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Homework 5   AERE331 Spring 2020   Due 4/22(W)   SOLUTION 

PROBLEM 1(25pts) This problem addresses a research topic that is receiving renewed attention in recent years. It relates 

to vortex shedding turbulence off the trailing edge of an airfoil, as shown in Figure 3 below; taken from 

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.569.7015&rep=rep1&type=pdf  . The article was published in J. Fluid 

Mech.(2009),vol.632,pp.245–271. 

 

As can be seen from plate (b), the turbulence 

off the trailing edge is of an oscillating 

nature. This can lead to flapping of the 

trailing edge, as well as to oscillatory 

downwash. In this problem we will arrive at 

a model to simulate such turbulence. 

 

 

(a)(5pts) To accommodate the oscillating nature of the turbulence, consider the shaping filter: 
2

( )
0.2 100

c
G s

s s


 
. 

Use the Matlab ‘integral’ command to find the value of c so that 21
( 1

2
G i d 







 . Give ALL of your code HERE. 

Solution: g=@(w)abs((1i*w).^2+0.2*(1i*w)+100).^-2;gint=(1/pi)*integral(g,0,inf)=.025 

Hence, 2 1/ .025 40c   , which gives c  6.3246 . 

 

(b)(10pts) Regardless of your answer in (a), assume here that 

c  6.3 . Suppose that we require that the turbulence have power 
2 25  . Arrive at the turbulence power spectral density plot. 

NOTE: Use w=logspace(0,2,5000) and give ( )S  in dB. 

Solution: [See code @ 2(b).] 

This requires 
2

6.3(5)
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s s


 
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

 
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 Figure 2(b) Plot of ( )S  . 

 

(c)(10pts) If we assume a Nyquist frequency 1000 / secN rad  , 

the corresponding sampling period is / 0.00314secN    . 

Obtain a simulation of the turbulence over a 200-second window. 

Then discuss whether or not you believe the amplitudes are 

reasonable. 

Solution: [See code @ 2(c).] 

 

Since 5  , we would expect that 3 15  . The plot supports 

this. 

 

 

 

 Figure 3(c) Plot of simulated turbulence. 

 

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.569.7015&rep=rep1&type=pdf
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PROBLEM 2(40pts) Consider the function ( ) tf t e . This function could be a system impulse response. It could also be 

an input to the system.  

(a)(5pts) (i) Show that 

0

1
( ) ( )

1

st

t

F s f t e dt
s







 
 . Show all steps. Verify that the s-values of the complex plane for which 

the result holds includes the imaginary axis. 

Solution:  

(i): 
( 1) ( 1)

( 1)

0 0 0

1 1 1
( ) lim 0

1 1 1 1 1

s t s t
t st s t

t
t t t

e e
F s e e dt e dt

s s s s s

     
   


  

   
       

      . 

 

(ii): The result assumes that ( 1) ( 1) ( 1)lim lim lim 0s t i t t i t

t t t
e e e e          

  
   . This can only happen for s i    with 

1s    . Hence, it holds for s i . 

 

(b)(4pts) (i) Use the ‘bode’ command to plot the magnitude and phase of 

( )F i . On the plot identify (ii) the -3dB BW frequency, and (iii) The 

frequency at which the magnitude is 30dB below the static gain. 

Solution: [See code @ 2(b).] 

 

(i):   
3 1 /dB rad s     (ii):   

30 31.5 /dB rad s      

 

 

 

      Figure 2(b) Bode plot of ( )F s . 

 

(c)(5pts) Suppose that we sample ( )f t using a sampling interval T. Then ( ) kTf kT e . The numerical approximation of 

the Laplace transform is: ( )

0

ˆ ( ) ( ) s kT

k

F s f kT e T






 . Now consider the following 

FACT 1: 
1

0

1

1
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k
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x

x









 .  Proof: 2 1

0

(1 ) (1 )(1 ) 1
n

k n n

k

x x x x x x x 



 
        

 
 (i.e. all middle terms cancel.) 

Use this fact to show that 
1

ˆ ˆ( ) ( )
1

T
F s F z

z




 


, where we have defined Te  and 1 sTz e  . 

Solution: 
1 1

( ) [ ( 1) ] 1

1 1
0 0 0

1 ( )ˆ ( ) lim ( ) lim
1 1
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kT s kT s T k k

k k
k k k

z T
F s e e T T e T z T

z z
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

 

  
    

  
  


    

 
   . 

 

(d)(3pts) In order to arrive at the result in (c) you should have realized that it was required that 1| | 1z   . Hence, (c) is 

only defined for | | | |z  . Let 
1

ˆ ˆ( ) ( )
1

T
F s F z

z




 


 be a system transfer function. Then the associated FRF is 

1
ˆ ˆ( ) ( )

1

i TT
F s i F z e

z







   


. Assuming this FRF is well-defined, show that the sampled system pole 

1z  must 

satisfy | | 1  . Note: Do NOT revert to the s-domain. Use only the above information. 
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Solution:  

   We are told that ˆ ( )F z requires that  | | | |z  . We are also told that for ˆ ( )i TF z e  . This means it is well-defined for   

| | | | 1i Tz e   . Hence, we must have | | | | 1i Te    . 

 

(e)(3pts) Recall that for any stable transfer function ( )F s   the FRF ( )F i is defined over the interval     . Hence, 

the same is true for ˆ ( )i TF z e  . However, ˆ ( )i TF z e  is a periodic function of  . Show that the period is 2 /s T 


 . [In 

other words, show that for any stable ( )F s  we have ( )ˆ ˆ( ) ( )si T i TF e F e
  

 .] 

Solution:  
( ) (2 / ) 2ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( )s si T i Ti T i T i T T i T i i TF e F e e F e e F e e F e
                  . 

 

(f)(5pts) The period 2 /s T 


 is called the radial sampling frequency since it is 2 over the sampling period T. From (e) 

it follows that ˆ ( )i TF z e  is uniquely defined over the frequency range 
N N     where 0.5N s 



 . The frequency 

0.5N s 


  is called the radial Nyquist frequency. In relation to 
1

( )
1

F s
s




 in (a), from (c) we have 
1

ˆ ( )
1

T
F z

z 



, 

where Te  and 1 sTz e  . In relation to ˆ ( )i TF e  , show that its magnitude is 
2

( )
1 2 cos( )

T
M

T


  


 

 and its phase 

is 1 sin( )
( ) tan

1 cos( )

T

T


 

 

  
   

 

.  

Solution: ˆ ( )
1 1 [cos( ) sin( )] [1 cos( )] sin( )

i T

i T

T T T
F e

e T i T T i T



      
  

    
. (*) 

Hence, 
2 2 2 2 2 2 2

( )
[1 cos( )] [ sin( )] [1 2 cos( ) cos ( )] sin ( ) 1 2 cos( )

T T T
M

T T T T T T


            
  

      

. 

 

From (*) it is clear that 1 sin( )
( ) tan

1 cos( )

T

T


 

 

  
   

 

. 

 

(g)(5pts) In (a) you should have found that 
30 31.5 /dB rad s  . Let 

30N dB   . Overlay plots of (i) the magnitudes (dB) 

and (ii) the phases (deg.) of ( )F i and ˆ ( )i TF z e  . Use a log-spaced frequency axis for 0.01 N   . 

Solution: [See code @ 2(g).] 

 

 

 

 

 

 

 

 

 

 

 Figure 2(g). FRF magnitudes (LEFT) and phases (RIGHT). 
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PROBLEM 3(20pts) This problem is a continuation of PROBLEM 2. In this problem we will view ( )F s as a transfer 

function. 

 

(a)(8pts) From 2(c) ˆ ( )
Tz

F z
z 




is a ratio of polynomials in z. 

Use the ‘bode’ command to obtain overlaid plots of ( )F s  and 

ˆ ( )F z . Then comment as to whether or not they validate your 

plots in 1(g). 

Solution: [Give your code HERE.] 

%(a): 
figure(30) 

bode(F) 

hold on 

Fhat=tf([T 0],[1 -A],T); 

bode(Fhat) 

legend('F','Fhat') 

grid 

 

Yes, they validate my former plots.  Figure 3(a) Bode plots of ( )F s  and ˆ ( )F z . 

 

 

 

(b)(7pts) Use the ‘step’ command to overlay the associated unit 

step responses. Then comment on how they compare. 

Solution: [Give your code HERE.] 
figure(31) 

step(F) 

hold on 

step(Fhat) 

legend('y(t)','yhat(t)') 

title('Unit Step Responses') 

grid 

With the exception of the different ss values they compare 

reasonably well. 

 Figure 3(b) Step responses for ( )F s  and ˆ ( )F z . 

 

 

 

(c)(5pts) In (b) you should have found that the steady state response for ˆ ( )F z  was higher than the one for ( )F s . Compute 

the static gains for the two systems, and use them to quantify the observed difference in (b).  

Solution: 

1
( 0) 1 0

0 1
F s dB   


 

For 0s  , we have 0 1sT Tz e e   . Hence, 
0.0314ˆ ( 1) 1.0507 0.43

1 1 0.9051

T
F z dB


    

 
. 

This is confirmed in the plot. 
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

PROBLEM 4(25pts) Consider the continuous-time transfer function: 
)(

)(

9

2
)(

2 sU

sY

ss
sGp






 . 

(a)(9pts)To obtain a discrete-time approximation, call it ( )pG z , (i) find a and b such that
2 2

( )
( )

p

b
G s c

s a b

 
  

  

 . (ii) 

For 0.03142secT   use the transform pair 21 in Table 8.1 on p.620 to compute ( )pG z . (iii) Use the c2d(Gp,T,’impulse’) 

command to obtain ( )impG z . (iv) Show that the result from Table 1 is off by a factor of T from the result in (iii). 

Solution: [See code @ 4(a).] 

(i): 
2 2

2 2 8.75
( )

9 ( 0.5) 8.758.75
pG s

s s s s

 
   

     

.    (ii):  

b1 = 0.0914  a1 = -1.9603  a0 = 0.9691. Hence: 1

2 2

1 0

2 0.06177
( )

1.9603 .9691
p

b z z
G z

b z a z a z z

 
  

    

. 

(iii): Gimp = 0.01941 z / ( z^2 - 1.96 z + 0.9691)     (iv): 0.06177*T= 0.019. Hence, the table does NOT include T, while 

Matlab’s c2d command with the ‘imp’ flag does. 

 

(b)(10pts) For T=0.03142 sec ( 200 /s r s  ) using ‘c2d(Gp,T,’zoh’)’ gives: 
2

.000976 .000966
( )

1.96 .9691
zoh

z
G z

z z




 
. By including 

the ‘zoh’ flag, Matlab includes a zero-order-hold transfer function: szzszsGzoh /)1(/)1()( 1   . Consequently, 

( )1
( ) [ ( ) ( )]

p

zoh zoh p

G sz
G z Z G s G s Z

z s

  
    

   

. Use entry 22 in Table 8.1 to show that, indeed, this is the case. 

Solution:    
2 2

2 2 2 2 2 2 2 2 2 2

( ) 2 2 2 ( )

[( ) ] [( ) ] ( 1)( 2 cos( ) )

p

aT aT

G s a b z Az B
Z Z Z

s s s a b a b s s a b a b z z e bT z e 

           
            

                

 

Hence: 
























 aTaTp
ezbTez

BAz

ba
zG

2222 )cos(2

2
)( , where 1 cos( ) sin( )aT aTa

A e bT e bT
b

  
    

 
0.0044     &   

2 sin( ) cos( )aT aT aTa
B e e bT e bT

b

   
    

 
0.0043 . 0.222

 9

22
22 ba

 Hence:  
2

.000976 .000966
( )

1.96 .9691
p

z
G z

z z




 
. 

 

(c)(6pts) From (b) we see that, even though the ‘c2d’ command gives )(zGp
, this is not** a transfer function in discrete 

time. Rather, it is in continuous time due to the inclusion of the ZOH digital-to-analog (D/A) circuit. Overlay plots of the 

step responses for ( )pG s , ( )impG z and ( )zohG z to see this visually. 

**This is the case if ZOH is a circuit. If ZOH is an approximate integration method then )(zGp
is in discrete time. In other 

words, the use of ‘zoh’ is ambiguous. It can be used for numerical integration, or it can represent a circuit.  

Solution: [See code @ 3(c).] 

 

 

 

 

 

 

 

 

                      Figure 4(c) Step responses (LEFT) and zoomed (RIGHT) for ( )pG s , ( )impG z and ( )zohG s . 
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Appendix     Matlab Code 
%PROGRAM NAME: hw5.m   (4/3/20) 

%======================================= 

%PROBLEM 1 

%(a): G(s)=1/(s^2+0.2s+100) 

g=@(w)abs((1i*w).^2+0.2*(1i*w)+100).^-2; 

gint=(1/pi)*integral(g,0,inf) 

%(b): 

c=6.3; 

VAR=25; 

w=logspace(0,2,5000); 

S=VAR*c^2*((100-w.^2).^2 +(0.2*w).^2).^-1; 

SdB=10*log10(S); 

figure(20) 

semilogx(w,SdB) 

title('Turbulence PSD') 

xlabel('Frequency (rad/sec)') 

ylabel('dB') 

grid 

%(c): 

wN=1000; 

del=pi/wN; 

tmax=200; 

npts=fix(tmax/del); 

STD=sqrt(VAR); 

G=tf(STD*c,[1 0.2 100]); 

u=normrnd(0,1/sqrt(del),1,npts); 

t=0:del:(npts-1)*del; 

y=lsim(G,u,t); 

figure(21) 

plot(t,y) 

title('Simulated Turbulence') 

xlabel('Time (sec.)') 

grid 

%================================== 

%PROBLEM 2 

%(b): 

F=tf(1,[1 1]); 

figure(20) 

bode(F) 

grid 

%(g): 

wN=31.5; T=pi/wN; A=exp(-T); 

w=0.01:0.01:wN; 

M2=(1+w.^2).^-1; 

M2dB=10*log10(M2); 

TH=-atand(w); 

Mhat2=T^2*(1+A^2 - 2*A*cos(w*T)).^-1; 

MM2dB=10*log10(Mhat2); 

THhat=-atand(sin(w*T)./(1-A*cos(w*T))); 

figure(21) 

semilogx(w,[M2dB;MM2dB]) 

title('FRF Magnitudes') 

legend('M(w)','Mhat(w)') 

xlabel('Frequency (rad/sec)') 

ylabel('dB') 

grid 

figure(22) 

semilogx(w,[TH;THhat]) 

title('FRF Phases') 

legend('TH(w)','THhat(w)') 

grid 

xlabel('Frequency (rad/sec)') 

ylabel('Degrees') 

%=================================== 

%PROBLEM 3 

%(a): 

figure(30) 

bode(F) 

hold on 

Fhat=tf([T 0],[1 -A],T); 

bode(Fhat) 

legend('F','Fhat') 
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grid 

%(b): 

figure(31) 

step(F) 

hold on 

step(Fhat) 

legend('y(t)','yhat(t)') 

title('Unit Step Responses') 

grid 

%=================================== 

%PROBLEM 4 

Gp=tf(2,[1 1 9]); 

z=tf('z',T); 

%(a): 

%(ii): 

T=0.03142; 

a=0.5; %zeta*wn 

b=sqrt(8.75); %wd 

b1=exp(-a*T)*sin(b*T); 

a1=-2*exp(-a*T)*cos(b*T); 

a0=exp(-2*a*T); 

c=2/b; 

Ga=c*b1/(z^2+a1*z+a0); 

Gimp=c2d(Gp,T,'imp'); 

%(b): 

B=exp(-2*a*T)+exp(-a*T)*((a/b)*sin(b*T)-cos(b*T)); 

A=1-exp(-a*T)*(cos(b*T)+(a/b)*sin(b*T)); 

c=2/(a^2+b^2); 

a1=-2*exp(-a*T)*cos(b*T); 

a0=exp(-2*a*T); 

G_theory=c*(A*z+B)/(z^2+a1*z+a0) 

Gzoh=c2d(Gp,T,'zoh') 

%(c): 

figure(30) 

step(Gp) 

hold on  

[gimp,t]=step(Gimp,'red'); 

plot(t,gimp,'ro--') 

step(Gzoh,'k') 

legend('Gp(s)','Gimp(z)','Gzoh(s)') 

grid 

 


