Lecture 15 Block Diagrams of State Space Representations (2/26/20)
Example 1 [(7.9) on p.469 & EXAMPLE 7.11 on p.481.]
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Figure 1. Sequence of block diagrams to arrive at the block diagram of the controller canonical form.

From the final block diagram in Figure 1 we have the following equations:

$2X () = —7sX () —12X (s)+U(s) and Y (s)=5sX(s)+2X(s).

Let xl(s)isx (s) and Xz(s)iX(s) . Then these equations become:
SX1(8) ==7X,(s) —12X,(s)+U(s) and Y (s)= X (s)+2X,(s).

Remark 1. The bottom diagram in Figure 1, while more complicated than G(s), provides a number of advantages:



(A1) Clear direction of actually implementing it in hardware that includes integrators, multipliers, and summing junctions.
Op-amps can perform all three functions. The diagram shows that the transfer function denominator terms are fed back,
while the numerator terms are fed forward.

(A2) Amenability to multi-input/multi-output (MIMO) high-dimensional settings associated with many real world
settings. O

The equivalent time-domain equation are:
X (1) ==7x () —12x, (1) +u(t) and y(t) =x,(t) +2x,(t) .

These, in turn, lead to the state space equations:

%] [-7 -12Tx] 1
x=|_"|= +| u=Ax+Bu and y=[1 2Jx+0u=Cx+Du.
Xy 1 0 | x, 0

Matlab:
>a=[1712]; >b=[12]; >G=tf(ba)=(s+2)/(s"2+7s+12)

> [AB,C,D]=tf2ss(b,a); A=[-7 -12;1 O0]; B=[1;0];C=[1 2];D= 0.
Conclusion: The tf2ss command computes the controller canonical form of the state.

The controllability matrix is: C = [B AB .- Anflsj . The matrices (A,B) will be controllable if and only if C is

nonsingular. The authors note that “controllability is a function of the state of the system, and cannot be decided from a
transfer function.” They then state (p.477) that “To discuss controllability more at this point would take us too far afield.”
| agree.

Now let’s arrive at yet another representation.
Y+7y+12y =u+2ugives: y=—7y+uU +I(—12y+2u)dt :
Let X, =y and let X, = f(—lZy +2u)dt . We then have: X, =—7x +X, +U. (1)

Now, X, = [ (~12y +2u)dt gives: %, =12, +2u. (2)

From (1) and (2): X % A 1u A Xx+B,u and [1 0]x+0u=C,x+Dyu

rom (1) an : = = + = + an = +0u = + .
% | |12 0] x| |2 o Y o

This is called the observer canonical form. The block diagram is Figure 7.10 on p.476.

In this case the controllability matrix is: C, =[B, A,B]. This matrix will be singular if the transfer function zero at -2

were to drift to either -3 or -4. This is because G(s) would then experience a pole/zero cancellation.



Generalization of the controller canonical state space representation:
For the single-input/single-output (SISO) transfer function
b,s"+---+bs+b,
s"+---+a5+a,
the controller state space representation for this single-input/single-output system is:

G(s) = m<n,

Y| [—8y 8y o~y X| |1
X 1 0 -0 | X 0

X= :2 = o Lo 0 :2 +| . |u=Ax+Bu and y=[b, by, - byx+0u=Cx+Du.
%, 0o 1 0 /|x]|]o

[Note: These equations are (7.13) on p.470 in the book.]

Remark 2. There are many other state space representations for a given system. The book covers them in detail. In this
course we will not pursue them in such detail. Nonetheless, it is important to be aware that a given system can be
represented in different ways.

Now, if we have time, let’s have some fun © = >
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Appendix Matlab Code s

$EXAMPLE 1
% Lateral Perturbation Dynamics:
$x = [ b,p,r,phil=[sideslip, rollrate,yayrate,rollangle]

&
3PROGRAM NAME: lecl5.m 302

o

fisg

A=[-.25 0 -1 .18; -16.02 -8.4 2.19 0; 4.49 -.35 -.76 0; 0 1 0 0]; Zoqp/"
B=[.07 0;-29.01 23.16; 4.55 .22; 0 0]; 5 i —
C = eye(4); D=zeros(4,2); -0
sys=ss(A,B,C,D); 5 1(

g 051“
T=0:.01:200; nT=length(T); o
T1=0:.01:2; nTl=length(T1l); %Pulse width = 2 sec. ) - !
Ul = zeros(nT,1); 0 50 . 100 . 150 200
U2 =[(10*pi/180) *ones (nTl,1);zeros (nT-nTl,1)]; ime (seconds)
U=[Ul , U21; o ‘ FR‘Fforb(w)Ir(‘w)
lsim(sys,U,T) —
rid o ] _— \
g (c) z’ -20 System: Gbr \
[N2,D]=ss2tf (A, B,C,D,2) E et o
% (d): §L407 ]
Gbr=tf(N(1,3:5),N(3,2:5)) %This is the FUN part!

i35

figure (30)
bode (Gbr) 2 o0l — T~
title ('FRF for b (w)/r (w)') 3
grid g 45 L / |

10° 10" 102 10°
Frequency (rad/s)

It can be shown that the -3dB BW for a pulse of width A is: @, =2.78/ A=2.78/2=1.39rad /s.

We also have: >> eigs(A) =[ -8.4322 -0.4845 +/- 2.33291 -0.0088]. Hence, the Dutch roll damped natural frequency is
2.33 rad/sec. This is above the input -3dB BW frequency 1.39 rad/sec. Hence, this mode will not be as strongly excited as
it would be, were the rudder pulse to have a shorter but greater shape.



After that response in g(t) has decayed, what remains is very low frequency in nature (plot 1). It’s early amplitude is
~0.02. The amplitude of r(t) in this region is ~0.12. The ratio 0.02/0.12=1/6 = -15.6 dB; which is what is predicted in the
Bode FRF plot. o



