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LECTURE 2    Second order Systems   (Updated 1/15/2019) 

 

In this set of notes we address the properties of the second order, constant coefficient differential equation: 

 

                         
ooo vyyytfbtfbyayaya 



)0(&)0(;)()(1012
. (1) 

 

This equation describes the relation between an input f(t)  and an output y(t). We will restrict our attention to the 

solution of (1) via Laplace transforms. Furthermore, we will assume here that all initial conditions are zero. The 

reader will address the case in which they are not in the homework problems. Taking the Laplace transform of (1), 

we obtain: )()()()( 101
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2 sFbsbsYasasa o . It follows that the system transfer function is: 
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For any input )(tf the solution of (1) under zero initial conditions is, in the s-domain, )()()( sFsHsY  .  

 

The Unit Impulse Response of a Second Order System: For )()( ttf  we have )()( sHsY  . Notice that the 

units of (2) is the ratio of the output to the input. Hence, while )()( sHsY  is mathematically correct, one must 

note that the units of )()( sHsY  as the solution for a unit impulse are those of the output. This relation is of such 

fundamental importance that we highlight it as  

 

An Important Result- The system impulse response and transfer function constitute a Laplace transform pair. 

Even so, the transfer function units are those of the output divided by those of the input, while the impulse 

response units are those of the output alone. 

 

The system (2) is a stable system if the impulse response 0)( th as t . This requires that the two roots of 

the characteristic polynomial 
01

2

2)( asasasA  both be in the Left Half Plane (LHP). A first order system has 

only one root, and it must be a real number. In contrast, a second order system can have either (i) two real roots, 

or (ii) a pair of complex-conjugate roots. We now consider these two cases. Furthermore, we will assume that the 

system is stable. 

 

Case 1 The roots of 
01

2

2)( asasasA   are real: Here, we will assume that the two real roots are not equal. 

The reader will address the case where they are equal in the homework problems. The roots of 
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2)( asasasA   are the values of s that make it zero. We will express this as: 
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The roots are 
11 s and 

22 s . Stability requires that both roots be real and negative, and so the parameters 

1  and 2  are positive real numbers. Furthermore, they are the inverses of the system time constants, 11 /1    

and 
22 /1   . In this case, the system transfer function (2) becomes: 
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To obtain the system impulse response associated with (4), we need the following Laplace table entries: 
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Note that since multiplication by s in the Laplace domain is equivalent to taking the derivative in the time domain. 

Hence, #16 should be readily obvious from #13. We now have the denominator of )(sH in the appropriate form 

for both #13 and #16, but we have a ways to go. Using #13, the far right term in (4) is : 

            )(
))(())((

21

12

0

21

12

12

0

21

tto ee
b

ss

b

ss

b 





































. 

Using #16, the other term is: 
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This can be rearranged as:  tt
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And so, we see that the system impulse response is the sum of two decaying exponential functions. The relative 

contribution of each one will be determined both by which one decays slower and by the relative weights. Often, 

it is presumed that the slower one will dominate the shape of (5). However, if the faster one has a much larger 

weight, then this will not be the case. The nice thing about having (5) is that it shows you the exact nature of the 

weights:                                 )()( 02111101 bbqandbbq 

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Conclusion: A second order system whose characteristic polynomial as negative real roots has an impulse 

response that is the sum of two decaying exponentials whose relative weights are given by (6). 

 

 

Definition 1. A second order stable system having two real roots is called an overdamped system. If the roots are 

real and equal, it is called a critically damped system. If the roots are a complex-conjugate pair, then it is called an 

underdamped system. 

 

Case 2 The roots of 01

2

2)( asasasA   are a complex conjugate pair: Recall from the ‘assumed solution’ 

technique that for a second order system, the complementary (not complimentary!          ) solution has the form 
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In words, this solution will oscillate at frequency ω, and decay exponentially if 0  [i.e. if the system poles are 

in the proper Left Half Plane (LHP)].  

 

A ‘mantra’ for AERE331: The characteristic polynomial for an underdamped second order system can always be 

written as 
22 2)( nnsssp   . 

 

 

Example 1. Consider the system described by the following differential equation: 
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(b)  Without actually computing the system poles [i.e. the roots of the polynomial 251.0)( 2  sssp  ] 

determine whether the system is overdamped or underdamped: 

Answer: Recall that, from the quadratic formula, the roots will be complex, if “ acb 42  ”. In relation to p(s) we 

have 100)25)(1(401.01.0 2  . Hence, the poles are complex, and hence the system is underdamped. 

 

(c)  You should have found that the system poles are complex. Rather than using the quadratic formula to 

compute them, recall (see the above ‘mantra’) that for a second order underdamped system, 
22 2)( nnsssp   . Use the method of equating coefficients to find the undamped natural frequency, n , and 

then the damping ratio,   

Solution: 01.01.0)5(225252.02)( 222   nnnn sssssp . 

 

(d) Compute the system damped natural frequency, time constant, settling time, percent overshoot, rise time, and 

static gain. [For the following quantities, see the discussion in the book.] 

Solution: 510151 42  
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The rise time is 36.0
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sec. The static gain is 04.025/1)0( sGp
 

 

(e) Use the unit step response plot to verify the information in part (d). 

Solution: To obtain the step response using Matlab, we first define the system transfer function: 

 

>> Gp=tf(1,[1 .1 25]) 

 >>Transfer function: 

       1 

---------------- 

s^2 + 0.1 s + 25 

 

To get the unit step response for this system, we type 

>> step(Gp) 

 

You should be able to use the data cursor to verify the  

information in (d).                                                                       Figure 2.1 Plant unit step response. 

 

(f) Plot the plant FRF using the Matlab command ‘bode(sys). 
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                                                                                                 Figure 2.2 Plant FRF. 
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(g) The plant low frequency gain is ~ -27.6dB. The amplification at resonance is approximately 5.72 – (-27.6) 

=33.32 dB  (i.e. M=46.345). Hence, for a sinusoidal input with unity amplitude and frequency 5 rad/sec, the plant 

steady state response will be a sinusoid at the same frequency, but with amplification (re: low frequency, or static 

gain) of almost 50!!! [i.e. the plant will resonate]. From the above FRF, we see that the response level at 

resonance is about 5.72dB or a factor of 1.93. Use the Matlab ‘lsim’ command to verify that, for an input 

)5sin()( ttf   the steady state output will be )2/5sin(93.1)(  tty . 

Solution: The commands are: >> t=0:.01:150; >> f=sin(5*t); >> y=lsim(Gp,f,t); >> plot(t,f) >> hold on >> 

plot(t,y,'r') 

 

 

 

 

 

 

 

 

 

                                          Figure 2.3 Sinusoidal input (blue) and response (red). 

 

 

 

Example 2 [This and the following example are from Sherman’s AERE355 Ch.4 notes]  

 

It is desired to develop a test rig for estimating the pitching lift derivative coefficient, 
LC , for horizontal tail 

designs. The beginning of this development is shown below. 

 

 

 

 

 

 

 

 

 

 

 

          Figure 4.9 of Nelson Rod-plate assembly constrained to pure pitching motion. 

 

(a) Development of the equation of angular motion:   

We begin with:            q
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Note #1: Since the cg of the test rig is constrained, the angle of attack,  , and the pitch angle,  , are one and the 

same. Hence,    and q . 

Note #2: Let 
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From these notes, (E1.1) can be written as: 

                                                     0  MM q
 . (E1.2) 

 

(b) Development of the relation between ),( qMM and 
LC : 
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Recall that 0/tan uql , so that for small  , we have 0/uql . Hence, 
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From (E1.3a-b) we obtain:                           
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Substituting (E1.3c) into (E1.2) gives: 
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(c) Relation between Mα and the transient response associated with (E1.4): 

     [Subtitled: How many different way can we estimate 
LC ?] 

We know that the transient response associated with (4) will be decaying and oscillatory. Hence, we can write the 

left side of (E1.4) as: 
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From (E1.5a), we have:                             Mn  . (E1.5b) 

We also have: 
nn

u

l
M

u

l
 22

00


















. This gives:       00 2/2/ uMuln   . (E1.5c) 

Also, the system time constant is:
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Now, the transient response associated with (E1.5a) has the form: 

                                           )sin()( 11  
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
tet d

tn  (E1.6a) 

where the pair of constants ),( 11  will depend on the type of specified initial conditions . The initial conditions 

are not as important as the nature of the response (E1.6a). If we define n /1


 , then (E1.6a) becomes: 
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/
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. (E1.6b) 

The parameter  is called the time constant associated with (E1.5a). This gives rise to one method for estimating 

LC from the transient response measurement. 

 

Method 1.  Ignore the oscillations and use only the decay envelope 
 /
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te
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1 37.0  e . And so, to estimate t , we sketch an exponential envelope on the decaying oscillatory 

response, and find the time at which this envelope is ~37% of its peak value. Having this estimate, call it 
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And so, our estimate of the magnitude of 
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Method 2. Ignore the envelope and use only the oscillation frequency: The oscillation frequency, d , of the 

decaying response (E1.6) is: 
21   nd . From (E1.5b) and (E1.5c) this becomes: 

                                                     2

0)2/(1 uMMd   . 

And so, for an estimate of d , call it d


, this equation provides an estimate of M , call it M


. That estimate 

and (E1.3a) results in the desired estimate of 
LC , call it 

LC


. 

 

Method 3. Use both decay and oscillation frequency information: This method is best described using a plot of 

(E1.6): [This is called the modified log-decrement method.] 

 

 

 

 

 

 

 

 

 

 

                            Figure 1. Initial condition response for  2n and 01.0 . 

 

The plot on the right in figure 1 shows that for sec100 t , ot 4.5)( 0  , and for sec201 t , ot 3)( 1  . The 

duration, 01 tt   between these times is 20 sec., but it is also 10 cycles (or periods), where one period is 

21/2/2   ndT . Hence, 2
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21/   . And so, our estimate 0094.0


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
. This estimate is close to the true 

value 01.0 , and it would have been closer, had we not used visually-based estimates of )( 0t and )( 1t .  

Finally, we can use (E1.3a), (E1.5b) and (E1.5c) to obtain: 2
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Notice that in this method it is not necessary to measure 0u , since the above estimate does not involve it. This can 

offer a significant advantage over other methods, both in terms of accuracy and equipment.  

 

(d) Use of the setup in Figure 4.9 to validate the experimental design: Now that we know how to use the 

transient response, (6) to estimate the lift coefficient derivative for a given tail design, it is necessary to validate 

the experimental setup illustrated in Figure 4.9. In that design, we are assuming that the cross-bar bearing friction 

is negligible. We will also assume that the tube that supports the tail is completely rigid, and that its aerodynamic 

influence is negligible. Finally, we will assume that we have perfect measurements of the geometric and mass 

quantities described in that figure. By using a flat plate with known lift properties, we can compute the theoretical 

value for 
LC . If the experimentally measured transient response matches our theoretical prediction reasonably 

well, then we can assume that we have a valid setup. We will now proceed to compute the theoretical value for 

LC from the given numerical information.  
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The moment of inertia, Iy: From the parallel axis theorem, we have: 2

' lmII pyy  .The moment of inertia of the 

flat plate about its cg, and the moment of the plate about the setup cg are:   
2523

' 1016.2)/)(12/1()12/1( ftslugcgWbtcI py      &   2322 103.9)/( ftsluglgWlm pp   . 

Hence, 23)( 1032.9 ftslugI plate

y   . We also have 23)( 1060.4 ftslugI Ballast

y   . Hence, the moment of inertia of 

the entire system is: 22104.1 ftslugI y   . 

 

Numerical values for Mα and Mq:  

For an infinite flat plate, we have radCL /2)( 

 . For a finite plate with aspect ratio, AR, the lift coefficient 

derivative is: )]/(1/[ )()( ARCCC LLL 


  . Since 6AR , we have radCL /7.4


 

Using these highlighted results and equations (3), we obtain: 2/1.36 sM 
 and 2/38.1 sM q   

 

Hence, (2) becomes:   01.3638.1    . It follows the theoretical values for n and  are: 

sec/0.6 radn  and 038.0 . If we give this plate an initial angular displacement, 0

1 10 , then we should 

expect the experimentally measured transient response to be similar to the plot below. 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-8

-6

-4

-2

0

2

4

6

8

10

time (sec)

th
(t)

Plot of Initial Condition Response

 
Figure 2. Expected description of the experimentally measured transient response of the flat plat to an initial 

angular displacement of 10o.   □ 

 

 

Example 3 [Related to Nelson EXAMPLE PROBLEM 5.2 on p.190] For a plane constrained to pure yawing, 

we have: 

                                   
rr rN N N           . (5.23). 

Write this as:             
22

rn n rN             

 

We are given: 2( / )n z nN C QSb I
    and 

0[( / 2 ) / ] 2
rr n z nN C b u QSb I   . Hence, 

 

                          
n N  , and 0.5 /rN N   . [See bottom of p.192.] 

What the author does not do, we will do now; namely to understand the specific parameters that control the 

dynamics. Recall that 
2

00.5Q u . Hence: 

 

         
0 0.5 / )n n zu C Sb I


     ,  0.5 /rn

z

n

C
Sb I

C


    and 
2

0

81 2

( )
r

z

n r n

I

N u C Sb


 
    
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So, as the plane speed increases, 
n increases,  decreases, and  is not affected.  

 

QUESTION: Why is this information valuable to a pilot? 

 

ANSWER: One reason is obvious. At higher speeds the plane lateral dynamics will be faster (i.e.  is small). 

Hence, it will be more difficult for the pilot (who has relatively slow dynamics) to accommodate the plane 

dynamics. If this happens, the pilot could reduce his speed to better accommodate these dynamics. Another reason 

is that planes often fly through spatial turbulence. The frequencies of the temporal turbulence are directly 

proportional to 
0u . Suppose that the wing has a low-damped structural resonance at a frequency 

wingn . If at a 

given speed, the frequency 
wingn is close to the frequency 

n , a cross-coupling of these two resonances could 

occur; making for a very difficult situation. 

 

Now: (1 / )
wf v

n n v v LC C V d d C
  

     and 2 ( / )
r v

n v v v LC V l b C


  , where /v v vV S l Sb .  

Clearly, there are many variables, in addition to 
0u , that affect the lateral dynamics. For example, what would 

happen if a portion of the vertical tail were to break off? This would reduce the values of 
v

LC


, 
vV (via reduction of 

both 
vS and 

vl ), and 
vl (directly). Both 

nC

and 

rnC would be reduced in magnitude. Consequently, 
n would 

decrease and  would increase. What would happen to  is a more complicated question. 

 

In summary, the question of just how the various parameters influence the flight dynamics is a rich and 

complicated one. But it is a question that is well-posed in the context of the subject of flight dynamics and 

control. □ 

 

 

 

 

[NOTE: I will not cover the specific questions related to EXAMPLE PROBLEM 5.2 in class. They are included 

below. Feel free to go through it on your own. I included it to give students interested in flight dynamics further 

insight into the topic. We may well return to it when we address state space models later in this course.] Suppose 

an airplane is constrained to a pure yawing motion. Use the data for the general aviation airplane in Appendix B, 

determine the following quantities: 

(a) The yaw moment equation written in state space form. 

(b) The characteristic equation and eigenvalues for the system. 

(c) The damping ratio,  , and undamped natural frequency, n . 

(d) The response of the plane to a 5o rudder input. Assume initial conditions are: .0)0()0(  r  

 

Solution: The solution that follows is taken directly from pp.189-191 of Nelson: From p.189 we have 

 

                                ( )
rr rN N N N 


           . (5.23) 

For a sea level flight condition, the weathercock stability coefficient, the yaw damping coefficient, and the rudder 

control power coefficient have, respectively, the following values: 

                       rCrCrC
rr nnn /072.0;/125.0;/071.0 


. 

[The derivative 
nC



is not included in the appendix, and will be assumed to be zero.] 

For sftu /1760  , the dynamic pressure at sea level is: 22

0 /8.365.0 ftlbuQ 


 . 

The plane geometry parameters include: 22 3530;4.33;184 ftslugIftbftS z  . 

These values result in the following dimensional derivative values: 
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2/55.4)/( sIQSbCN zn 


 ; sIQSbubCN znr r
/76.0]/)2/[( 0  ; 2/6.4)/( sIQSbCN zn

rr



 

 

Substituting these into (5.23) gives: 

                               r  6.455.476.0  .  (1) 

We are now in a position to solve parts (a-d). 

 

 

(a) The yaw moment equation written in state space form. 

Solution: Recall that the state space form is: BuAxx  . In relation to (1) above, this will be a 2-D system. 

Hence, 
trtxtxtx )]()([)( 21  We know that one state, say, )(1 tx , will be )(t . We also know that, since the 

plane is constrained to pure yawing, )()( trt  . And so, let )()(2 trtx  . From (1) we have: 

rrr   6.455.476.0 . And so, we arrive at: 

 

                                   
r

rr
































 














0

6.4

01

55.476.0




. 

 

(b) The characteristic equation and eigenvalues for the system. 

Solution: The characteristic polynomial is simply: 55.476.0)( 2  sssp . The eigenvalues of 








 


01

55.476.0
A are obtained via Matlab: 

 

> A=[-.76 -4.55 ; 1 0]; 

> eig(A) 

ans = 

  -0.3800 + 2.0990i 

  -0.3800 - 2.0990i           

 

They can also be obtained via: 

 

> p=[1 .76 4.55]; 

> roots(p) 

ans = 

  -0.3800 + 2.0990i 

  -0.3800 - 2.0990i 

 

 

 (c) The damping ratio,  , and undamped natural frequency, n . 

Solution: These are easily computed: 178.0;/13.2   srn
 

 

(d) The response of the plane to a 5o rudder input. Assume initial conditions are: .0)0()0(  r  

Solution: A homework problem?    □ 

 

 


