control:
pdc KsKsG )(. In this case, the closed loop

transfer function becomes
)25()1.0(

)(
2

pd

pd

KsKs

KsK
sW




 , with

p

p

K

K
W




25
)0(. To control the system

dynamics, (assuming we still want an underdamped system) write

 222 2)25()1.0(nnpd ssKsKs   .

This gives:
pn K 25 ,)1.0/(22/2 dn K  , and

pd KK  252/)1.0( .

Things to note:

 The response time is inversely proportional to
dK .

 The damping is proportional to
dK , and inversely proportional to

pK .

 The static gain is proportional to
pK , but can never be made to equal 1.0.

For example, suppose that we want static gain)25/(9.0 pps KKg  .

This requires 225pK . Suppose that we want ‘optimal’ damping

707.0 . This requires 25.22dK . The resulting time constant is

then sec09.0/2  dK . The closed loop unit step response at right

was obtained using the Matlab commands:
>> Gc=tf([22.25 225],1); >> G=Gc*Gp; >> W=feedback(G,1); >> step(W) >> grid

Comment: The static gain and settling time are as expected. But the amount of overshoot is much greater than

what one would expect for 707.0 . This excess overshoot is due to the zero in

)25()1.0(

)(
2

pd

pd

KsKs

KsK
sW




 .

Our design only focused on the poles. Clearly, one should not ignore the zeros. The O.D.E. is

 3

 xKxKyKyKy pdpd  )25()1.0(.

We see that the response is influenced not only by the input, but also by its derivative. The derivative of a unit

step input is a unit impulse. It is this impulse that causes the response to overshoot the way it does in the figure.

Introduction to the Root Locus Method As noted above, incorporating any integral control will result in static gain

1)0(W . The ‘cost’ is that the system will then become a 3rd order system. Suppose that we now add integral control to

the PD controller we designed. The controller transfer function is then
s

Kss
sG i

c




22525.22
)(

2

. Hence, the open loop

transfer function becomes

 















 


251.0

122525.22
)()()(

2

2

sss

Kss
sGsGsG i

pc

The closed loop characteristic polynomial is, therefore,

ii KsssKssssp  25035.22)22525()25.221.0()(2323 .

If we had a cubic formula similar to the quadratic formula, then we could directly evaluate the influence of
iK on the

three roots of this polynomial. Unfortunately, such a formula does not exist. Hence, we will use the ‘root locus’ method.

To this end, begin with setting

 025035.22)22525()25.221.0()(2323  ii KsssKssssp . (1)

Clearly, the values of s that solve (1) are the roots. Dividing both sides of (1) by sss 25035.22 23  gives

 0
25035.22

1
23





sss

Ki . (2)

Still, the values of s that solve (2) are the same roots. Define the fictitious open loop transfer function

sss

sQ
25035.22

1
)(

23 
 . (3)

Then (2) becomes:

 0)(1  sQKi
. (4)

Now compare the form (4) to the denominator of
)()(1

)()(
)(

sGsG

sGsG
sW

pc

pc


 . They have exactly the same general form.

Recalling that)()(sGsG pc
 is the open loop transfer function associated

with Figure 1, is the reason for defining the fictitious open loop system

(3). Using the Matlab command rlocus(Q) will give us a plot of the

roots of the corresponding fictitious closed loop system that has roots

associated with (1).

In the root locus for (1) at right, we used the data cursor to see where

the roots are for 500iK .

COMMENT on these roots.

>> mean(x) = 5.5000 std(x)= 3.0277

