Lecture 18 Some State Space Examples in Relation to Flight Dynamics (3/5/20)

Example 1. Consider a general aviation aircraft constrained to pure yaw motion (e.g. in a wind tunnel), described by:
Ay + 076Ay + 455Ay = —4.6A5,.Recall that in this setting the yaw rate is: Ay(t) = Ar(t) .

Define the state x(t) =[x, (t) X, ()]" =[Ar(t) Ay (t)]".

(a) Develop the state space form of (1): x=Ax +Bu.

. ) . . AY -0.76 —-455| Ar -4.6
Solution: Af + 0.76Ar + 455Ay = -—4.6A5, gives x=|  |= + AS, =AX+Bu.
Ay 1 0 Ay 0

(b) Compute the eigenvalues for the system in (a) using (i) ‘eig(A)’. Then (ii) compute the roots of the system
characteristic polynomial, to show that these roots are, indeed, the eigenvalues of A.

Solution: eigs(Ap) = -0.3800 +/- 2.0990i. Because the system is represented in the controller canonical form, the
coefficients of p(s) are a=[1 -Ap(1,:)] =s"2 + 0.76s + 4.55. Hence, roots(a) = -0.3800 +/- 2.0990i. Verified. ©

(c) Determine the system time constant 7, damping ratio {, and undamped natural frequency @, .
Solution: @, =0.38 = 7=1/{w, =2.63sec.

0} =0 (1-¢H = 0f -(la)’ = o, :Jwg + (L )? = /2.09% +0.38? =2.124 rad /sec. SO (=038 & w,=0179

(d) Obtain the full state feedback control matrix K =[K; K,] that will resultin r =1.3sec.and ¢ =0.75.

Solution: For r=13=1/ga, = ¢@,=0769 = @,=0.769/c=1025rad/sec. . SO, s;, =—Can Tiw,y1-¢* =-0.769+i0.678.
p=[-.769+1i*.678; -.769-1i*.678]; K=acker(Ap,Bp,p) =[-0.1691 0.7606];

(e) Develop the closed loop transfer functions for this 1-input/2-output command system.
Solution: x = Ax+Bu=> X(s) = (sI —-A) "B U(S).

AZA_BK{—OJG —4.55}_{0.78 —3.50}{—1.54 —1.05]Hence, 0(s) = 5% +1.545 1 1.05.

1 0 0 o0 1 0

(sl —A)'B s+154 1.05]'[-4.6] [s/p(s) -1.05/p(s) |[-4.6] [-4.6s/p(s) —W(s)
- I O 0 | |1/p(s) (s+154)/p@s)| O | | -46/p(s) | '

Yes- “Develop” means develop. It does not mean use Matlab commands. If you are unsure, then ASK.

Ar(s) _ 4465 an0q Aw(s) _ 446

Specifically, W ()= —— > =W (§)=—— " .
() s*+1.54s5+1.05 AS.(S) as s®+1.54s5+1.05

r

Remark 1. The similarity of the TFs is to be expected, since Ay (t) = Ar(t) = sAw/(s) = Ar(s).



(f) The PD controllerG_(s) =-0.1691s +0,7606 Was placed in the feedback loop. What would the CL transfer functions be,

had it been placed in the forward loop? [IN-CLASS ANSWERS]
Solution:

—4.6

10765 1455 The controller TF is: G_(s) =-0.1691s +0.7606 .
s*+0.76s+4.

The plant TR is: G (s) =

G,(s)G,(s) —4.6G,(s) _
1+G,(s)G,(s) G,(s)+s” +0.765+4.55

Hence, the command CL TF is: W, (s) =

(g) Compute the command CL TF and obtain the response to a unit step rudder angle. Then discuss the performance of the

CL SyStem. CL Command System Step Response
0.5 T T T T

Solution: W_(s) :M :
§°+1.545+1.05

The system has minimal overshoot and settling time ~7 seconds.
However, it has static gain ~ -3.3. The desired gain is -1. We
could modify it to 1.0 by multiplying the input by 1/3.3. This is
sometimes called a fudge factor. o

6 8 10
Time (seconds)

Figure E1. CL command system unit step response.



Example 2. Aircraft small perturbation lateral dynamics are described by [see Nelson (5.35) p.195]:

AB| [Yglug Ypluy Y. /lug—1 gcos6y/ug [AS Ys. /U
Ap|_| Ly L, L, 0 Ap | Ly, [Ad,
A¥ Ny, N, N, 0 Ar Ns,  Ns [AS
A 0 1 0 0 Ag 0
Consider a general aviation plane whose lateral dynamics described by (1a) is:
-.25 0 -1 .18 .07 0
_|-16.02 -840 219 O and 12316 -29.01
| 449 -35 -76 0 455 22
0 1 0 0 0 0
The general state space equations are x(t) = Ax(t) + Bu(t) . In this problem, choose y(t) =x(t)
(a) Use Matlab to find the eigenvalues of three lateral modes.
Solution: ‘eig(A)’ gives: s1= -8.43 (roll) ; s,=-0.48 +/- 2.33i (Dutch roll) ; s,=-0.0088 (spiral)
nl
(b) Use the Matlab command ‘ss2tf> to arrive at the coefficients of the 0 0 -0.2200 -17.2233  -3.8818
) ) 0 -29.0100 -28.8183 -132.1219 0
4 transfer functions for input Ag, . 0  0.2200 12.0565  3.0004 -22.8115
) 0 0 -29.0100 -28.8183 -132.121°9
Solution: C=eye (4) ;D=zeros (4,2); [nl,dl]=ss2tf(A,Bp,C,D,2);
dl
1.0000 9.4100 13.9305 47.9942 0.421¢
(d) Give the transfer function Ar((s)) =G, (s)- Then evaluate its poles and zeros.
AS, (s "

(1a)

(1b)

Solution: Grr=tf(n1(3,:),d1) =(0.22 "3 + 12.06 s"2 +3s-22.81)/( s +9.41s"3 + 13.93 s"2 + 47.99 s + 0.4216)

GrrPOLES=roots(d1) = -8.4322

; -0.4845 +/- 2.33291 ;

-0.0088

GITZEROS=roots(n1(3,)) = -54.5172 ; -1.5290 ; 1.2439

(e) Give a plot of the roots of 1+ KG,, (s)

as a function of K. Then draw a
conclusion regarding the associated CL
stability as a function of K.

Solution: rlocus(Grr). The zoomed plot
shows a locus beginning at zero and
continuing into the RHP. Hence, no P-
control will stabilize the system. o
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he (s) (S 10k 50 h(s)

re _ _ s o~ G Sy =—— [

Example 3. PG (s —» G =15 »Co (9 s(s+1.4) e
k,.=1.0

A STOL transport has been modified to include direct-lift control surfaces, integrated with
altitude indicator feedback, a servo drive, and a controller, as shown in the block diagram
above. Assume that the forward loop controller G,(s) =1.0.

L
o

Attitude indicator with integrated
localizer and glideslope and split-cue

(a) Recover the differential equation that relates the input e(t) to the output h(t) . flight director command bar indicators,

indicating brown earth below and sky
Solution: M) ___ 500k,
e(s) s°+114s*+14s

above, wings level with horizon, in a

. Hence, h + 114h + 14h = 500k56(t) slight nose-down attitude.

(b) Develop the controller canonical form for (A,B,C,D) that relates the input e(t) to the output h(t) .
Solution: The controller form uses: x(t)=(1/500k5)[ﬁ(t) h(t) h(t)]trand C=[0 0 500k,]

From (a) we have x =-11.4x +14x, =e(t). We also have X, = X, and X, = X, . Hence:
-114 -14 0 1
x=| 1 0 Ofx+|0le(t)=Ax+Beand h(t)=[0 0 500k |x +0e(t) = Cx + De(t) .
0 1 0 0

1
D
(c) Suppose that we incorporate full state feedback as shown at the —
A ref u B X
right. We then have: X(s) =(sl - Agx) *Bu with Agc =A-BK . m—(sI-A) "B »O
It is desired to find the values of K such that the closed loop poles will
be s, =-2;s,,=—2+15i. Use the Matlab command ‘place’ to find K. EI‘

Solution: K=place(Ap,Bp,C,D,p) = [-5.4 0.25 12.5]

(d) Plot the closed loop step response for k_ =1.0. Then find the value of k, that will result in unity static gain, and plot
the closed loop step response to verify your answer.

Solution: [n1,d1]=ss2tf(A,Bp,C,D); Wi=tf(nl,d1) = 500/ (s"3 + 6 s"2 + 14.25 s + 12.5), so W(0)= 40. Hence, unity
static gain requires k, =.025.

20 CL Step Response with ks = 1.0 CL Step Response with ks = .025
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Figure 3(d) Closed loop step response for k, =1.0 (left) and for k, =.025 (right).



(e) The controller output is [K, K, K,]x(t) = (1/500k,)[K,h+K,h+K,h]. Hence, the controller transfer function is

Y6) _ G (s)= (1/500k )[K,s + K;s 4 K,].

H(s)
Place the controller into the forward loop to arrive at the command closed loop TF. Then obtain a plot of the system step
response CL Step Response with Gc in Forward Loop
Solution: T ' ‘ L —— T [ ] ]
Wc = -2700 $"2 + 125 s + 6250 ” ]
500 s"3 + 3000 s"2 + 7125 s + 6250 O; I |
2 ol |
Equivalently: w, (s) = >4’ +0-255+125
‘ s°+6s” +14.255 +12.5
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Figure 3(e) CL command system step response.

(f) Discuss the nature of the step response in (e), as well as the nature of the controller.

Discussion:

The step response is quite sensitive to the step in the initial response region. This is because the controller is not just a PD
controller. It is a proportional-plus-derivative-plus second derivative controller. The higher the derivative, the more
sensitive the response will be in the initial stages. If such a controller has a step input, it will respond not only to the step,
but also to its derivative that is an impulse, but also to its second derivative that is a pair of impulses!

Remark. This example demonstrates the issue associated with state feedback that can be ‘complicated’. Using the Matlab
commands [nl1,d1]=ss2tf (A,Bp,C,D); Wl=tf(nl,dl); places the controller in the state feedback loop. Hence, the CL
system becomes a regulator, not a command system. It takes some thought as to how to incorporate the controller into the
forward loop, so as to have a command system. In this example it was necessary to realize that when using the controller

canonical form, the open loop numerator coefficient 500Kk is placed in the C matrix. Hence, to obtain the controller
transfer required that it be properly scaled. o



Matlab Code

% PROGRAM NAME: lecl8.m (3/4/20)
SEXAMPLE 1:

s=tf('s');

Gp=tf(-4.6,[1 .76 4.55]);
Ap=[-.76,-4.55;1,0]1;

Bp=[-4.6;0];

C=eye (2);

D=zeros (2,1);

[np,dpl=ss2tf (Ap,Bp,C,D);
Gpl=tf(np(1,:),dp);

Gp2=tf (np(2,:),dp);

% (b) :

eigs (Ap)

a=[1 -Ap(1,:)];

roots (a)

% (d)

p=[-.769+11i*.678; -.769-11*.678];
K=acker (Ap, Bp, p)

A=Ap-Bp*K;

ps=s"2-A(1,1)*s-A(1,2)

S(f):

Gel=tf (K, 1);

Wc=feedback (Gcl*Gp, 1) ;

figure (1)

step (Wc)

title('CL Command System Step Response')

$SEXAMPLE 2
A=[-.25,0,-1,.18;-16.02,-8.4,2.19,0;4.49,-.35,-.76,0;0,1,0,07;
Bp=[.07,0;23.16,-29.01;4.55,.22;0,0];

C=eye (4);

D=zeros (4,2);

eigs (A)

[nl1,dl]=ss2tf(A,Bp,C,D,2);
Gp3l=tf(nl(3,:),dl);

figure (20)

rlocus (Gp31)

figure (5)

step (Gp31)

title('Step Response for T.F. PHI(s)/DELr(s)"')

$SEXAMPLE 3:
Ap=[-11.4,-14,0;1,0,0;0,1,01;
Bp=[1;0;0];

sl=-2; s2=-2+11i*1.5; s3=conj(s2);
svec=[sl;s2;s3];
K=place (Ap, Bp, svec) ;

A=Ap-Bp*K;

ks=1.0;

C=[0,0,500*ks];

D=0;

[nl,dl]=ss2tf(A,Bp,C,D); %Places Gc in feedback loop
Wl=tf(nl,dl);

figure (6)

step (W1)

title('C.L. Step Response for ks=1"')
grid

ks=1/40;




W=ks*W1;

figure (7)

step (W)

title('C.L. Step Response for ks=1/40")
grid

$Place Gc in forward loop:

s=tf('s');

Gc=K*[s"2;s;1]/500;

Gs=10/(s+10);

Gp=50/ (s"2+1.4*s);

G=Gc*Gs*Gp;

Wc=feedback (G, 1)

figure (8)

step (Wc)

title('CL Step Response with Gc in Forward Loop')
grid



