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Lecture 15   Block Diagrams of State Space Representations            (2/26/20) 

Example 1 [(7.9) on p.469 & EXAMPLE 7.11 on p.481.] 
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Figure 1. Sequence of block diagrams to arrive at the block diagram of the controller canonical form. 

From the final block diagram in Figure 1 we have the following equations: 

                                  )()(12)(7)(2 sUsXssXsXs     and   )(2)()( sXssXsY  . 

Let )()(1 ssXsX


  and )()(2 sXsX


 . Then these equations become: 

                                  )()(12)(7)( 211 sUsXsXssX     and   )(2)()( 21 sXsXsY  . 

Remark 1. The bottom diagram in Figure 1, while more complicated than ( )G s , provides a number of advantages: 
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(A1) Clear direction of actually implementing it in hardware that includes integrators, multipliers, and summing junctions. 

Op-amps can perform all three functions. The diagram shows that the transfer function denominator terms are fed back, 

while the numerator terms are fed forward.  

(A2) Amenability to multi-input/multi-output (MIMO) high-dimensional settings associated with many real world 

settings. □ 

The equivalent time-domain equation are: 

                                  )()(12)(7)( 211 tutxtxtx     and   )(2)()( 21 txtxty  . 

These, in turn, lead to the state space equations: 
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Matlab:    

> a=[1 7 12];    > b=[1 2];   > G=tf(b,a) = ( s + 2 ) / (s^2 + 7 s + 12 ) 

  

> [A,B,C,D]=tf2ss(b,a);  A =[ -7   -12 ; 1     0];   B =[1; 0]; C =[ 1  2]; D =  0.  

 

Conclusion: The tf2ss command computes the controller canonical form of the state. 

 

The controllability matrix is: 1nC    B AB A B  . The matrices (A,B) will be controllable if and only if C is 

nonsingular. The authors note that “controllability is a function of the state of the system, and cannot be decided from a 

transfer function.” They then state (p.477) that “To discuss controllability more at this point would take us too far afield.” 

I agree. 

 

Now let’s arrive at yet another representation. 

 

7 12 2y y y u u    gives: 7 ( 12 2 )y y u y u dt      . 

Let 1x y  and let 2 ( 12 2 )x y u dt   . We then have: 1 1 27x x x u    . (1) 

Now, 2 ( 12 2 )x y u dt   gives: 2 112 2x x u   . (2) 

From (1) and (2):   
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x A x B    and     0 01 0 0y u x u   x C D .  

This is called the observer canonical form. The block diagram is Figure 7.10 on p.476. 

In this case the controllability matrix is:  0 0 0C  B A B . This matrix will be singular if the transfer function zero at -2 

were to drift to either -3 or -4. This is because ( )G s  would then experience a pole/zero cancellation. 
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Generalization of the controller canonical state space representation: 

For the single-input/single-output (SISO) transfer function  
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the controller state space representation for this single-input/single-output system is: 
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[Note: These equations are (7.13) on p.470 in the book.] 

 

Remark 2. There are many other state space representations for a given system. The book covers them in detail. In this 

course we will not pursue them in such detail. Nonetheless, it is important to be aware that a given system can be 

represented in different ways. 

 

Now, if we have time, let’s have some fun   

 

Appendix   Matlab Code 
%PROGRAM NAME: lec15.m 

%EXAMPLE 1 

% Lateral Perturbation Dynamics:  

%x = [ b,p,r,phi]=[sideslip,rollrate,yayrate,rollangle] 

A=[-.25 0 -1 .18; -16.02 -8.4 2.19 0; 4.49 -.35 -.76 0; 0 1 0 0]; 

B=[.07 0;-29.01 23.16; 4.55 .22; 0 0]; 

C = eye(4); D=zeros(4,2); 

sys=ss(A,B,C,D); 

 

T=0:.01:200; nT=length(T); 

T1=0:.01:2; nT1=length(T1); %Pulse width = 2 sec. 

U1 = zeros(nT,1); 

U2 =[(10*pi/180)*ones(nT1,1);zeros(nT-nT1,1)]; 

U=[U1 , U2]; 

lsim(sys,U,T) 

grid 

%(c) 

[N2,D]=ss2tf(A,B,C,D,2) 

%(d): 

Gbr=tf(N(1,3:5),N(3,2:5)) %This is the FUN part! 

 

figure(30) 

bode(Gbr) 

title('FRF for b(w)/r(w)') 

grid 

 

 

 

It can be shown that the -3dB BW for a pulse of width Δ is: 2.78 / 2.78 / 2 1.39 /BW rad s     . 

We also have: >> eigs(A) =[ -8.4322   -0.4845 +/- 2.3329i    -0.0088]. Hence, the Dutch roll damped natural frequency is 

2.33 rad/sec. This is above the input -3dB BW frequency 1.39 rad/sec. Hence, this mode will not be as strongly excited as 

it would be, were the rudder pulse to have a shorter but greater shape. 
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After that response in ( )t  has decayed, what remains is very low frequency in nature (plot 1). It’s early amplitude is 

~0.02.  The amplitude of ( )r t in this region is ~0.12. The ratio 0.02/0.12=1/6 = -15.6 dB; which is what is predicted in the 

Bode FRF plot. □  


