Lecture 17 Feedback Control with Known Full State (3/3/20)

The plant to be controlled:
X = AX + Bu (state equation) gives X(s) = (sl —A)*BU(s u 1 X

quati (5)=(s1 - A) "BU(S) o A e Y
y = CX (output equation) gives Y(s) = CX(s)

Figure 1 Plant block diagram.

State feedback:

Regulator:

X(s) = (sl - A) *B[U(s) — KX(s)] gives u o & ol (s1—A) X e _y»
(sl = A)X(s) =B[U(s) —KX(s)]. This, in turn, gives _

[sl - (A—BK)]X(s) =BU(s). Let A=A—BK . Then " |

X(s) = (sl-A)*BU(s). Y(s)=CX(s). (1a) Figure 2(a) State feedback for regulator.
Command: ) _ X, u X y
X(s) = (sl —A)'BK[X, (s)—X(s)] gives = K => B > (sI-A) C j=ep
(sl —=A)X(s) =BK [X, (s) — X(s)]. This, in turn, gives X

[s — (A—BK)JX(s) =BK X (s). Let BoBK

X(s)=(sl-A)'B X,(s). Y(s)=CX(s). (1b) Figure 2(b) State feedback for command.

Remark 1. One must be careful to note that, unlike scalar-valued transfer functions, where the order of multiplication
doesn’t matter, for matrix-valued transfer functions it does. Specifically, while blocks precede other blocks in the block
diagram, the latter blocks must be right-multiplied by the preceding blocks.

Remark 2. The stability of both the regulator system and the command system is dictated by the eigenvalues of

_a _
A=A-BK. These eigenvalues are the roots of the characteristic polynomial p(s) =det(sl —A).

_ A
Remark 3. The basis for obtaining the controller K is to specify all of the eigenvalues of A=A -BK (i.e. all of the CL
poles). In this respect, this pole-placement method is an extension of the root locus-based placement of a single CL pole.

. . . . . X
Rerr?ark'4: Figure 7.12 on p.487 is shown at right. As ngted in th(? figure > B (sl—A)* c yl
caption, it is the assumed system for the control law. This block diagram u
might seem strange to many students, as there is no command or

K

disturbance input, as there are in Figures 1 and 2 above.
Figure 7.12 Assumed system for control law.

As such, it is not a proper system, since, by definition a system is a relation between an input and an output. A closer

_A
comparison of equations (1a) and (1b) reveals a single difference. In (1a) we have B; whereas in (1b) we have B=BK .
The block diagram in Figure 7.12 gives:
X(s) = (sl —A) " (-BK) X(s) . (2a)



This, in turn, gives: [sl —(A—BK)]X(s) = (sl —A) X(s) =0. (2b)

The term sl — A in (2b) is present in both (1a) and (1b). In other words, it doesn’t matter if the controller is placed in the
forward loop or the feedback loop. They have the same open loop transfer function that controls the closed loop stability.

5 AY(s)
s?1s+25 U(s)
(a) Recover the differential equation, and then define the state vector x(t) =[x, (t) x,(t)[" =[y(t) y(t)]". Derive the
expressions for (A,B,C,D) related to the state equation X = AX + Bu and the output equation y=Cx+Du.

Example 1. Consider a plant with transfer function G (s) =

Solution: Y+ y+25y =5ugives: X, = —X, —25X, +5U. Also: X, = X, . So we can write:

X = )‘(1 B Rl R + 5u:Ax+Bu.Then y=[0 1]x+0u=Cx+Du.
X, 1 0 x] |0

Hence, (A,B,C,D)= {_11 _55}{2}[1 O],Oj.

(b) Use the ‘acker’ [NOTE: This command has been replaced by the command ‘place’.] command to find K that will
place closed loop poles at s;, =-10+£i10.

Solution:  A=[-1-25;10]; B=[5;0]; p=[-10+10*1i;-10-10*1i]; K=acker(A,B,p) =[3.8 35]

_ A
(c)Verify the design by computing the eigenvalues of A=A-BK .
Solution: AK=A-B*K; eigs(AK) = -10.0000 +/-10.0000i

(d) Use the ss2tf command to recover the regulator CL transfer function.
Solution: X(s) = (sl —A)*BU(s). Y(s)=CX(s)
C=[0 1]; D=0; [num,den]=ss2tf(AK,B,C,D) num=[0 05] den =120 200]

(e) Repeat (d) for the command CL transfer function. To this end, first compute the portion of Y (s) due to input

Y, (s) = X,(s) . Next, compute the portion of Y (s) due to input sY, (s) = X,(s) . Finally, use superposition to obtain the
total output Y (s) as a function of Y, (s).

Solution: X(s) = (sl —A)'BX,(s).

BK=B*K; C2=eye(2); D2=zeros(2,2);

[numC denC]=ss2tf(AK,BK,C2,D2,2) numC=[0175 0;0 0175] denC=[1 20 200]

X,(8) _Y(s) _ 175 W, (s)

In particular: = = =
X, (s) Y,(s) s*+20s+200

[numC denC]=ss2tf(AK,BK,C2,D2,1) numC=[019 0;0 019] denC=[1 20 200]



In particular: X,(8) _ Y(S) _ 19 =W, _(s)"
X.(s) sY.(s) s*+20s+200 "

19s+175

Hence, by superposition: v (s)y=W. (s) X_ (s)+W., (s) X_ (s :(
( ) 2,r2( ) rz( ) 2,r1( ) r1( ) SZ+205+200

]Yr (5) =WV, (5)-

(f) Verify your answer in (e) by computing the unity feedback CL transfer function directly.

Solution: G, (s) = % and G, (s) =3.85+35. S0, G, (5)G, (s) = :29i:i7255

+25

19s+175

. Hence, w(s) = ———— .
52 +20s + 200

Step Response

Remark. As opposed to a command system, a regulator systemis =
one where the input is viewed as a disturbance. In a well-designed -

regulator system, the output due to the disturbance will be o8t
minimal. Overlay the responses to a step command and to astep o=
disturbance. oaf
Solution: Wc=tf([19 175],[1 20 200]); Wd=tf(5,[1 20 200]); s

step(Wc,Wd) legend('Wc','Wd") grid /

o 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Time (seconds)

Example 2. In this example we will demonstrate how the ‘acker’ command works. Consider the second order
underdamped plant: § +2¢ @,V + a7y = c f () . Let x,(t) = y(t), X,(t) = y(t) and x(t) =[x, (t) X, (t)]".

(a)( Give the state space 15T order differential equation, X = AX+Bu.

X, (t 0 1 X, (t 0
Solution: { i )} :{ M X )} +{ }f (t) . [I have intentionally chosen a different form for A.]
- C

X, (1) o =20, || X, (1)

(b) Let u=-Kx (i.e. use a full-state feedback controller). Then we have x = Ax — BKx. Taking the Laplace transform
gives [sl — (A—BK)]X(s) =0, and so the closed loop characteristic polynomial is:

ol ok
SR P I N S R

=s[s+ (2 @, +cK,)]+ (@ +cK,)

p(s) =|sl - (A-BK)|=

o

S -1
{(wf +cK)) s+(2la, + cKz)}

A
Hence, p(s)=s’+(2¢m, +CK,)s+(f +cK,) = s*+a,S+a,. Now, suppose that we desire p(s) =s° +2¢"wls + @)’

(i.e. pole placement). Then we can solve for the controller gains by setting:
s° +(2¢ @, +cK,)s+ (af +CK,) =s* + 2 'a)'s + w!’ . By equating coefficients, we end up with:

K,=(0-a?)cand K, =2({'w) —Cw,) I C.



Numerical Values: Suppose that the plant has ¢ =2 , and that the plant has ¢ =0.05, and 7 =10sec. Then

(o =1/r=01r/sand @ =0.1/¢ =20r/s. Suppose that we want {'=0.8 and @, =30r/s][i.e. increased damping
and BW] Then (', =24 = 7r'=1/24 s[which leads to also faster response].

Then: K, = (o’ —@})/c=(30°-20°)/2=250 and K, =2(¢'@) — ¢ )/ c=2(24—-0.1)/2 =23.9.
Hence, K =[K, K,]=[250 23.9].

While this was straightforward, for higher order systems it becomes exponentially painstaking. Even so, the method is the
same. It is called Ackerman’s formula. The Matlab command is ‘acker’.

0 1 0 —-24+1i18
= - = |. s12= . acker(A,B,s12) = [250 23.9].
A {—400 —0.2} B [2} {—24—i18} ( ) =1 ]

The general form of Ackerman’s formula is given by (7.88) on p.492. o

Example 3. In this example we will address the thermal system described by the transfer function (Example 7.9 on p.478):

s+2  _Y(s) .

G(s) = =
©) s?+7s+12 U(s)

(a)Obtain the controller canonical form for (A,B,C,D).

Solution: Let G (s)2—* _ V() and g ()25 2= 7). Then G(s)=G,(5)G,(s) . The O.D.E. corresponding to
s 475412 U(s) V(s)
G,(s) is: V+7v+12v=u. Define the state x=[x, X,]" =[v Vv]". We then have:
xz{_; _32})(4{(1)}1 =Ax+Bu and y=[ 2Kx+0u=Cx+Du. (1)

(b)Use Figure 7.10 on p.476 to obtain the observer canonical form for (A,B,C,D).

-7 1 1
Solution: )‘(:{ b O}x+{2}u=Ax+Bu and  y=[1 OK+0u=Cx+Du. )

(c) Clearly, the state variables are not composed of y and its derivatives. Suppose that we desire to compute the response
of the system (A,B,C,D) to the initial condition [y, yO]tr . To this end, we need to find the state initial condition X, .
Solution:

From the output equation in (1), we have: y, = CX,. From this, we also have: y, =CX,.

From the state equation in (1) we have: X, = AX, so that y, = CAX,. These equations can be written as:

. -1r . .
Yo = CA X, - Hence, we arrive at: x, = CA| Yo . Specifically, x, = . 6 1% .
Yo C C Yo -05 -25]vy,



(d) For the initial condition [y, y,]" =[3 1], use the ‘initial” command to arrive at a plot of the system initial
condition response.

Solution: Y0=[3;1]; CAC=[C*A;C]; X0=CAC/ -1*YO0; [y, t]=initial(sys,X0); .,
plot(t,y) grid N

1

(e)Solve for the initial response directly from the O.D.E. using Laplace transforms. s b
Then overlay this response on your plot in (b). ]

Solution: ¢(§+7y+12y =0) = [s’Y (s)—sY, — Y, ]+ 7[SY(S) - ¥,]+12Y(s) =0. \

. 0.4 \
Yo+ Yo+ 7Y, s+10 _ .
Y(s) = = . YIC=tf([1 10],[1 7 12]); impulse(YIC
) s +7s+12 s +7s+12 ( M ) P ( ) 02r

The initial condition response is exactly that obtained in (d).

0 I
0 0.5 1 15 2 25

Time (seconds)

A _
(f) Now consider the control law u =—Kx. Then X = AX+ Bu becomes x = (A—-BK)x=Ax. Whereas, the plant poles

A _
are the eigenvalues of A, the CL poles are the eigenvalues of A—BK=A. For each of the representations in (a-b), use the
‘acker’ command to find the K that will place CL poles at p,, =—3+0.5i.

Solution:
Ac=[-7 -12;10]; Bc=[1;0]; Kc=acker(Ac,Bc,p) =[-1.000 -2.750]
Ao=[-7 1;-12 0]; Bo=[1;2]; Ko=acker(Ao0,Bo,p) =[-1.750 0.375]

(9) Use the ss2tf command to recover the CL regulator (i.e. with the controller in the feedback loop) transfer function for
the canonical and observable controller forms.
Solution:

AAc=Ac-Bc*Kc; [n,d]=ss2tf(AAc,Bc,Cc,0) n=[12]&d=[1 6 9.25]. So, W(s)zi.
s° +65+9.25

AA0=A0-Bo*Ko; [n,d]=ss2tf(AA0,Bo,C0,0) n=[12]&d=[1 6 9.25]. So, W(S)ZL.
s°+65+9.25

(9) A key difference between the canonical forms is that the observable form has x, = y. Hence, were we to compute the
response to an initial condition of the form x, =[x, 0]", there would be no need for the procedure in (c). Is there a state

space form (A,B,C,0) with the state xi[xl x,]" =[y y]", so that we would not need to go through the procedure in (c) for

A A
any given initial condition? The answer is no. Is there one of the form (A,B,C,0) where 0=[00] (i.e. for u=[u, u,]")? The
answer is yes. To arrive at it, begin by recovering the plant O.D.E.
A A
Solution: (s*+7s+12)Y(s) =(s+2U(s) = §+7y+12y =u+2u. Let x=[x, x,]" =[y y]"and u=[u, u,]" =[u u]".
Then x, =x,,and y=-7y—-12y+u+2ubecomes x, =-7x, -12x, +u, +2u, . Hence,

ol SRR T e vot ke



(h) Use the ‘place’ command in relation to (g) to place closed loop poles at p,, =-3+0.5i .
Solution: Ay=[01;-12 -7]; By=[0 0 ; 2 1]; Ky=place(Ay,By,p) Ky=[-1.1 -0.4; -0.55 -0.2].

(i) Use the ss2tf command to recover the two CL transfer functions. Then combine them, and comment.
Solution: AAy=Ay-By*Ky; Cy=[1 0]; Dy==[0 0];

[n1 d1]=ss2tf(AAy,B,Cy,1) nl=[1 7 17.25] d1=[1 6 9.25]. S0 w,(s)= 2 _Y0®)
! s°+6s+9.25 U,(s)

[n2 d2]=ss2tf(AAY,By,Cy,2) n2=[0 0 1] d2=[1 6 9.25]. S0y, (s)= 1 _ Y@
2 $2+65+9.25 U,(s)

Combining these gives:
Y (5) =WL(8)U, (5) + W, (5)U, (5) = W, (5) + W, (S)sIU (s) . SO W (s) =, >+ 2 = Y(8)
$°+65+9.25 U(s)
Comment We obtain the correct CL transfer function. However, using the state space form requires that we specify both
the input and its derivative. For example, to compute the CL response to a unit step would require specifying

u=[uu]" =[1(t) &(t)] . Thisis generally not good practice, since in fact, there is only one input. Moreover, it can get

nasty. Consider u=[&(t) o&(t)]. What exactly is the derivative of 5(t) ? Well, you might say it’s ‘complicated’.

The case of a scalar reference input is addressed in 7.5.1 of the book (p.496). It involves the concept of a reference input.
The goal is to ensure that the CL command system has unity static gain. We might cover this at a future date. o



