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Homework 4  Spring 2020  AerE331   Due 3/13(F)   SOLUTION 

PROBLEM 1(45pts) In this problem we address feedback control of the AOA/elevator transfer function 
3 2
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. Clearly, this is a challenging problem, since it has three zeros. 

The design specifications include: (S1) unit ramp 0.2o

sse   ; (S2) 70oPM  at 1 /gc r s   

(a)(5pts) It should be clear that the controller must include the term /K s . Show that in order to satisfy (S1), 4.0K  . 

Solution:  

The Type-1 error constant is 
0

lim ( / ) ( ) 1.25 1/ 5e p ss
s

K s K s G s K e


    . Hence, 4.0K  . 

 

(b)(9pts) Beginning with data cursor information associated with (4 / ) ( )ps G s , design a unity static gain compensator that 

will result in open loop phase ( 1) 110o     . Then verify this via the OL Bode plot. Also, give the value of ( 1)dBM   . 

Solution: [See code @ 1(b).] 

From the left plot in Fig.1(b) we 

see that ( 1) 185o     . To raise it 

to ( 1) 110o     will require a 

lead compensator with 
max 75o   at 

max 1 21   . Now, 
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. Hence, 

1 max 0.1317    , and 

2 1 7.596   . (1) dBM  33.4  

Hence, 7.596 0.1317
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.      Figure 1(b). OL Bode plot prior to (LEFT) and including (RIGHT) ( )leadG s . 

 

 

(c)(9pts) Design a second unity static gain compensator to force 

1 /gc r s  . Then give the % error between your PM and (S2). 

Solution: [See code @ 1(c).] 

A lag compensator with ( 1) 33.4dBM dB    and with ( 1) 0o    is 

required. So 33.4/202

1

10 .0214

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   . I will set 
120 1  . These give 

1 0.05  and 
2 0.0011  . Hence, 
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  I have a 66oPM   and (S2) is 70oPM  . My error is -5.7%   Figure 1(c). Final OL Bode plot. 
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(d)(5pts) Use your lag compensator in (c) to explain why your PM does not exactly satisfy (S2). 

Solution:  

.0011 1 .05
( 1)

0.05 1 .0011
lag

i
G i

i

 
  

 
 has (1) = atand(1/.05)-atand(1/.0011) = -2.8o. Hence, the 70o design value is reduced to 

67.2o. The remaining 1.2o is likely due to numerical round-off in the computations.  

 

 

(e)(5pts) Obtain a plot of the error response to a unit ramp to verify (S1).  

Solution: [See code @ 1(e).] 

 

The error TF is ( ) 1 ( )E s W s  . 

 

From the plot we have 0.199o

sse  , which verifies (S1) 

 

 

 

 

 

 Figure 1(e). Error response to a unit ramp.  

 

 

(f)(7pts) Overlay the plant and final CL command system step 

responses. Then discuss the relative advantage(s) of each. 

Solution: [See code @ 1(f).] 

 

The advantage of ( )pG s is that the response time is ~15 seconds, 

compared to ( )W s that is ~80seconds. The advantages of ( )W s include: 

(i) 50% less overshoot. 

(ii) unity static gain. 

(iii) automated. 

(iv) (S1).  Figure 1(f).  CL response to command step. 

 

(g)(5pts) Give the controller (i) TF and (ii) Bode plot. Then (iii) 

compute the controller power over [10-5 , 103]. Give your Matlab code 

for the power (in dB) HERE. 

Solution: [See code @ 1(g).] 
2
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 [n,d]=tfdata(Gc,'v'); 

f=@(w) abs((-n(2)*w.^2+1i*n(3)*w+n(4))./(-1i*w.^3-d(2)*w.^2+1i*d(3)*w)).^2; 

PWR=integral(f,10^-5,10^3); 

PWRdB=10*log10(PWR)  = 61.98 dB 

 

    Figure 1(g).  Controller Bode plot. 
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Problem 2(55pts) Consider the lightly damped plant
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 .  The O.D.E. is: uyyy 29   . This is a 

single input-single output (SISO) system. Define the 2-D state    trtr
yyxx  21x .  

 

(a)(5pts) Beginning with the ODE, show that the defined state gives uu BAxxx 

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  and 

that   DuCxx  uy 010 . 

Solution: Since 
1x y , we have

1x y , so that
1 1 29 2x x x u   . This gives 

1 1 29 2x x x u    .   (1). Since 
2x y , we 

have 
2 1x y x  .   (2)   Putting (1) and (2) into the matrix form gives the desired state equation. The system output is y, 

which can be written as:     0 1 0 1 0y y y u  x . This is the desired output equation. 

 

(b)(5pts) Use the ‘tf2ss’ command to put the SISO system into a state space form. [Copy/paste your code/result HERE.] 

Solution: 

[A B C D]=tf2ss(2,[1 1 9])      A = [ -1    -9  ;  1     0]    B =[1  ;  0]   C =[0   2]    D =  0 

 

(c)(5pts) You should have found that the form in (b) is not the form in (a). Show that the state variable for this 

representation is    1 2 0.5
tr tr

x x y y x . 

Solution: From uyyy 29    we have: 0.5 0.5 9(0.5)y y y u   . Let 
1 0.5x y and

2 0.5x y . We can then proceed 

exactly as in (a) to obtain the desired representation in (b).  

 

(d)(5pts) Show that the eigenvalues of A are the roots of the characteristic polynomial. 

Solution: [Include your code/answers HERE.] 

A=[-1 -9; 1 0]; B=[2;0]; C=[0 1]; D=0; 

L = eigs(A)  =   -0.5000 +/- 2.9580i 

roots([1 1 9]) = -0.5000 +/- 2.9580i 

 

(e)(5pts) Use the ‘ss2tf’ command to recover the transfer function from (A,B,C,D) in (a). 

Solution: [Copy/paste code/results HERE.] 

[n,d]=ss2tf(A,B,C,D)     n =[ 0     0     2]   d =[ 1.0000    1.0000    9.0000] 

G=tf(n,d)  = 2 / ( s^2 + s + 9 ) 

 

(f)(5pts) If in (a) we define the input u to be 
1 2[ ][ ]tru K K y y   Kx , then the state equation becomes 

( )


    x Ax BKx A BK x A x , where   A A BK   Taking the Laplace transform of x A x  gives: ( ) ( ) 0s s I A X . 

Hence, we see that the closed loop poles are the eigenvalues of A . (i) Use the Matlab command ‘place(A,B)’ to arrive at 

the gain matrix, ][ 21 KKK  that will place poles at 552,1 is  . Then (ii) verify your answer using A . 

Solution: [Copy/paste code/results HERE.] 

 (i): s1=-5+1i*5; s2=conj(s1);   K=place(A,B,[s1 s2]) = [ 4.5   20.5] 

(ii):  AA=A-B*K; eigs(AA)  = -5.0000 +/- 5.0000i 
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(g)(5pts) For your A in (f), use the ‘ss2tf’ command to determine whether the controller is in the forward or the feedback 

loop. 

Solution: [Copy/paste code/results HERE.] 

[N,D]=ss2tf(AA,B,C,D); N =[ 0     0     2]  D =[1.00   10.00   50.00]. It is in the feedback loop.  

 

(h)(5pts) In (g) you should have found that the controller was placed in the feedback loop. To place it in the forward loop 

it is easiest to use the state space representation in (b) where B = [1 ; 0] and C = [0 2]. Let the new ' (2)CC K . Use the 

ss2tf command to verify that now the controller is in the forward loop. 

Solution: [Copy/paste code/results HERE.] 

B1=[1;0];   C1=[0 2];   CC=C1(2)*K;   [NN,DD]=ss2tf(AA,B1,CC,0)   NN =[ 0  9.0  41.0]   DD =[1.0  10.0  50.0]. 

 

(i)(5pts) Overlay the CL unit step responses associated with (g) and 

(h). Then discuss them in relation to command versus disturbance 

inputs. 

Solution: [See code @ 2(i).] 

The CL response with the controller in the feedback loop is ( )gW s , 

and the response with it in the forward loop is ( )hW s . For a 

disturbance input we would use ( )gW s , and for a command input we 

would use ( )hW s . 

 

      Figure 2(i) CL step responses ( )gW s and ( )hW s . 

 

(j)(5pts) Given that the state vector is    trtr
yyxx  21x , the state feedback pole placement method must result in a 

PD controller. Even so, the use of PID control is far more popular. Consider the state vector    trtr
yyyxxx  

321x . 

For this state, show that  
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  and   DuCxx  uy 0010 . 

Solution: 233 xyxyx    . The third row of A follows immediately, as does the form for C. 

 

(k)(5pts) Use the ‘place’ command to find the values for the PID controller ][ 321 KKKK that will place CL poles at 

552,1 is   and 
3 5s   . 

Solution: [See code @ 2(k).]   K = [7.0   45.5  125.0 ] 
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Matlab Code 
%PROGRAM NAME: hw4.m  2/25/20FROM Etkin (6.2.1) and(7.6.5) 

%PROBLEM 1 

Gp=tf([.023 1.168 .008 .005],[1 .75 .94 .01 .004]); 

figure(10) 

bode(Gp) 

grid 

%(a): 

K=5/1.25; 

Gca=tf(K,[1 0]); 

Ga=Gca*Gp; 

figure(11) 

bode(Ga) 

grid 

%(b): 

phimax=75; 

a=(1+sind(phimax))/(1-sind(phimax)); 

wgc=1; 

w1=wgc/sqrt(a); 

w2=a*w1; 

%[w1 w2] 

Glead=(w2/w1)*tf([1 w1],[1 w2]); 

Gcb=Gca*Glead; 

Gb=Gcb*Gp; 

figure(12) 

bode(Gb) 

grid 

%(c): 

aa=10^(-33.4/20); 

ww1=wgc/20; %Choose 20*w1 = wgc 

ww2=ww1*aa; 

[ww1 ww2]; 

Glag=(ww2/ww1)*tf([1 ww1],[1 ww2]); 

Gc=Gcb*Glag; 

G=Gc*Gp; 

figure(13) 

margin(G) 

%(e): 

W=feedback(G,1); 

E=1-W; 

t=0:.01:1000; 

u=t; 

e=lsim(E,u,t); 

figure(14) 

plot(t,e) 

title('Error Response to a unit ramp') 

xlabel('Seconds') 

ylabel('Degrees') 

grid 

%(f) 

figure(15) 

step(Gp) 

hold on 

step(W) 

title('Unit Step Responses') 

xlabel('Seconds') 

ylabel('Degrees') 

grid 

legend('Gp','W') 

%(g): 

figure(16) 

bode(Gc) 

title('Controller Bode plot') 

grid 

[n,d]=tfdata(Gc,'v'); 
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f=@(w) abs((-n(2)*w.^2+1i*n(3)*w+n(4))./(-1i*w.^3-d(2)*w.^2+1i*d(3)*w)).^2; 

PWR=integral(f,10^-5,10^3); 

PWRdB=10*log10(PWR) 

%============================================================= 

%PROBLEM 2 

%(b): 

[A B C D]=tf2ss(2,[1 1 9]) 

%(c): 

A=[-1 -9; 1 0]; B=[2;0]; C=[0 1]; D=0; 

L=eigs(A) 

r=roots([1 1 9]) 

G=tf(n,d) 

%(f): 

s1=-5+1i*5; s2=conj(s1); 

K=place(A,B,[s1 s2]) 

AA=A-B*K; 

eigs(AA) 

%(g): 

[N,D]=ss2tf(AA,B,C,D) 

%(h): 

B1=[1;0]; 

C1=[0 2]; 

CC=C1(2)*K; 

[NN,DD]=ss2tf(AA,B1,CC,0) 

%(i): 

Wg=tf(N,D); 

Wh=tf(NN,DD); 

figure(20) 

step(Wg) 

hold 

step(Wh) 

title('CL Unit Step Responses') 

legend('Wg','Wh') 

grid 

%(k): 

A=[-1 -9 0;1 0 0; 0 1 0]; B=[2;0;0]; C=[0 1 0];  

s3=-5; svec=[s1 s2 s3]; 

K=place(A,B,svec) 


