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LECTURE 12                 Derivation of Phase Compensator Design Equations.  

Here we will derive the mathematical formulas needed to design a unity static gain phase-lead compensator: 
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First, we write the compensator FRF:    






























i

i
iGc

2

1

1

2)( . 

Hence:        
22

2

22

1

1

2|)(|)(
























iGM c           and          )/(tan)/(tan)( 2

1

1

1    . 

 

(a)Find the frequency at which )(  is maximum. 

Solution: 

 

Now, before I go any further, let me explain why I am carrying out the calculation in detail.. It is for those students 

who have the interest in knowing how formulas are obtained, and who value applying their mathematical skills once in 

a while; especially to problems in an area of special interest to them. And so: If you want to sleep through this 

derivation, have sweet dreams!. It will not be on any homework or exam. 

 

OK. Here’s the first of the two ‘tricks’ that I use to solve this problem: “Recall” (ha! ha!) the trig. identity: 
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To use this, let )/(tan 1
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To find the frequency max where )( achieves its maximum value, we need to solve 0
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



d

d
. Now, on the surface 

it may seem like this is a real pain, due to the arctan functions. However… recall that the arctan is a monotonically 

increasing function on the interval )2/,2/(  . To see why this matters, recall the chain rule for differentiation (the 

second trick): 
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If )(xg is strictly monotonic, that means that it derivative is strictly greater than (or less than) zero. Hence, if in this case 

we set the above equation to zero, then it must be that 0
d

df
. Applying this second ‘trick’, we get 
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For the rightmost quantity to equal zero, its numerator must equal zero; that is: 
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The solution to this is 21max    = the frequency where )(  achieves its maximum. 

 

(b) Find the expression for the controller magnitude at 21max   .  

Solution: This is ‘relatively’ easy: 

)(

)(

)(

)(
|)(|

112

111

1

2

21

2

2

21

2

1

2

max

2

2

2

max

2

1

1

2
max



















































M .  

 

Hence,                                             

1

2
max |)(|




 M . Or:   2

max

1

( ) 10logdBM





 
  

 
 

 

NOTE: Even though we will often use this as a phase compensator, it is crucial to not that, along with contributing 
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Now, the static gain of the controller is
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To visualize this, let 11   and 101  . The Bode plot for this controller is shown below. 
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We see that 1021max    is where the phase is maximum, and where the gain is half way from 0 dB to 20 dB; 

that is, 10 dB.  

 

(c)Derive the expression for )( max .  

Solution: To this end, define 


12 / . [NOTE: On p.349 the term α used by the authors is 


21 / ! Hence, my α 

is the inverse of theirs.] 

We then have 
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We can now summarize the design procedure for using a lead controller to 

increase the open loop phase by a specified amount max : 
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1. Having specified max , compute 
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2. Since 
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12 / , by knowing α we know the ratio of the controller break frequencies. 

3. Decide at what frequency max this phase gain max  should occur. This decision will often be made in conjunction with 

other closed loop specifications (e.g. error constants, etc.), and so no one procedure can be described here. 

 

Implementation of the Design Equations-    For unity static gain 
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 When Gc(s) is to modify open loop phase in order to achieve a closed loop PM 

 1. Compute the current PM, and then compute the needed  max (+ a ‘cushion’). 

 2. Compute an initial value for 
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 3. Locate the frequency, 0 , where the current open loop has 2/|)(| 0.. dBdBLO iG   . [This is because, if you were to 

now re-center the compensator at 0 , this would become 
)(new

gc .] 

 4. Compute the open loop phase max0
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5. Compute )(180 0

)(

.  new

LO

o  . If this value is close to the required PM, ‘mission accomplished’. If this value is deemed 

to be unacceptably low, then return to 1. and add a larger ‘cushion’. [If this value is deemed to be unacceptably large 

(which rarely happens!), then return to 1. and reduce the ‘cushion’.] 

6. Compute  /01  , followed by  12   

 

Example 5. [See book Example 6.15 on p. 367] Consider a unity 

feedback system with open loop transfer function 

)1(/10)(  sssG with FRF at right. Suppose that we desire 

oPM 45 .  

1. Using margin(G) we get 
oPM 18 . We  will choose 

oooo 3251845max   (i.e. a 
o5  cushion).  

2. Then a=(1+sind(32))/(1-sind(32)) = 3.2546, or 

adB=20*log10(a) =10.25 dB.  

3. For dBiG dBdBLO 125.52/|)(| 0..   sing the data cursor, 

we find sr /2.40  . 

4. Using the data cursor, we then find 
oold

LO 167)( 0

)(

.  , hence 
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5. PMooonew
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accomplished (in a single try!) 

 

6. sr /33.2/01   , followed by sr /58.712    
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Before leaving this example, in order to better tie this 

design  method to the root locus pole placement 

method, we offer the root locus corresponding to the 

open loop system 
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The root locus plot at the right reveals that for 10K  (required to satisfy the steady state error specification), the 

complex closed loop poles are maximally damped. [As an aside: Whereas the data cursor states that those poles 

correspond to 12.% overshoot, we see from the above step response, that the actual overshoot is ~20%. This increase is 

due to the closed loop zero that the phase compensator introduced.] 

 

QUESTION: In view of the above, why didn’t we simply design the controller via the root locus pole-placement method? 

It seems like we are just learning a new method that gives the same results we would have gotten using a method we 

already know? 

ANSWER: Recall that the frequency domain method never actually used direct knowledge of the plant transfer function. 

Even though we obtained the plant FRF by assuming it was known, very often a plant FRF is obtained from experimental 

data. Hence, the answer is: Because often we do not have a mathematical model for the plant transfer function, the 

frequency domain method can be more appropriate. 

 

As reasonable as the above answer is, there is yet another 

additional answer that is often as, if not more important. To 

this end, suppose that there is a 0.1 sec. time delay between 

when the error is computed and when it is received by the 

controller. To incorporate this delay into the open loop, 
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The closed loop unit step responses without and with this time delay included are shown at right. Clearly, the time delay 

had a destabilizing effect. The term 0st
e


in the open loop transfer function means that it is no longer a ratio of 
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polynomials, from which one simply obtains poles and zeros. Hence, now, the root locus method does not even apply. 

Even so, this term is trivial to incorporate into the open loop FRF. This is because 0ti
e


has a magnitude of 1.0 (and so 

does nothing to the open loop magnitude, and contribute angle  1.0)( 00
 tt . And so, at the new gain 

crossover frequency sr /2.40  this time delay will reduce the open loop phase by 
o
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Hence, when the delay is included, the closed loop 
oooPM 212445  . OUCH! Basically, we are back to where we 

were prior to incorporating the phase compensator. Yes, that IS true. Nowever, had that compensator NOT been 

incorporated, the closed loop PW would be 
oooPM 62418  . In layman’s terms, we would have been SOL. 

 


