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Lecture 17  Feedback Control with Known Full State   (3/3/20) 

The plant to be controlled:       

uBxAx   (state equation) gives   )()()( 1 sss UBAIX   

xCy  (output equation) gives )()( ss XCY   

          Figure 1 Plant block diagram. 

 

State feedback:  

Regulator:  

)]()([)()( 1 ssss XKUBAIX    gives  

)]()([)()( ssss XKUBXAI  . This, in turn, gives 

)()()]([ sss UBXKBAI  . Let KBAA 


. Then 

)()()( 1 sss UBAIX



.  )()( ss XCY  .         (1a) Figure 2(a) State feedback for regulator. 

 

Command: 

)]()([)()( 1 ssss r XXKBAIX    gives  

)]()([)()( ssss r XXKBXAI  . This, in turn, gives 

)()()]([ sss rXKBXKBAI  . Let KBB





 

)()()( 1 sss rXBAIX


 .   )()( ss XCY  .     (1b) Figure 2(b) State feedback for command. 

 

Remark 1. One must be careful to note that, unlike scalar-valued transfer functions, where the order of multiplication 

doesn’t matter, for matrix-valued transfer functions it does. Specifically, while blocks precede other blocks in the block 

diagram, the latter blocks must be right-multiplied by the preceding blocks.  

 

Remark 2. The stability of both the regulator system and the command system is dictated by the eigenvalues of 

KBAA 


. These eigenvalues are the roots of the characteristic polynomial )det()( AI


 ssp . 

 

Remark 3. The basis for obtaining the controller K is to specify all of the eigenvalues of KBAA 


 (i.e. all of the CL 

poles). In this respect, this pole-placement method is an extension of the root locus-based placement of a single CL pole. 

 

Remark 4. Figure 7.12 on p.487 is shown at right. As noted in the figure 

caption, it is the assumed system for the control law. This block diagram 

might seem strange to many students, as there is no command or 

disturbance input, as there are in Figures 1 and 2 above.  

        Figure 7.12 Assumed system for control law. 

 

As such, it is not a proper system, since, by definition a system is a relation between an input and an output. A closer 

comparison of equations (1a)  and (1b) reveals a single difference. In (1a) we have B; whereas in (1b) we have KBB





. 

The block diagram in Figure 7.12 gives: 

                                                         1( ) ( ) ( ) ( )s s s  X I A BK X . (2a) 

B C
u x y1)( AIs

rx
K


B C

u x y1)( AIs

x

K



B C
u x y1)( AIs

K
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u
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This, in turn, gives:                      [ ( )] ( ) ( ) ( )s s s s    I A BK X I A X 0 . (2b) 

 

The term s I A in (2b) is present in both (1a) and (1b). In other words, it doesn’t matter if the controller is placed in the 

forward loop or the feedback loop. They have the same open loop transfer function that controls the closed loop stability.  

 

 Example 1.  Consider a plant with transfer function 
)(

)(

25

5
)(

2 sU

sY

ss
sGp






 .  

(a) Recover the differential equation, and then define the state vector    trtr
tytytxtxt )()()()()( 21

x . Derive the 

expressions for ),,( DC,BA  related to the state equation uBAxx  and the output equation  y u Cx D . 

Solution: uyyy 525   gives: uxxx 525 211  . Also: 12 xx  . So we can write: 

uu
x

x

x

x
BAxx 
























 











0

5

01

251

2

1

2

1




 . Then   uxuy DCx  010 . 

Hence,   



























 
 0,01,

0

5
,

01

251
),,( DC,BA . 

(b) Use the ‘acker’ [NOTE: This command has been replaced by the command ‘place’.] command to find K  that will 

place closed loop poles at 10102,1 is  . 

Solution:      A=[-1 -25;1 0]; B=[5;0];   p=[-10+10*1i ; -10-10*1i];     K=acker(A,B,p) =[3.8   35] 

 

(c)Verify the design by computing the eigenvalues of KBAA 


. 

Solution:   AK=A-B*K;    eigs(AK) =  -10.0000 +/-10.0000i 

  

 

(d) Use the ss2tf command to recover the regulator CL transfer function. 

Solution:  )()()( 1 sss UBAIX



.  )()( ss XCY   

C=[0  1];    D=0;      [num,den]=ss2tf(AK,B,C,D)     num = [ 0  0 5 ]   den = [1 20 200] 

 

(e) Repeat (d) for the command CL transfer function. To this end, first compute the portion of )(sY due to input 

)()( 2 sXsYr  . Next, compute the portion of )(sY due to input )()( 1 sXssYr  . Finally, use superposition to obtain the 

total output )(sY  as a function of )(sYr
.  

Solution: )()()( 1 sss rXBAIX


 . 

 BK=B*K;     C2=eye(2);       D2=zeros(2,2);    

 

[numC denC]=ss2tf(AK,BK,C2,D2,2)   numC = [0 175  0 ; 0  0 175]   denC = [1  20  200] 

In particular: )(
20020

175

)(

)(

)(

)(
2

2

,22

2 sW
sssY

sY

sX

sX
r

rr




  

 

[numC denC]=ss2tf(AK,BK,C2,D2,1)   numC = [0 19  0 ; 0  0 19]   denC = [1  20  200] 
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In particular:  )(
20020

19

)(

)(

)(

)(
1

1

,22

2 sW
ssssY

sY

sX

sX
r

rr




 . 

Hence, by superposition: )()()(
20020

17519
)()()()()(

2,2,2 1122
sYsWsY

ss

s
sXsWsXsWsY rrrrrr 












 . 

 

(f) Verify your answer in (e) by computing the unity feedback CL transfer function directly. 

Solution:  
25

5
)(

2 


ss
sGp

 and 358.3)(  ssGc
. So, 

25

17519
)()(

2 




ss

s
sGsG pc

. Hence, 
20020

17519
)(

2 




ss

s
sW . 

 

Remark. As opposed to a command system, a regulator system is 

one where the input is viewed as a disturbance. In a well-designed 

regulator system, the output due to the disturbance will be 

minimal. Overlay the responses to a step command and to a step 

disturbance. 

Solution: Wc=tf([19 175],[1 20 200]); Wd=tf(5,[1 20 200]); 

step(Wc,Wd)   legend('Wc','Wd')    grid 

 

 

Example 2. In this example we will demonstrate how the ‘acker’ command works. Consider the second order 

underdamped plant: )(2 2 tfcyyy nn    . Let )()(1 tytx  , )()(2 tytx   and 
trtxtxt )]()([)( 21x .  

(a)( Give the state space 1ST order differential equation, BuxAx  . 

Solution: )(
0

)(

)(

2

10

)(

)(

2

1

2

2

1
tf

ctx

tx

tx

tx

nn









































. [I have intentionally chosen a different form for A.] 

(b) Let xKu   (i.e. use a full-state feedback controller). Then we have BKxxAx  . Taking the Laplace transform 

gives 0XBKAI  )()]([ ss , and so the closed loop characteristic polynomial is:  

 

)()]2([
)2()(

1

)2()(

10

0

000

2

10

0

0

0

2

10

0

0
)()(

1

2

2

21

2

21

2

21

2

212

cKcKss
cKscK

s

cKcKs

s

cKcKs

s

KK
cs

s
ssp

nn

nn

nnnn

nn












































































































































BKAI

.  

Hence, 
21

2

1

2

2

2 )()2()(  


sscKscKssp nn
. Now, suppose that we desire 

22 2)( nnsssp    

(i.e. pole placement). Then we can solve for the controller gains by setting: 
22

1

2

2

2 2)()2( nnnn sscKscKs   . By equating coefficients, we end up with:  

                                              cK nn /)( 22

1    and cK nn /)(22   . 
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Numerical Values: Suppose that the plant has 2c  , and that the plant has 05.0 , and sec10 . Then 

srn /1.0/1   and srn /20/1.0   . Suppose that we want 8.0  and srn /30 [i.e. increased damping 

and BW]  Then sn 24/124   [which leads to also faster response]. 

Then: 2502/)2030(/)( 2222

1  cK nn   and 9.232/)1.024(2/)(22  cK nn  . 

Hence,    9.2325021  KKK . 

While this was straightforward, for higher order systems it becomes exponentially painstaking. Even so, the method is the 

same. It is called Ackerman’s formula. The Matlab command is ‘acker’. 






















2

0
;

2.0400

10
BA .  














1824

1824

i

i
s12 .      acker(A,B,s12)  =  [250   23.9].  

The general form of Ackerman’s formula is given by (7.88) on p.492.  □ 

 

Example 3. In this example we will address the thermal system described by the transfer function (Example 7.9 on p.478): 

                                                           
)(

)(

127

2
)(

2 sU

sY

ss

s
sG 




 . 

(a)Obtain the controller canonical form for (A,B,C,D). 

Solution: Let 
)(

)(

127

1
)(

21
sU

sV

ss
sG 





 and 
)(

)(
2)(2

sV

sY
ssG 



. Then )()()( 21 sGsGsG  . The O.D.E. corresponding to 

)(1 sG  is: uvvv  127  . Define the state trtr vvxx ][][ 21
x . We then have: 

                uu BxAxx 















 


0

1

01

127
         and         uuy DxCx  021 . (1) 

 

 (b)Use Figure 7.10 on p.476 to obtain the observer canonical form for (A,B,C,D). 

 Solution: uu BxAxx 






















2

1

012

17
          and         uuy DxCx  001 . (2) 

 

(c) Clearly, the state variables are not composed of y and its derivatives. Suppose that we desire to compute the response 

of the system (A,B,C,D) to the initial condition tryy ][ 00
 . To this end, we need to find the state initial condition 

0x .  

Solution: 

From the output equation in (1), we have: 00 xCy . From this, we also have: 00 xC  y . 

From the state equation in (1) we have: xAx 0
 , so that 00 xACy . These equations can be written as: 

0

0

0
x

C

AC


















y

y
. Hence, we arrive at: 




















0

0

1

0
y

y

C

AC
x . Specifically, 




















0

0

0
5.25.0

61

y

y
x . 
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(d) For the initial condition trtryy ]13[][ 00  , use the ‘initial’ command to arrive at a plot of the system initial 

condition response. 

Solution: Y0=[3 ; 1];    CAC=[C*A;C];  X0=CAC^-1*Y0;    [y,t]=initial(sys,X0);   

 plot(t,y)     grid 

 

(e)Solve for the initial response directly from the O.D.E. using Laplace transforms. 

Then overlay this response on your plot in (b). 

Solution: 0)(12])([7])([)0127( 000

2  sYyssYysysYsyyy  . 

127

10

127

7
)(

22

000











ss

s

ss

yysy
sY


.  YIC=tf([1 10],[1 7 12]); impulse(YIC) 

The initial condition response is exactly that obtained in (d). 

 

 

 

 

(f) Now consider the control law xKu . Then uBxAx  becomes xAxBKAx





 )( . Whereas, the plant poles 

are the eigenvalues of A, the CL poles are the eigenvalues of ABKA


 . For each of the representations in (a-b), use the 

‘acker’ command to find the K that will place CL poles at ip 5.032,1  . 

Solution: 

Ac=[-7 -12;1 0]; Bc=[1;0];    Kc=acker(Ac,Bc,p)  = [ -1.000   -2.750] 

Ao=[-7 1;-12 0]; Bo=[1;2];    Ko=acker(Ao,Bo,p) = [ -1.750    0.375] 

 

(g) Use the ss2tf command to recover the CL regulator (i.e. with the controller in the feedback loop) transfer function for 

the canonical and observable controller forms. 

Solution:   

AAc=Ac-Bc*Kc;   [n,d]=ss2tf(AAc,Bc,Cc,0)      n =[1 2] & d =[1    6    9.25].  So, 
25.96

2
)(

2 




ss

s
sW . 

AAo=Ao-Bo*Ko;   [n,d]=ss2tf(AAo,Bo,Co,0)     n =[1 2] & d =[1    6    9.25].  So, 
25.96

2
)(

2 




ss

s
sW . 

 

(g) A key difference between the canonical forms is that the observable form has yx 1
. Hence, were we to compute the 

response to an initial condition of the form trx ]0[ 10 x , there would be no need for the procedure in (c). Is there a state 

space form (A,B,C,0) with the state trtr yyxx ][][ 21




x , so that we would not need to go through the procedure in (c) for 

any given initial condition? The answer is no. Is there one of the form (A,B,C,0) where ]00[


0  (i.e. for truu ][ 21



u )? The 

answer is yes. To arrive at it, begin by recovering the plant O.D.E. 

Solution: uuyyysUssYss 2127)()2()()127( 2   . Let trtr yyxx ][][ 21




x and trtr uuuu ][][ 21




u . 

Then  
21 xx  , and uuyyy 2127   becomes 

12122 2127 uuxxx  . Hence,    

                       BuAxx 













































2

1

2

1

2

1

12

00

712

10

u

u

x

x

x

x




   and    Cxxy  01 . 
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(h) Use the ‘place’ command in relation to (g) to place closed loop poles at ip 5.032,1  . 

Solution: Ay=[0 1 ; -12 -7]; By=[0 0 ; 2 1];  Ky=place(Ay,By,p)  Ky = [-1.1   -0.4 ;  -0.55   -0.2]. 

 

(i) Use the ss2tf command to recover the two CL transfer functions. Then combine them, and comment. 

Solution:  AAy=Ay-By*Ky;    Cy=[1 0]; Dy==[0 0]; 

[n1 d1]=ss2tf(AAy,B,Cy,1)   n1 =[1    7   17.25]  d1 =[1   6   9.25]. So 
)(

)(

25.96

2
)(

1

21
sU

sY

ss
sW 


  

 [n2 d2]=ss2tf(AAy,By,Cy,2)  n2 =[0  0   1]   d2 =[1   6   9.25]. So 
)(

)(

25.96

1
)(

2

22
sU

sY

ss
sW 


 . 

Combining these gives: 

)(])()([)()()()()( 212211 sUssWsWsUsWsUsWsY  . So 
)(

)(

25.96

2
)(

2 sU

sY

ss

s
sW 




 . 

Comment We obtain the correct CL transfer function. However, using the state space form requires that we specify both 

the input and its derivative. For example, to compute the CL response to a unit step would require specifying 

)]()(1[][ ttuu tr  u  . This is generally not good practice, since in fact, there is only one input. Moreover, it can get 

nasty. Consider [ ( ) ( )]t t u . What exactly is the derivative of ( )t ? Well, you might say it’s ‘complicated’.  

 

The case of a scalar reference input is addressed in 7.5.1 of the book (p.496). It involves the concept of a reference input. 

The goal is to ensure that the CL command system has unity static gain. We might cover this at a future date.  □ 


