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LECTURE 3                                                     PID Control 

 

Example 1 Consider a plant with transfer function 
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At this early stage in the course, you should already be able to discuss, at various levels, the behavior of this dynamical 

system with input )(tx  and output )(ty : 

 

Level 1 (Coffee Room Discussion): Since '4' 2 acb  is way less than zero, this system is underdamped. In other words, it 

will exhibit oscillatory behavior when excited by the input or in response to initial conditions. For such a second order 

system, the ‘mantra’ 22 2 nnss    immediately reveals that the system undamped natural frequency is sec/5 radn   

and the system time constant is sec80)20(44  . Furthermore, since 05.0/1  n , the system damping ratio is 

01.0 . Since 21   nd
, the damped natural frequency is essential equal to the undamped natural frequency. Since 

we’re real engineers, let’s talk frequency in Hz. This system will oscillate at Hzf dd 8.02/   . [OK. I used my smart 

phone’s calculator for that one .] This means the period of an oscillation will be sec25.1dT . So, we’ll see a crazy 

number of oscillations (~65) over the time it takes to die out. [Again, I used my calculator .] It is, after all, a pretty small 

damping ratio. Finally, the system static gain is 1/25=0.04.  

 

 

Level 2: (Conference Room Discussion with Internet and Matlab access): I searched Google for a Laplace transform pair 

with denominator 22 2 nnss   . No luck  But I did find : 

 

So, yeah, I can ‘complete the square’ (But geez!):  

                                      22222222 )(])([)(2[2 dnnnnnnn sssss   .  

Hence,                            
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And so the system impulse response is:             )5sin(2.0)( 05.0 tetg t

p

  

 

To get the formula for the system step response, you found   

 

 

Then you tell me: Sorry man, but you didn’t search hard enough:  

 

 

So the system step response is: )]5sin(1[04.0)( 05.0 tety t

step

 . 

Using the Matlab commands: >> Gp=tf(1,[1 .1 25]); >> step(Gp) 

Resulted in the step response at right. 

 

Ha! Exactly like I described in the coffee room . 
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Unity Feedback PID Control 

 

(Back to the coffee room-which, by the way, has a white board): 

Clearly, 
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How, write )(/)()( sdsnsG ccc   and )(/)()( sdsnsG ppp  .                             Figure 1 Unity feedback block diagram. 

Then the open loop transfer function is: )(
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Transfer Function for a PID Controller: 
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The resulting open loop transfer function is: 
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So, the closed loop transfer function is: 
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How does PID control in a unity feedback control system alter the system dynamics? 

 

(i) The inclusion of integral control results is a closed loop system with static gain 1)0( W . However, it also 

changes the order of the system from 2 to 3.  

 

(ii) If we want to retain a 2nd order system, we must use PD control: 
pdc KsKsG )( . In this case, the closed loop 

transfer function becomes 
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dynamics, (assuming we still want an underdamped system) write  

 

                                         222 2)25()1.0( nnpd ssKsKs   .  

 

This gives: 
pn K 25 ,      )1.0/(22/2 dn K  ,      and      

pd KK  252/)1.0( . 

Things to note: 

 

 The response time is inversely proportional to
dK . 

 The damping is proportional to 
dK , and inversely proportional to 

pK . 

 The static gain is proportional to 
pK , but can never be made to equal 1.0. 

 

For example, suppose that we want static gain )25/(9.0 pps KKg  . 

This requires 225pK . Suppose that we want ‘optimal’ damping 

707.0 . This requires 25.22dK . The resulting time constant is 

then sec09.0/2  dK . The closed loop unit step response at right 

was obtained using the Matlab commands: 
>> Gc=tf([22.25 225],1); >> G=Gc*Gp; >> W=feedback(G,1); >> step(W) >> grid 

 

Comment: The static gain and settling time are as expected. But the amount of overshoot is much greater than 

what one would expect for 707.0 . This excess overshoot is due to the zero in  
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Our design only focused on the poles. Clearly, one should not ignore the zeros. The O.D.E. is  
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                                                  xKxKyKyKy pdpd   )25()1.0( . 

We see that the response is influenced not only by the input, but also by its derivative. The derivative of a unit 

step input is a unit impulse. It is this impulse that causes the response to overshoot the way it does in the figure.  

 

 

Introduction to the Root Locus Method  As noted above, incorporating any integral control will result in static gain 

1)0( W . The ‘cost’ is that the system will then become a 3rd order system. Suppose that we now add integral control to 

the PD controller we designed. The controller transfer function is then 
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The closed loop characteristic polynomial is, therefore, 

 

                                     
ii KsssKssssp  25035.22)22525()25.221.0()( 2323 . 

If we had a cubic formula similar to the quadratic formula, then we could directly evaluate the influence of 
iK  on the 

three roots of this polynomial. Unfortunately, such a formula does not exist. Hence, we will use the ‘root locus’ method. 

To this end, begin with setting 

 

                                  025035.22)22525()25.221.0()( 2323  ii KsssKssssp . (1) 

 

Clearly, the values of s that solve (1) are the roots. Dividing both sides of (1) by sss 25035.22 23   gives 
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Still, the values of s that solve (2) are the same roots. Define the fictitious open loop transfer function 
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Then (2) becomes: 

 

                                                                                0)(1  sQKi
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Now compare the form (4) to the denominator of 
)()(1

)()(
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sGsG
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Recalling that )()( sGsG pc
 is the open loop transfer function associated 

with Figure 1, is the reason for defining the fictitious open loop system 

(3). Using the Matlab command rlocus(Q) will give us a plot of the 

roots of the corresponding fictitious closed loop system that has roots 

associated with (1).  

 

In the root locus for (1) at right, we used the data cursor to see where 

the roots are for 500iK . 

 

COMMENT on these roots. 

 

>> mean(x) =  5.5000 std(x)=  3.0277 


