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Lecture 10                             The System Frequency Response Function 

Even though humanoids have a preference for viewing the world in the time domain in their personal lives, when it comes 

to their professional lives, engineers tend to view the world in the frequency domain. Before offering a psychoanalysis of 

this aberrant behavior, it is appropriate that we first elaborate on what the frequency domain actually is.  

Consider any function of time, ( )x t  defined over the continuous-time interval t    . Furthermore, assume that 

2| ( ) |x t dt




  , (i.e. ( )x t is square-integrable). This condition holds for many transients. We then have 

Definition 1 The Fourier Transform of ( )x t  is defined as ( ) ( ) i tX x t e dt






   for     . (1) 

While ( )x t lives in the time domain, ( )X  lives in the frequency domain. Obviously, then next question is: Why would 

one care to live in the frequency domain? 

The answer is that the frequency domain can provide insight into ( )x t that is lacking in the time domain. This is especially 

true in the setting where ( )x t is the output of a linear system having an input ( )f t . Recall that if
0( ) sin( )f t F t   , then 

the steady state response will be 
0( ) [ ( ) ]sin[ ( )]x t M F t       , where ( )M  and ( )  are the magnitude and phase, 

respectively, of the frequency response function (FRF) ( )G i . And so, by identifying the frequency structure of the 

input, we can predict the frequency structure of the steady state response. We will now proceed to go into more detail in 

relation to the FRF. 

 

The Frequency Response Function (FRF) 

Consider a system with impulse response ( )g t . The system transfer function is the Laplace transform: 

                                                                  

0

( ) ( ) stG s g t e dt



  . (2) 

The frequency response function (FRF) is then: 

                                                               

0

( ) ( ) i tG i g t e dt


   for     . (3) 

Comparing (3) to (1), we see that the FRF is the Fourier Transform of the impulse response ( )g t . The reason that the 

lower limit of integration in (3) is zero is that we have implicitly assumed that ( ) 0g t  for 0t  . Such a system is said to 

be a causal system; that is, a system where the output cannot precede the input. An example of a noncausal system is one 

where analysis can proceed both forward and backward in time (e.g. in analysis of off-line data). We have up to this point, 

and will continue restrict our attention to only causal systems. We will also continue to restrict attention to inputs that 

equal zero before time zero.  

At this point it is fair to ask: What is the meaning of negative frequency, as indicated in (3)? Good question! 

Recall that the Laplace transform is in relation to s i   . There is nothing that prevents  from being negative. In 

fact, consider a second order underdamped system having poles 
1,2 n ds i    . One might ask the similar question: 

What is the meaning of a negative damped natural frequency? In this case, the answer is simple if one considers the 
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complementary solution to the ODE: 1 2

1 2

s t s tC e C e . Since this solution is real-valued, and since 
2 1s s , it must be that 

2 1C C . Hence, 1 2 1 1 1

1 2 2Re( )s t s t s t s t s tC e C e Ce Ce Ce    . Hence, we see that the negative frequency is simply a 

mathematical necessity in order that we have a real-valued solution.  

 

We are now in a position to explain why the FRF is plotted only for nonnegative frequencies. In (3) the impulse response 

( )g t is real-valued. Hence, [ ( )] ( )G i G i   . If we express ( )G i in the polar form ( )( ) ( ) iG i M e    , then we see 

that [ ( )][ ( ) ( ) iG i M e      . In words, [ ( )]G i  has the same magnitude as ( )G i , and its phase is the negative of the 

phase of ( )G i . Hence, plotting over negative frequencies would give redundant information. However, it must be 

repeated that ( )G i is defined over negative frequencies. We simply don’t plot it over them. 

We will now proceed to address the more practical elements of the FRF. 

 

Example 1 Consider a system with transfer function 

( )
( )

( ) 1

sgX s
G s

F s s
 


. The system FRF is

)(1
)(




i

g
iG s


 . In polar 

form, we have )()()(  ieMiG  , where  

2)(1
)(





 sg

M  and )(tan)( 1   . A plot of this FRF for 

1sg and 1  is shown at right.  

 

 

 

There are a number of points worth noting in relation to Figure 1: Figure 1 FRF for )1/(1)(  ssG . 

 

1. It is labeled as a Bode plot. The Matlab command bode(G) assumes that G is a transfer function. Hence, a Bode plot is 

exactly the FRF of the system )(sG . What distinguishes it from a standard FRF plot is that the amplitude is in decibels 

and the frequency is plotted in logarithmic form. 

2. The magnitude has units of decibels (dB). )(log20 10 MM dB



 . 

3. The frequency axis has log spacing. 

4. One could obtain the plot by using the Matlab command ‘freqs’. The ‘bode’ command is easier and better-suited for our 

needs.  

 

The Information in Figure 1- 

 

As noted above, for a stable system with input 
0( ) sin( )f t F t , the steady state output will be 

0( ) ( )sin[ ( )]x t F M t     . And so, the system   output is a sinusoid having the same frequency as the input. Its 

amplitude is scaled by an amount )(M and its phase is changed by an amount )( . For example, suppose that the input 

to )(sG is )10sin(2)( ttx  . From Figure 1 we have:   

                  1.0)(log2020 10  MMMdB
           and          o85)(  . 
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So, the steady state response to this input will be 

)8510sin(2.0)( otty  . To verify this, the code below was used to 

obtain the plot at right. 

 

>> t=0:.01:10; 

>> x=2*sin(10*t); 

>> y=lsim(G,x,t); 

>> plot(t,x) 

>> hold on 

>> plot(t,y,'r') 

>> grid 

                    Figure 2. Total response for input )10sin(2)( ttx  . 

 

Notice that only after the initial transient has died out, does the response become sinusoidal. □ 

 

Most students who take a course in feedback control systems will not become control systems engineers. Even so, many 

will encounter FRFs in their work. One area in which they occur is in relation to instrumentation (e.g. sensors). 

 

 

Examples of Instrument Frequency Response Functions 

 

A few examples of sensors include: 

 

1.Microphones: http://blog.shure.com/how-to-read-a-microphone-frequency-response-chart/  

2.Accelerometers: https://www.endevco.com/news/archivednews/2009/2009_09/TP328.pdf  

3.Rate Gyros: 
https://www.google.com/search?q=rate+gyro+frequency+response+function&sa=N&biw=1152&bih=529&tbm=isch&tbo=u&source=univ&

ved=0ahUKEwjfup_4uqfLAhVDmYMKHRX-CiI4FBCwBAga&dpr=1.67  

[For those with insomnia, and/or want to go to MIT: https://www.youtube.com/watch?v=fKaZeD70p8I ] 

 

In sensing pressure, velocity, sound, etc. the input to the sensor is the variable of interest. However, the sensor output is 

typically voltage. Hence, it is imperative that there be a 1:1 relation between the units of the variable of interest and the 

voltage output from the sensor. Furthermore, this relation must hold over an entire range of specified frequencies. This 

leads to 

 

Definition 2 The bandwidth (BW) of a system is the range of frequencies in which useful information is required. 

 

This definition is intentionally vague, since what comprises useful information is in the eye of the beholder. 

 

 

Example 2 Consider the transfer function that relates forces on a wing to the wing tip displacement: 

 

                                                               
2

( ) 50
( )

( ) 2 100

X s
G s

F s s s
 

 
. (3) 

 

http://blog.shure.com/how-to-read-a-microphone-frequency-response-chart/
https://www.endevco.com/news/archivednews/2009/2009_09/TP328.pdf
https://www.google.com/search?q=rate+gyro+frequency+response+function&sa=N&biw=1152&bih=529&tbm=isch&tbo=u&source=univ&ved=0ahUKEwjfup_4uqfLAhVDmYMKHRX-CiI4FBCwBAga&dpr=1.67
https://www.google.com/search?q=rate+gyro+frequency+response+function&sa=N&biw=1152&bih=529&tbm=isch&tbo=u&source=univ&ved=0ahUKEwjfup_4uqfLAhVDmYMKHRX-CiI4FBCwBAga&dpr=1.67
https://www.youtube.com/watch?v=fKaZeD70p8I
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The poles of (3) are: 
1,2 1 9.95s i   . It is a relatively low-damped system with 0.1  . It has a damped natural frequency 

9.95 /d rad s  , or 1.58df Hz . The FRF is: 
2

50
( )

100 2
G i

i


 


 
. Hence, the FRF squared magnitude is 

 

                                                                 2

2 2 2

2550
( )

(100 ) 4
M 

 


 
. (4) 

We will now find the frequency at which (4) is a maximum.  

 

To this end, let’s express ( )G s in the more general form: 

                                                                       
2

2 2
( )

2

n

n n

G s
s s



 


 
. (5) 

Notice the (5) was chosen to have unity static gain. This is merely a convenience.  

 

Then                  
4

2

2 2 2 2 2 2 2 2 2 2 2 2

1 1
( ) ( )

( ) 4 (1 ( / ) 4 ( / ) (1 ) 4

n

n n n n

M q r
r r




          
   

     
 (6) 

where we have defined 
2( / )nr  



 . Setting the derivative of (6) equal to zero and solving for r gives: 

21 2r   . Hence, (6) is maximum at frequency:  

                                                                            
2

max 1 2n    . (7a) 

The magnitude of the FRF at the frequency (7a) is: 

                                                                            
max

2

1
( )

2 1
M 

 




. (7b) 

The frequency (7a) where the magnitude of the FRF is a maximum is called the resonance (or resonant) frequency. In 

many settings, the structure resonance is low-damped (i.e. 1  .) In this case, (7) becomes: 

 

                                                    
2 21 2 1res n n d n            . (8a) 

 

                                                                              
1

( )
2

resM Q




  . (8b) 

Hence, in the case 1  , from (8a) we see that the resonance frequency is nearly the same as the damped natural 

frequency; which, in turn, is nearly the same as the undamped natural frequency. From (8b) we see that the magnification 

at resonance is inversely proportional to  . The magnification (8b) is often referred to as the Q factor of the resonance.  

 

Now, returning to the example at hand, we have 0.1  , which is, 

arguably, quite small. Hence, from (8) the resonance frequency is 

10 /res rad s  , and 5Q  , or 14dBQ dB . The FRF associated with 

(3) is shown at right. The data cursor information verifies these 

approximations. Note that Q is the magnification relative to the static 

gain.  

 

Hence, in order to minimize the wing tip vibration, we would want to 

avoid inputs have significant energy at the resonance frequency.  □ 

 

         Figure 3 FRF associated with (3). 
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Straight and Curved Line Approximations of the Bode Plot 

 

In days gone by engineers did not have immediate access to Bode plots. Those plots were often constructed by hand. The 

advent of advanced computing hardware and software has alleviated the need for such constructions. However, it has also 

tended to divorce the engineer from the qualitative behavior associated with an FRF. In fact, equations (8) were used 

routinely to gain quick and easy insight into the FRF of an underdamped system. We believe that there is no substitute for 

having qualitative insight into the properties of a transfer function that dictate the structure of the FRF. For this reason, we 

will now develop a few basic tools that one can use to approximate an FRF using a bare minimum of mathematics. We 

will proceed in the context of the above examples. 

 

Example 1 (continued) Consider 
1

( )
1

G s
s




. Then imagine in your mind that s i . For 1s   we have ( ) 1G s  . In 

other words, the magnitude and phase at low frequencies is 0M dB and 0o  . For 1s   we have ( ) 1/G s s . Hence,  

The magnitude at s is: ( ) 20log(1/ ) 20log( )M s s s   . The magnitude at 10s is:  

 

                                                (10 ) 20log(1/10 ) 20log(10 ) 20log( ) 20M s s s s      . (9) 

 

Hence, from (9) we see that  for frequencies 1s  , the magnitude drops by 20dB per decade of increasing frequency. In 

other words, the slope of the FRF magnitude is -20dB/decade. Clearly, since at such high frequencies we have 

( ) 1/ 1/ (1/ )G s s i i     , the high frequency phase is 90o   . 

 

We will now define what constitutes as low and high frequencies in relation to a straight line approximate Bode plot. 

 

Magnitude approximation: For 1  , 0M dB  , and for 1  ,  ( )M  has a slope of 20 /dB decade . 

 

Phase Approximation: For 1/10  , ( ) 0o    , and for 10  ,  ( ) 90o    . For 1/10 10  , ( )  has a slope of 

45 /o decade . 

 

The straight line approximate Bode plot is shown at right. The 

magnitude approximation is quite good, except at the frequency 

1  , which corresponds to the pole at 1s   . At this frequency 

the true magnitude is (1) 1/ 2M  , or (1) 3dBM dB  . Hence, an 

improved curved line approximation is easily obtained by using a 

French curve to smooth out the sharp break at 1  .  

 

We see that the phase approximation is quite good at low and high 

frequencies. Moreover, it is exact at 1  . Hence, we could  

use a French curve to smooth it out in a similar fashion.                              Figure 4 Straight line Bode approximation. 

 

Example 2 (continued) We have 
2

50
( )

2 100
G s

s s


 
, with 0.1  and 10n  . 

Magnitude approximation: For 10  , 6M dB   , and for 10  ,  ( )M  has a slope of 40 /dB decade . 

 

Phase Approximation: For 1  , ( ) 0o    , and for 100  ,  ( ) 180o    . For 1 100  , ( )  has a slope of 

90 /o decade . 
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The straight line approximation is shown at right. To obtain an 

improved curved line approximation of the magnitude we would use a 

French curve so that the approximation passes through the peak.  

 

The straight line approximation of the phase excellent at very low and 

high frequencies (not shown), but is not so good in the region shown, 

except at 10   where it is excellent. Clearly, one would need to 

compute a few points in order to obtain a curved line approximation. 

 

      Figure 5 Straight line Bode approximation. 

Some important conclusions 

1. For a first order term 
1s  : The magnitude straight line break frequency is at 

1 . Above this frequency the slope is 

20 /dB decade . The sign will + if this term is in the numerator and – if it is in the denominator. The phase straight line 

approximation has TWO break frequencies: One at 
1 /10  and the other at 

110 . Below the lower break frequency the 

phase will be ~ 0o . Above the higher break frequency it will be ~ 90o . The sign will + if this term is in the numerator 

and – if it is in the denominator. 

 

2. For a second order term 2 22 n ns s    with 1  : The magnitude straight line break frequency is at 
n . Above this 

frequency the slope is 40 /dB decade . The sign will + if this term is in the numerator and – if it is in the denominator. 

The phase straight line approximation has TWO break frequencies: One at /10n  and the other at 10 n . Below the lower 

break frequency the phase will be ~ 0o . Above the higher break frequency it will be ~ 180o . The sign will + if this term 

is in the numerator and – if it is in the denominator. 

 

Example 3 To motivate the use of FRFs in relation to controller design, consider the controller ( ) z
c

p

s
G s

s









. This 

controller has a zero at z and a pole at p . It is comprised of two first order terms. Hence the FRF magnitude will 

have two break frequencies; one at 
z and the other at p . Suppose that z p  . Then the magnitude will be flat up to 

z , at which point it will increase at 20 dB/decade. This increase will continue up to p , at which point the denominator 

term will contribute a slope of -20 dB/decade, thereby canceling the +20 dB/decade. The low frequency magnitude is 

/z p  , and the high frequency magnitude is one.  

 

The above magnitude analysis was easy because there are only two break frequencies. The phase analysis is trickier since 

each term in ( )cG s has two break frequencies. At both low and high frequencies the phase will be zero. For z p  the 

 phase of the numerator term will ‘kick in’ before that of the 

denominator term. This will result in increasing phase. Similarly, 

when the phase of the numerator term ‘turns off’, the phase of the 

denominator term will pull the controller phase back to zero.  

To illustrate the above, let 
1

( )
20

c

s
G s

s





. The straight line 

magnitude is easy to see. The behavior of the phase, on the other 

hand, requires a bit of thought. □ 

 

 

 Figure 6 Straight line controller Bode plots. 
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The FRF of a ‘Typical’ Human Ear   [ https://www.soundonsound.com/sound-advice/how-ear-works ] 

 

 
            Figure 7. FRF’s for a ‘typical’ human ear at three levels of loudness.  

 

Observations and Comments- 

 

1. The curves are termed transfer functions. This is incorrect. They are functions of ω, not s. 

 

2. The figure includes three FRFs, corresponding to three equal loudness levels. This reflects the fact that the human ear is 

a nonlinear dynamical system.  

 

3. The -3dB BW range of hearing is ~80Hz to 7.5kHz. 

 

4. There is one resonance @ ~3.5kHz, and a second @ ~13.5kHz.  

3dBBW

https://www.soundonsound.com/sound-advice/how-ear-works

