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Lecture 18  Some State Space Examples in Relation to Flight Dynamics   (3/5/20) 

Example 1. Consider a general aviation aircraft constrained to pure yaw motion (e.g. in a wind tunnel), described by: 

   r  6.455.476.0  . Recall that in this setting the yaw rate is: )()( trt  . 

Define the state trtr ttrtxtxt )]()([)]()([)( 21 x . 

 

(a) Develop the state space form of (1):  BuAxx  . 

Solution: rrr   6.455.476.0  gives  BuAxx 
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(b) Compute the eigenvalues for the system in (a) using (i) ‘eig(A)’. Then (ii) compute the roots of the system 

characteristic polynomial, to show that these roots are, indeed, the eigenvalues of A. 

 

Solution: eigs(Ap)  =  -0.3800 +/-  2.0990i. Because the system is represented in the controller canonical form, the 

coefficients of )(sp  are  a=[1 -Ap(1,:)] = s^2 + 0.76s + 4.55. Hence, roots(a) = -0.3800 +/-  2.0990i. Verified.  

 

(c) Determine the system time constant τ, damping ratio ζ, and undamped natural frequency n . 

Solution:    38.0n .sec63.2/1  n  

sec/124.238.009.2)()()1( 222222222 radndnnnnd   . So 179.0&38.0  n  

 

(d) Obtain the full state feedback control matrix  21 KKK  that will result in .sec3.1 and 75.0 . 

Solution: For .sec/025.1/769.0769.0/13.1 radnnn    .  So, 678.0769.01 2
2,1 iis nn   . 

p=[-.769+1i*.678; -.769-1i*.678];  K=acker(Ap,Bp,p)  = [ -0.1691    0.7606]; 

 

(e) Develop the closed loop transfer functions for this 1-input/2-output command system. 

Solution: )()()( 1 sss UBAIXBuxAx



 . 
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Yes- “Develop” means develop. It does not mean use Matlab commands. If you are unsure, then ASK. 

 

Specifically, 
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Remark 1. The similarity of the TFs is to be expected, since )()()()( srsstrt   . 
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(f) The PD controller ( ) 0.1691 0,7606cG s s    was placed in the feedback loop. What would the CL transfer functions be, 

had it been placed in the forward loop?    [IN-CLASS ANSWERS]  

Solution: 

 

The plant TF is: 
2

4.6
( )

0.76 4.55
pG s

s s


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 
. The controller TF is: ( ) 0.1691 0.7606cG s s   . 

Hence, the command CL TF is: 
2
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c p c
c

c p c
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W s
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(g) Compute the command CL TF and obtain the response to a unit step rudder angle. Then discuss the performance of the 

CL system. 

Solution: 
2
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W s
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. 

 

The system has minimal overshoot and settling time ~7 seconds. 

However, it has static gain ~ -3.3. The desired gain is -1. We 

could modify it to 1.0 by multiplying the input by 1/3.3. This is 

sometimes called a fudge factor.  □ 

 

 

 

 

 Figure E1. CL command system unit step response. 
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Example 2. Aircraft small perturbation lateral dynamics are described by [see Nelson (5.35) p.195]: 
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 Consider a general aviation plane whose lateral dynamics described by (1a) is:   
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The general state space equations are )()()( ttt BuxAx  . In this problem, choose )()( tt xy   

(a) Use Matlab to find the eigenvalues of three lateral modes. 

Solution: ‘eig(A)’ gives: s1=  -8.43 (roll)  ;  s2= -0.48 +/- 2.33i (Dutch roll) ; s4=-0.0088 (spiral) 

 

(b) Use the Matlab command ‘ss2tf’ to arrive at the coefficients of the 

4 transfer functions for input 
r . 

Solution: C=eye(4);D=zeros(4,2); [n1,d1]=ss2tf(A,Bp,C,D,2); 

  

 

(d) Give the transfer function )(
)(

)(
sG

s

sr
rr

r







. Then evaluate its poles and zeros. 

Solution:   Grr=tf(n1(3,:),d1)  = (0.22 s^3 + 12.06 s^2 + 3 s - 22.81) / (  s^4 + 9.41 s^3 + 13.93 s^2 + 47.99 s + 0.4216) 

 

GrrPOLES=roots(d1) =   -8.4322    ;   -0.4845 +/-  2.3329i    ;    -0.0088  

 GrrZEROS=roots(n1(3,:))  =   -54.5172   ;   -1.5290   ;   1.2439 

  

(e) Give a plot of the roots of )(1 sGK rr  

as a function of K. Then draw a  

conclusion regarding the associated CL 

stability as a function of K. 

Solution: rlocus(Grr). The zoomed plot 

shows a locus beginning at zero and 

continuing into the RHP. Hence, no P-

control will stabilize the system. □ 
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Example 3.  

 

 

A STOL transport has been modified to include direct-lift control surfaces, integrated with 

altitude indicator feedback, a servo drive, and a controller, as shown in the block diagram 

above. Assume that the forward loop controller 0.1)( sGc . 

 

(a) Recover the differential equation that relates the input )(te to the output )(th . 

Solution:          
sss

k

se

sh s

144.11

500

)(

)(
23 

 . Hence, )(500144.11 tekhhh s   

 

(b) Develop the controller canonical form for ),,( DC,BA  that relates the input )(te to the output )(th . 

Solution: The controller form uses: ( ) (1/ 500 ) ( ) ( ) ( )
tr

st k h t h t h t   x and  0 0 500 skC  

 

From (a) we have 
1 1 211.4 14 ( )x x x e t    . We also have 12 xx   and 23 xx  . Hence: 
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(c) Suppose that we incorporate full state feedback as shown at the 

right. We then have: uBAIX BK
1)()(  ss  with BKAABK 



. 

It is desired to find the values of K such that the closed loop poles will  

be iss 5.12;2 3,21  . Use the Matlab command ‘place’ to find K. 

Solution: K=place(Ap,Bp,C,D,p)  =  [-5.4  0.25  12.5]  

 

(d) Plot the closed loop step response for 0.1sk . Then find the value of sk that will result in unity static gain, and plot 

the closed loop step response to verify your answer. 

Solution:  [n1,d1]=ss2tf(A,Bp,C,D);  W1=tf(n1,d1) =  500 / (s^3 + 6 s^2 + 14.25 s + 12.5), so W(0)= 40. Hence, unity 

static gain requires 025.sk . 
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Figure 3(d) Closed loop step response for 0.1sk  (left) and for 025.sk  (right).   
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(e) The controller output is 
1 2 3 1 2 3[ ] ( ) (1/ 500 )[ ]sK K K t k K h K h K h  x . Hence, the controller transfer function is 

 

                                                         2

1 2 3

( )
( ) (1/ 500 )[ ]

( )
c s

U s
G s k K s K s K

H s
    . 

Place the controller into the forward loop to arrive at the command closed loop TF. Then obtain a plot of the system step 

response. 

Solution:   

Wc =  -2700 s^2 + 125 s + 6250 

           ---------------------------------- 

       500 s^3 + 3000 s^2 + 7125 s + 6250 

 

Equivalently: 
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 Figure 3(e) CL command system step response. 

 

(f) Discuss the nature of the step response in (e), as well as the nature of the controller. 

Discussion: 

The step response is quite sensitive to the step in the initial response region. This is because the controller is not just a PD 

controller. It is a proportional-plus-derivative-plus second derivative controller. The higher the derivative, the more 

sensitive the response will be in the initial stages. If such a controller has a step input, it will respond not only to the step, 

but also to its derivative that is an impulse, but also to its second derivative that is a pair of impulses! 

 

 

Remark. This example demonstrates the issue associated with state feedback that can be ‘complicated’. Using the Matlab 

commands [n1,d1]=ss2tf(A,Bp,C,D); W1=tf(n1,d1); places the controller in the state feedback loop. Hence, the CL 

system becomes a regulator, not a command system. It takes some thought as to how to incorporate the controller into the 

forward loop, so as to have a command system. In this example it was necessary to realize that when using the controller 

canonical form, the open loop numerator coefficient 500 sk  is placed in the C matrix. Hence, to obtain the controller 

transfer required that it be properly scaled.    □ 
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Matlab Code 

% PROGRAM NAME: lec18.m  (3/4/20) 

%EXAMPLE 1: 

s=tf('s'); 

Gp=tf(-4.6,[1 .76 4.55]); 

Ap=[-.76,-4.55;1,0]; 

Bp=[-4.6;0]; 

C=eye(2); 

D=zeros(2,1); 

%-------------------- 

[np,dp]=ss2tf(Ap,Bp,C,D); 

Gp1=tf(np(1,:),dp); 

Gp2=tf(np(2,:),dp); 

%-------------------- 

%(b): 

eigs(Ap) 

a=[1 -Ap(1,:)]; 

roots(a) 

%(d) 

%------------------- 

p=[-.769+1i*.678; -.769-1i*.678]; 

K=acker(Ap,Bp,p) 

A=Ap-Bp*K; 

ps=s^2-A(1,1)*s-A(1,2) 

%(f): 

Gc1=tf(K,1); 

Wc=feedback(Gc1*Gp,1); 

figure(1) 

step(Wc) 

title('CL Command System Step Response') 

grid 

%========================== 

%EXAMPLE 2 

A=[-.25,0,-1,.18;-16.02,-8.4,2.19,0;4.49,-.35,-.76,0;0,1,0,0]; 

Bp=[.07,0;23.16,-29.01;4.55,.22;0,0]; 

C=eye(4); 

D=zeros(4,2); 

eigs(A) 

[n1,d1]=ss2tf(A,Bp,C,D,2); 

Gp31=tf(n1(3,:),d1); 

figure(20) 

rlocus(Gp31) 

figure(5) 

step(Gp31) 

title('Step Response for T.F. PHI(s)/DELr(s)') 

grid 

%=========================================== 

%EXAMPLE 3: 

Ap=[-11.4,-14,0;1,0,0;0,1,0]; 

Bp=[1;0;0]; 

s1=-2; s2=-2+1i*1.5; s3=conj(s2); 

svec=[s1;s2;s3]; 

K=place(Ap,Bp,svec); 

A=Ap-Bp*K; 

ks=1.0; 

C=[0,0,500*ks]; 

D=0; 

[n1,d1]=ss2tf(A,Bp,C,D); %Places Gc in feedback loop 

W1=tf(n1,d1); 

figure(6) 

step(W1) 

title('C.L. Step Response for ks=1') 

grid 

ks=1/40; 
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W=ks*W1; 

figure(7) 

step(W) 

title('C.L. Step Response for ks=1/40') 

grid 

%Place Gc in forward loop: 

s=tf('s'); 

Gc=K*[s^2;s;1]/500; 

Gs=10/(s+10); 

Gp=50/(s^2+1.4*s); 

G=Gc*Gs*Gp; 

Wc=feedback(G,1) 

figure(8) 

step(Wc) 

title('CL Step Response with Gc in Forward Loop') 

grid 

 


